Bayesian estimation of the parameters of the bivariate generalized exponential distribution using accelerated life testing under censoring data

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, the Bayesian estimation for the unknown parameters for the bivariate generalized exponential (BVGE) distribution under Bivariate censoring type-I samples with constant stress accelerated life testing (CSALT) are discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power law function of the stress level. The parameters are estimated by Bayesian approach using Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling. Then, the numerical studies are introduced to illustrate the approach study using samples which have been generated from the BVGE distribution.


  • Keywords


    Accelerated Life Testing; Bivariate Generalized Exponential Distribution; Constant Stress; Bivariate Censoring Type-I Samples; Bayesian Estimation; Markov Chain Monte Carlo Method.

  • References


      [1] Abdel-Ghaly, A. A., Attia, A. F. and Aly, H. M., Estimation of The Parameters of Pareto Distribution and The Reliability Function Using Accelerated Life Testing with Censoring. Communications in Statistics Simulation and Computation, 27, (1998), 469-484. http://dx.doi.org/10.1080/03610919808813490.

      [2] Achcar, J. A., Inference for Accelerated Life Tests Considering a Bivariate Exponential Distribution. Statistics, 26, (1995), 269-283. http://dx.doi.org/10.1080/02331889508802495.

      [3] Al-Mautrairi, D. K., Gitany, M. E. and Kundu, D., A New Bivariate Distribution with Weighted Exponential Marginals and Its Multivariate Generalization. Statistical Papers, 52 (4), (2011), 921-936. http://dx.doi.org/10.1007/s00362-009-0300-2.

      [4] Aly, H. M. and Bleed, S. O., Bayesian Estimation for the Generalized Logistic Distribution Type-II Censored Accelerated Life Testing. International Journal of Contemporary Mathematical Sciences, 8 (20), (2013), 969 – 986.

      [5] Ashour, S. K., Essam, A. A. and Muhammed, H. Z., Moment Generating Function of the Bivariate Generalized Exponential Distribution. Applied Mathematical Sciences, 3(59), (2009), 2911 – 2918.

      [6] Ashour, S. K., Essam, A. A. and Muhammed, H. Z., Maximum Likelihood Estimation for the Bivariate Generalized Exponential Distribution Parameters Using Type-I Censored Data. Journal of Applied Sciences Research, 8(4), (2012), 1893-1900.

      [7] Assar, S. M. and Abd El-Maseh, M. P., Estimation of the Parameters of the Bivariate Generalized Exponential Distribution Using Accelerated Life Testing with Censoring Data. International Journal of Advanced Statistics and Probability, 2 (2), (2014), 77- 83. http://dx.doi.org/10.14419/ijasp.v2i2.3078.

      [8] Attia, A. F., Aly, H. M. and Bleed, S. O., Estimating and Planning Accelerated Life Test Using Constant Stress for Generalized Logistic Distribution under Type-I Censoring. ISRN Applied Mathematics, 203618, (2011, a), 15 pages, http://dx.doi.org/10.5402/2011/203618.

      [9] Attia, A. F., Aly, H. M. and Bleed, S. O., Estimating and Planning Accelerated Life Test Using Constant Stress for Generalized Logistic Distribution under Type-II Censoring. The 46th Annual Conference on Statistics, Computer Sciences and Operations Research, Institute of Statistical Studies and Research, Cairo University, (2011, b), 26-44.

      [10] Attia, A. F., Aly, H. M. and Muhammed, H. Z., Estimation of the Bivariate Generalized Linear Failure Rate Distribution under Different Censoring Schemes. The Annual Conference in Statistics, Computer Science, and Operations Research, Institute of Statistical Studies and Research, Cairo University, (2012), 37-55.

      [11] Attia, A. F., Shaban, A. S. and Abd El Sattar, M. H., Bayesian and Non-Bayesian Estimations for Birnbaum-Saunders Distribution under Accelerated Life Testing Based on Censoring Sampling. Applied Mathematical Sciences, 7 (66), (2013), 3255 – 3269.

      [12] Elsayed, E. A., Reliability Engineering. Addison Wesley Longman, Inc, (1996).

      [13] Hanagal, D. D., Some Inference Results in Bivariate Exponential Distribution Based on Censored Samples. Communications in Statistics – Theory and Methods, 21(5), (1992), 1273-1295. http://dx.doi.org/10.1080/03610929208830846.

