Bayesian estimation of the shape parameter of generalized Rayleigh distribution under non-informative prior

  • Authors

    • Yakubu Aliyu Ahmadu Bello University Zaria
    • Abubakar Yahaya Ahmadu Bello University
    2015-12-28
    https://doi.org/10.14419/ijasp.v4i1.5542
  • Bayes Estimators, Extended Jeffrey’s Prior, Entropy Loss Function, Precautionary Loss Function, Squared Error Loss Function.
  • A decade ago, two-parameter Burr Type X distribution was introduced by Surles and Padgett [14] which was described as Generalized Rayleigh Distribution (GRD). This skewed distribution can be used quiet effectively in modelling life time data. In this work, Bayesian estimation of the shape parameter of GRD was considered under the assumption of non-informative prior. The estimates were obtained under the squared error, Entropy and Precautionary loss functions. Extensive Monte Carlo simulations were carried out to compare the performances of the Bayes estimates with that of MLEs. It was observed that the estimate under the Entropy loss function is more stable than the estimates under squared error loss function, Precautionary loss function and MLEs.

  • References

    1. [1] Abdel-Hady, D. H. "Bivariate Generalized Rayleigh Distribution." Journal of Applied Sciences Research, no. 9 (2013): 5403-5411.

      [2] Al-Kutubi, H.S. On comparison of estimation procedures for parameter and survival function exponential distribution using simulation, Ph.D. Thesis, College of Ibn Al-Hatham. Baghdad University, (2005).

      [3] Burr, I. W. "Cumulative Frequency Distribution." Annual of Mathematical Statistics 13 (1942): 215-232. http://dx.doi.org/10.1214/aoms/1177731607.

      [4] Calabria, R., and Pulcini, G.. "An engineering approach to Bayes estimation for the Weibull distribution ." Micro-electron. Reliab. 34 , no. 5 (1994): 789–802. http://dx.doi.org/10.1016/0026-2714(94)90004-3.

      [5] Dey, D. K., Gosh M., and Srinivasan C.. "Simultaneous estimation of parameters under entropy loss." Journal of Statist. Plan. and Infer., (1987): 347-363.

      [6] Dey, D. K., and Liu Pei-San L.. "On comparison of estimators in a generalized life model." Micro-electron. Reliab. 32, no. 1 (1992): 207-221. http://dx.doi.org/10.1016/0026-2714(92)90099-7.

      [7] Jeffreys, H. Theory of Probability. Oxford, Clarendon Press, 1961.

      [8] Kundu, D., and Raqab M. Z.. "Generalized Rayleigh distribution: different methods of estimations." Computational Statistics & Data Analysis 49 (2005): 187 – 200. http://dx.doi.org/10.1016/j.csda.2004.05.008.

      [9] Lio, Y. L., Chen, D. and Tsai, T. "Parameter Estimations for Generalized Rayleigh Distribution under Progressively Type-I Interval Censored Data." American Open Journal of Statistics, (2011): 46-57.

      [10] Mahdi, S. "Improved Parameter Estimation in Rayleigh Model." Metodološki zvezki 3, no. 1 (2006): 63-74.

      [11] Norstrom, J. G. "The use of precautionary loss functions in risk analysis." IEEE Trans. Reliab. 45, no. 3 (1996): 400–403. http://dx.doi.org/10.1109/24.536992.

      [12] Raqab, M.Z. and Kundu D. "Comp arison of Different Estimators of P[Y < X ] for a Scaled Burr Type X Distribution." Commun. Statist. -Simul. Comp. 34 (2005): 465 – 483. http://dx.doi.org/10.1081/SAC-200055741.

      [13] Samaila, M., and Cenac M. "Estimating and Assessing the parameters of the logistic and Rayleigh distribution from three methods of estimation." Carrib. J. Math. comput. sci 13 (2006): 25-34.

      [14] Surles, J.G., and Padgett W.J.. "Inference for reliability and stress-strength for a scaled Burr Type X distribution." Lifetime Data Anal. 7, (2001): 187–200. http://dx.doi.org/10.1023/A:1011352923990.

      [15] Surles, J.G., and Padgett W.J.. "Some properties of a scaled Burr type X distribution." J. Statist. Plann. Inference, (2004).

  • Downloads