Comparison of estimates using censored samples from Gompertz model: Bayesian, E-Bayesian, hierarchical Bayesian and empirical Bayesian schemes

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This paper aims to introduce a comparative study for the E-Bayesian criteria with three various Bayesian approaches; Bayesian, hierarchical Bayesian and empirical Bayesian. This study is concerned to estimate the shape parameter and the hazard function of the Gompertz distribution based on type-II censoring. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and three different asymmetric loss functions [quadratic loss function (QLF), entropy loss function (ELF) and LINEX loss function (LLF)]. Comparisons among all estimators are achieved in terms of mean square error (MSE) via Monte Carlo simulation.


  • Keywords


    Bayes estimates; E-Bayes estimates; Empirical Bayes estimates; Gompertz distribution; Hierarchical Bayes estimates.

  • References


      [1] B. Gompertz, on the nature of the function expressive of the law of human mortality and on the new mode of determining the value of life contingencies, Philosophical Transactions of Royal Society A, 115 (1825) 513-580. http://dx.doi.org/10.1098/rstl.1825.0026.

      [2] M.L. Grag, B.R. Rao, C.K. Redmond, Maximum likelihood estimation of the parameters of the Gompertz survival function, Journal of Royal Statistics Society,19 (1970)152-159. http://dx.doi.org/10.2307/2346545.

      [3] Z. Chen, Parameter estimation of the Gompertz population, Biometrical Journal, 39(1997)117-124. http://dx.doi.org/10.1002/bimj.4710390111.

      [4] Z. F. Jaheen, A Bayesian analysis of record statistics from Gompertz model, Applied Mathematical Computations, 145(2003) 307-320. http://dx.doi.org/10.1016/S0096-3003(02)00489-7.

      [5] S. J. Wu, C. T. Chang, T. R. Tsai, Point and interval estimators for the Gompertz distribution under progressive type-II censoring, Merton International Journal of Statistics, 21, 3(2003)403-418.

      [6] A. Khedhairi, A. E. Gohary, A new class of bivariate Gompertz distributions and its mixture, International Journal of Mathematical Analysis, 2, 5(2008) 235-253.

      [7] B. Saracoglu, M.F. Kaya, A. M. Abd-Elfattah, Comparisons of estimators for stress-strength reliability in Gompertz case, Hacettepe Journal of Mathematics and Statistics, 38, 3(2009) 339-349.

      [8] A. A. Ismail, Planning step-sress life tests with type-II censored data, Scientific Research and Essays, 6,19(2011)4021-4028.

      [9] N. Feroze, M. Aslam, On Bayesian estimation and predictions for two-components mixture of the Gompertz distribution, Journal of Modern Applied Statistics, 12, 2(2013)269-292.

      [10] J. M. Sarabia, E. Gomez-Deniz, P. Faustino, J. Vanesa, Explicit expressions for premiums and risk measures for the Gompertz distribution, IBIT-XV Iberian-Italian Congress of Financial and Actuarial Mathematics Steville,23-24(2014) 1-24.

      [11] M. Han, Expected Bayesian Method for Forecast of Security Investment, Journal of Operations Research and Management Science 14, 5 (2005) 89-102.

      [12] M. Han, E-Bayesian Method to Estimate Failure Rate, The Sixth International Symposium on Operations Research and Its Applications (ISOR06) Xinjiang (2006)299-311.

      [13] M. Han, E-Bayesian estimation of failure probability and its applications, Journal of Mathematics and Computer Modelling 45 (2007) 1272-1279. http://dx.doi.org/10.1016/j.mcm.2006.11.007.

      [14] Q. Yin, H. Liu, Bayesian estimation of geometric distribution parameter under scaled squared error loss function, Conference on Environmental Science and Information Application Technology (2010)650-653.

      [15] M. Han, E-Bayesian estimation of the reliability derived from Binomial distribution, Journal of Applied Mathematical Modelling 35 (2011) 2419-2424. http://dx.doi.org/10.1016/j.apm.2010.11.051.

      [16] J. Wei, B. Song, W. Yan, Z. Mao, Reliability Estimations of Burr-XII Distribution under Entropy Loss Function, IEEE (2011) 244-247. http://dx.doi.org/10.1109/icrms.2011.5979276.