      [14] Houggard, P., Harvald, B. and Holm, N. V., Measuring the Similarities between the Lifetimes of Adult Danish Twins Born Between 1881-1930. Journal of Statistical Society Association (JASA), 87, (1992), 17-24.

      [15] Huang, S., Statistical Inference in Accelerated Life Testing with Geometric Process Model. M. S. thesis, San Diego State University, United States, (2011).

      [16] Ibrahim, J. G., Chen, M. H. and Sinha, D., Bayesian Survival Analysis. Springer-Verlag New Yourk, Inc, (2001). http://dx.doi.org/10.1007/978-1-4757-3447-8.

      [17] Kim, J. J. and Park, B. G., A Study on Estimation of Parameters in Bivariate Exponential Distribution. Journal of the KSQC, 15 (1), (1987), 20-32.

      [18] Kundu, D. and Gupta, R. D., Generalized Exponential Distributions: Basyian Estimations. Computational Statistics & Data Analysis, 52, (2008), 1873-1883. http://dx.doi.org/10.1016/j.csda.2007.06.004.

      [19] Kundu, D. and Gupta, R. D., Bivariate Generalized Exponential Distribution. Journal of Multivariate Analysis, 100(4), (2009), 581 – 593. http://dx.doi.org/10.1016/j.jmva.2008.06.012.

      [20] Kundu, D. and Gupta, A. K., Bayes Estimation for the Marshall–Olkin Bivariate Weibull Distribution. Computational Statistics and Data Analysis, 57 (1), (2013), 271-281. http://dx.doi.org/10.1016/j.csda.2012.06.002.

      [21] Kundu, D. and Gupta, A. K., On Bivariate Weibull-Geometric Distribution. Journal of Multivariate Analysis, 123, (2014), 19-29. http://dx.doi.org/10.1016/j.jmva.2013.08.004.

      [22] Lakshmi, S. and Durgadevi, N., A Bivariate Generalized Exponential Model for the Effect of Endocrine Responses in Human with Postprandial Distress Syndrome. International Organization of Scientific Research Journal of Engineering, 4(4), (2014), 28-33. http://dx.doi.org/10.9790/3021-04442833.

      [23] Lin, D. Y., Sun, W. and Ying, Z., Nonparametric Estimation of the Gap Time Distribution for Serial Events with Censored Data. Biometrikia, 86, (1999), 59-70. http://dx.doi.org/10.1093/biomet/86.1.59.

      [24] Marshall, A. W. and Olkin, I., A Multivariate Exponential Distribution. Journal of the American Statistical Association. 62, (1967), 30-44. http://dx.doi.org/10.1080/01621459.1967.10482885.

      [25] Meintanis, S. G., Test of Fit for Marshall-Olkin Distributions with Applications. Journal of Statistical Planning and Inference. 137, (2007), 3954-3963. http://dx.doi.org/10.1016/j.jspi.2007.04.013.

      [26] Mood, A. M., Graybill, F. A. and Boes, D. C., Introduction to the Theory of Statistics. McGraw-Hill, Inc, (1974).

      [27] Nelson, W., Accelerated Testing: Statistical Models, Test Plans, and Data Analyses. New Yourk, John Wiley & Sons, (1990). http://dx.doi.org/10.1002/9780470316795.

      [28] Singpurwalla, N. D., A Problem in Accelerated Life Testing. Journal of American Statistical Association, 66, (1971), 841-845. http://dx.doi.org/10.1080/01621459.1971.10482355.

      [29] Spiegelhalter, D. Thomas, A., Best, N. and Lunn, D., OpenBUGS User Manual, (2010). [Online]. Available: www.mrc-bsu.cam.ac.uk. [Accessed 15th July 2012].

      [30] Walker, S. G., Bayesian Inference with Misspecified Models. Journal of Statistical Planning and Inference, 143, (2013), 1621-1633. http://dx.doi.org/10.1016/j.jspi.2013.05.013.

      [31] Zhou, R., Sivaganesan, S. and Longla, M., an Objective Bayesian Estimation of Parameters in a Log-Binomial Model. Journal of Statistical Planning and Inference, 146, (2014), 113–121. http://dx.doi.org/10.1016/j.jspi.2013.09.006.


 

View

Download

Article ID: 5242
 
DOI: 10.14419/ijasp.v3i2.5242




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.