The Transmuted Inverse Exponential Distribution

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This article introduces a two-parameter probability model which represents another generalization of the Inverse Exponential distribution by using the quadratic rank transmuted map. The proposed model is named Transmuted Inverse Exponential (TIE) distribution and its statistical properties are systematically studied. We provide explicit expressions for its moments, moment generating function, quantile function, reliability function and hazard function. We estimate the parameters of the TIE distribution using the method of maximum likelihood estimation (MLE). The hazard function of the model has an inverted bathtub shape and we propose the usefulness of the TIE distribution in modeling breast cancer and bladder cancer data sets.

  • Keywords

    Generalization; Inverse Exponential; Moments; Quadratic Rank Transmuted Map; Quantile Function; Transmuted Inverse Exponential.

  • References

      [1] Ahmad A., Ahmad S. P., and Ahmed A. “Transmuted Inverse Rayleigh Distribution: A Generalization of the Inverse Rayleigh Distribution”, Mathematical Theory and Modeling, Vol. 4, No. 7, 2014.

      [2] Aryal G. R., Tsokos C. P. “Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution”, European Journal of Pure and Applied Mathematics, Vol. 4, No. 2, 2011, 89-102.

      [3] Ashour S. K., and Eltehiwy M. A. “Transmuted Exponentiated Modified Weibull Distribution”, International journal of Basic and Applied Sciences, 2013a, Vol 2(3) 258-269.

      [4] Ashour S. K., and Eltehiwy M. A. “Transmuted Lomax Distribution”, American Journal of Applied Mathematics and Statistics, 2013b, Vol. 1, No. 6, 121-127.

      [5] Elbatal I. “Transmuted Modified Inverse Weibull Distribution: A Generalization of the Modified Inverse Weibull Probability Distribution” International Journal of Mathematical Archive, 4 (8), 2013, 117-129.

      [6] Hussian M. A. “Transmuted Exponentiated Gamma Distribution: A Generalization of the Exponentiated Gamma Probability Distribution”, Applied Mathematical Sciences, Vol. 8, 2014, No. 27, 1297-1310.

      [7] Keller, A. Z and Kamath, A. R (1982). “Reliability analysis of CNC Machine Tools”. Reliability Engineering. Vol. 3, pp. 449-473.

      [8] Khan M. S., King R. and Hudson I. L. “Characteristics of the transmuted inverse weibull distribution”, ANZIAM J. 55 (EMAC2013) pp. C197-C217, 2014.

      [9] Lin, C. T, Duran, B. S and Lewis, T. O. “Inverted Gamma as life distribution”. Microelectron Reliability, Vol. 29 (4), (1989) 619-626.

      [10] Merovci, F., “Transmuted Rayleigh Distribution”, Austrian Journal of Statistics, Vol. 42 (1), 21-31, 2013

      [11] Merovci F., Puka L., “Transmuted Pareto Distribution”, ProbStat Forum, Volume 07, January 2014, Pages 1-11.

      [12] Oguntunde P. E., Babatunde O. S., and Ogunmola A. O., “Theoretical Analysis of the Kumaraswamy-Inverse Exponential Distribution” International Journal of Statistics and Applications, Vol. 4, No. 2, (2014), 113-116.

      [13] Oguntunde P. E., Odetunmibi O. A., & Adejumo A. O., “A Study of Probability Models in Monitoring Environmental Pollution in Nigeria,” Journal of Probability and Statistics, vol. 2014, Article ID 864965, 6 pages, 2014. doi:10.1155/2014/864965.

      [14] Oguntunde, P. E, Odetunmibi, O. A., Adejumo A. O. “On the Sum of exponentially distributed random variables: A convolution approach”. European Journal of Statistics and Probability, 2(1), 1-8, 2014.

      [15] Oguntunde P. E, Odetunmibi O. A, Edeki S. O, Adejumo A. O., “On the modified ratio of exponential distributions” Bothalia Journal, vol 44, no 4, pp. 166-174, 2014.

      [16] Shaw W and Buckley, I. (2007).The alchemy of probability distributions: beyond Gram- Charlier expansions and a skew- kurtotic- normal distribution from a rank transmutation map. Research Report, 2007.

      [17] Singh S. K., Singh U., Kumar M. “Estimation of Parameters of Generalized Inverted Exponential Distribution for Progressive Type-II Censored Sample with Binomial Removals”. Journal of Probability and Statistics. Volume 2013, Article ID 183652.




Article ID: 3684
DOI: 10.14419/ijasp.v3i1.3684

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.