      [17] Z. F. Jaheen, H. M. Okasha, E-Bayesian Estimation for the Burr type XII model based on type-2 censoring, Applied Mathematical Modelling 35 (2011) 4730 - 4737. http://dx.doi.org/10.1016/j.apm.2011.03.055.

      [18] G. Cai, W. Xu, W. Zhang, P. Wang, Application of E-Bayes method in stock forecast, Fourth International Conference on Information and Computing (2011)504-506. http://dx.doi.org/10.1109/icic.2011.40.

      [19] H. M. Okasha, E-Bayesian estimation of system reliability with Weibull distribution of components based on type-2 censoring, Journal of Advanced Research in Scientific Computing 4,4 (2012)34-45.

      [20] X. Wu, E-Bayesian Estimation of Failure Probability under Zero-failure Data with Double Hyper Parameters, Journal of Applied Mechanics and Materials 190-191 (2012) 977-981. http://dx.doi.org/10.4028/www.scientific.net/AMM.190-191.977.

      [21] R. Azimi, F, Yaghamei, B. Fasihi, E-Bayesian estimation based on generalized half Logistic progressive type-II censored data, International Journal of Advanced Mathematical Science 1, 2 (2013) 56-63.

      [22] N. Javadkani, P. Azhdari, R. Azimi, On Bayesian estimation from two parameter Bathtub-shaped lifetime distribution based on progressive first-failure-censored sampling, International Journal of Scientific World 2, 1 (2014) 31-41. http://dx.doi.org/10.14419/ijsw.v2i1.2513.

      [23] H. Liu, T. Yin, C. Wang, E-Bayes Estimation of Rayleigh Distribution Parameter, Journal of Applied Mechanics and Materials 596 (2014) 305-308. http://dx.doi.org/10.4028/www.scientific.net/AMM.596.305.

      [24] H. M. Okasha, E-Bayesian Estimation for the Lomax distribution based on type-II censored data, Journal of the Egyptian Mathematical Society 22, 3 (2014) 489-495. http://dx.doi.org/10.1016/j.joems.2013.12.009.

      [25] H. M. Reyad, S. O. Ahmed, E-Bayesian analysis of the Gumbel type-ii distribution under type-ii censored scheme, International Journal of Advanced Mathematical Sciences 3, 2 (2015) 108-120. http://dx.doi.org/10.14419/ijams.v3i2.5093.

      [26] A. Mood, F. A. Graybill, D. Boes, Introduction to the Theory of Statistics. McGraw-Hill Series in Probability and Statistics, 1974.

      [27] M. K. Bhuiyan, M. K. Roy, M. F. Iman, Minimax estimation of the parameter of Rayleigh distribution, (2007) 207-212.

      [28] D. K. Dey, M. Gosh, C. Srinivasan, Simultaneous estimation of parameter under entropy loss, Journal of Statistical Planning and Inference (1987) 347-363.

      [29] A. Zellner, Bayesian estimation and Prediction using Asymmetric loss Function. Journal of American Statistical Association 81 (1986) 446-451. http://dx.doi.org/10.1080/01621459.1986.10478289.

      [30] M. Han, The structure of hierarchical prior distribution and its applications, Chinese Operations Research and Management Science 6, 3 (1997) 31-40.

      [31] M. Han, E- Bayesian estimation and hierarchical Bayesian estimation of failure rate, Applied Mathematical Modelling 33 (2009) 1915-1922. http://dx.doi.org/10.1016/j.apm.2008.03.019.

      [32] D. V. Lindley, A. F. Smith, Bayes estimation for the linear model, Journal of Royal Statistical Society B, 34 (1972)1-41.

      [33] O. Shojaee, R. Azimi, M. Babanezhad, Empirical Bayes Estimators of Parameter and Reliability Function for Compound Rayleigh Distribution under Record Data, American Journal of Theoretical and Applied Statistics, 1, (2012) 12-15. http://dx.doi.org/10.11648/j.ajtas.20120101.12.


 

View

Download

Article ID: 5914
 
DOI: 10.14419/ijasp.v4i1.5914




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.