Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution

Authors

  • Hesham Reyad

    Lecture in EL Qassim University
  • Adil Younis

    Professor in Sudan University of Science and Technology
  • Amal Alkhedir

    Assistant of professor in Sudan University of Science and Technology

Received date: April 9, 2016

Accepted date: May 2, 2016

Published date: May 10, 2016

DOI:

https://doi.org/10.14419/ijasp.v4i1.6095

Keywords:

Erlang Distribution, Quasi-Bayes Estimates, Quasi-E-Bayeses Estimates, Quasi-Empirical Bayes Estimates, Quasi-Hierarchical Bayes Esti-mates.

Abstract

This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.

References

  1. A. K. Erlang, The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B 20, 6 (1909)87-98.
  2. K. Harischandra, S. S. Rao, A note on statistical inference about the traffic intensity parameter in M/Ek/1 queue. Sankhya B, 50, (1988)144-148.
  3. S. K. Bhattacharyya, N. K. Singh, Intensity in M/Ek/1 queue. Far. East, Journal of Math and Science.2, 57 (1994) 57-62.
  4. Y. Fang, Hyper-Erlang distribution model and its application in wireless mobile networks. Wireless Networks, 7(2001)211-219. http://dx.doi.org/10.1023/A:1016617904269.
  5. Y. H. AbdelKader, Computing the moments of order statistics from nonidentically distributed Erlang variables. Statistical Papers, 45(2003)563-570. http://dx.doi.org/10.1007/BF02760568.
  6. P. k. Suri, B. Bhushan, A. Jolly, Time estimation for project management life cycles: A simulation approach, International Journal of Computer Science and Network Security, 9, 5(2009)211-215.
  7. A. Haq, S. dey, Bayesian estimation of Erlang distribution under different prior distributions, Journal of Reliability and Statistical Studies, 4, 1 (2011)1-30.
  8. R. A. Bakoban, Bayesian and non-Bayesian estimation of Erlang distribution under progressive censoring, IJRRAS, 11, 3 (2012)524-535.
  9. A. H. Khan, T. R. Jan, Bayesian Estimation of Erlang Distribution under Different Generalized Truncated Distributions as Priors, Journal of Modern Applied Statistical Methods, 11, 2 (2012)416-442.
  10. R. W. M. Wedderbuem, Quasi-Likelihood Functions, Generalized Models and the Gauss-Newton Method, Biometrika, 61, 3 (1974) 439-443.
  11. M. Han, Expected Bayesian Method for Forecast of Security Investment, Journal of Operations Research and Management Science 14, 5 (2005) 89-102.
  12. M. Han, E-Bayesian Method to Estimate Failure Rate, The Sixth International Symposium on Operations Research and Its Applications (ISOR06) Xinjiang (2006)299-311.
  13. Q. Yin, H. Liu, Bayesian estimation of geometric distribution parameter under scaled squared error loss function, Conference on Environmental Science and Information Application Technology (2010)650-653.
  14. J. Wei, B. Song, W. Yan, Z. Mao, Reliability Estimations of Burr-XII Distribution under Entropy Loss Function, IEEE (2011) 244-247. http://dx.doi.org/10.1109/icrms.2011.5979276.
  15. Z. F. Jaheen, H. M. Okasha, E-Bayesian Estimation for the Burr type XII model based on type-2 censoring, Applied Mathematical Modelling 35 (2011) 4730 - 4737. http://dx.doi.org/10.1016/j.apm.2011.03.055.
  16. G. Cai, W. Xu, W. Zhang, P. Wang, Application of E-Bayes method in stock forecast, Fourth International Conference on Information and Computing (2011)504-506. http://dx.doi.org/10.1109/icic.2011.40.
  17. H. M. Okasha, E-Bayesian estimation of system reliability with Weibull distribution of components based on type-2 censoring, Journal of Advanced Research in Scientific Computing 4, 4 (2012)34-45.
  18. X. Wu, E-Bayesian Estimation of Failure Probability under Zero-failure Data with Double Hyper Parameters, Journal of Applied Mechanics and Materials 190-191 (2012) 977-981. http://dx.doi.org/10.4028/www.scientific.net/AMM.190-191.977.
  19. R. Azimi, F, Yaghamei, B. Fasihi, E-Bayesian estimation based on generalized half Logistic progressive type-II censored data, International Journal of Advanced Mathematical Science 1, 2 (2013) 56-63.
  20. N. Javadkani, P. Azhdari, R. Azimi, On Bayesian estimation from two parameter Bathtub-shaped lifetime distribution based on progressive first-failure-censored sampling, International Journal of Scientific World 2, 1 (2014) 31-41. http://dx.doi.org/10.14419/ijsw.v2i1.2513.
  21. H. Liu, T. Yin, C. Wang, E-Bayes Estimation of Rayleigh Distribution Parameter, Journal of Applied Mechanics and Materials 596 (2014) 305-308. http://dx.doi.org/10.4028/www.scientific.net/AMM.596.305.
  22. H. M. Okasha, E-Bayesian Estimation for the Lomax distribution based on type-II censored data, Journal of the Egyptian Mathematical Society 22, 3 (2014) 489-495. http://dx.doi.org/10.1016/j.joems.2013.12.009.
  23. H. M. Reyad, S. O. Ahmed, E-Bayesian analysis of the Gumbel type-ii distribution under type-ii censored scheme, International Journal of Advanced Mathematical Sciences 3, 2 (2015) 108-120. http://dx.doi.org/10.14419/ijams.v3i2.5093.
  24. H. M. Reyad, S. O. Ahmed, Bayesian and E-Bayesian estimation for the Kumaraswamy distribution based on type-ii censoring. International Journal of Advanced Mathematical Sciences, 4, 1 (2016):10-17. http://dx.doi.org/10.14419/ijams.v4i1.5750.
  25. Reyad, H. M, Younis, A, M,. Alkhedir, A. A.(2016). Comparison of Estimates using Censored Samples from Gompertz Model: Bayesian, E-Bayesian, Hierarchical Bayesian and Empirical Bayesian Schemes. International Journal of Advanced Statistics and Probability 4, 1(2016):47-61 http://dx.doi.org/10.14419/ijasp.v4i1.5914.
  26. A. Mood, F. A. Graybill, D. Boes, Introduction to the Theory of Statistics. McGraw-Hill Series in Probability and Statistics, 1974.
  27. J. G. Nostrom, The use of precautionary loss function in risk analysis, IEEE Transaction on Reliability, 45, 3(1996)400-403.
  28. D. K. Dey, M. Gosh, C. Srinivasan, Simultaneous estimation of parameter under entropy loss, Journal of Statistical Planning and Inference (1987) 347-363.
  29. M. h. Degroot, Optimal Statistical Decision, McGraw-Hill Inc. (1970).
  30. M. K. Bhuiyan, M. K. Roy, M. F. Iman, Minimax estimation of the parameter of Rayleigh distribution, (2007) 207-212.
  31. M. Han, The structure of hierarchical prior distribution and its applications, Chinese Operations Research and Management Science 6, 3 (1997) 31-40.
  32. D. V. Lindley, A. F. Smith, Bayes estimation for the linear model, Journal of Royal Statistical Society B, 34 (1972)1-41.
  33. O. Shojaee, R. Azimi, M. Babanezhad, Empirical Bayes Estimators of Parameter and Reliability Function for Compound Rayleigh Distribution under Record Data, American Journal of Theoretical and Applied Statistics, 1, (2012) 12-15. http://dx.doi.org/10.11648/j.ajtas.20120101.12.

Downloads

Received date: April 9, 2016

Accepted date: May 2, 2016

Published date: May 10, 2016