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Abstract

Some distributional properties of the raised cosine distribution are presented. Based on the distributional properties, several new characterizations of the raised cosine distribution are given.
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1. Introduction. Fitting of probability distributions to the real-world data is an important area of research in the fields of probability and statistics. However, before we fit a particular probability distribution to these data, it becomes necessary to justify whether the given probability distribution satisfies the underlying requirements by its characterization. Many authors and researchers have developed various methods for the characterizations of probability distribution, for which the interested readers are referred to Nagaraja [17], Ahsanullah et al.[4], Ahsanullah [2], and references therein. For example, in recent years, many researchers have investigated the characterizations of probability distributions based on a simple relationship between two different moments truncated from the left at the same point, see, for example, Galambos and Kotz [9], Kotz and Shanbhag [14], Glänzel et al. [11], and Glänzel [10], among others. As pointed out by Glänzel [10], these characterizations may serve as a basis for parameter estimation, and may also be useful in developing some goodness-of-fit tests of distributions by using data whether they satisfy certain properties given in the characterizations of distributions. For further discussions in this regard, the interested readers are referred to Ahsanullah et al. [5, 6].

It appears from the literature that not much attention has been paid to the characterization of the raised cosine distribution. For details on the raised cosine distribution and its applications, the interested readers are referred to King [13], Rinne [21], and Willink [22], among others. As pointed out by Kyurkchiev and Kyurkchiev [15], the raised-cosine distribution function and raised-cosine cumulative distribution function are functions commonly used to avoid inter symbol interference in communications systems. For details, the interested readers are referred to their paper. In this paper, motivated by the importance of the raised cosine distribution in many practical problems, we consider its several distributional properties. Based on these distributional properties, we have established some new characterizations of the raised cosine distribution by truncated first moment, order statistics and upper record values, which, we hope, will be useful for practitioners and researchers in the fields of probability, statistics, and other applied sciences.

The organization of this paper is as follows. Section 2 briefly discusses the raised cosine distribution and some of its properties. The main results on the characterizations of the raised cosine distribution are presented in section 3. The concluding remarks are provided in Section 4. 

2. Raised Cosine Distribution and its Distributional Properties: As pointed out above, for details on the raised cosine distribution and its applications, the interested readers are referred to King [13], Kyurkchiev and Kyurkchiev [15], Rinne [21], and Willink [22], among others. For the sake of completeness, here we briefly discuss some of the distributional properties of the raised cosine distribution. 

A continuous random variable 
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 is said to have raised cosine distribution (RCD) if its probability density function (pdf) 
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is as follows:
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where 
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. It is easy to see that the mean of the raised cosine distribution (1) is given by
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To describe the shapes of the raised cosine distribution (RCD), 
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, using Maple software, the plots of the pdf  (1), for 
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Figure 1: PDF 
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The effects of the parameters can easily be seen from these graphs. We note that, since the raised cosine distribution, 
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, is an even function, it is easily seen that the pdf of 
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 is symmetric about the mean 
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 for other values of the parameters. 

The corresponding cumulative distribution function (cdf) 
[image: image18.wmf]()

Fx

, reliability function 
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, hazard function 
[image: image20.wmf]()

hx

, and cumulative hazard function 
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 are respectively given by
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and
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Moment Generating Function: Using the equation (1) for the pdf
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, the moment generating function 
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 which on substituting 
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, it is easy to see that, after simplification, the moment generating function 
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Characteristic Function: Following in the same manner as above, the characteristic function 
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 is easily obtained as follows
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Variance: It is easy to see that the variance of the raised cosine distribution (1) is given by
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Median: Since the raised cosine distribution is symmetric about the mean 
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, its median 
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 will also be given by 
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Mode: The mode of the raised cosine distribution is the value of 
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 (say), for which its pdf  (1), that is,
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is maximum. Now, differentiating the above equation for 
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which, when equated to 0,  and solving for 
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Inflection Points: By solving the following equation:
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for 
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, it can easily be seen that the inflection points are given by 
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Standard Raised Cosine Distribution: The pdf 
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 and the cdf 
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 of the standard raised cosine distribution, 
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Graphs: The graph of the pdf (2) of 
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 is given in Figure 2.
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                                            Figure 2: PDF 
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We observe that the pdf of 
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           Figure 3: CDF 
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Figure 4: Reliability Function 
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Figure 5: Hazard Function 
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Figure 6: Cumulative Hazard Function 
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Moments: Since the standard raised cosine distribution, 
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[image: image93.wmf](

)

0,1

XRCD

:

 are zero. For the even moments, when 
[image: image94.wmf]n

 is a positive integer, using the pdf (2) of 
[image: image95.wmf](

)

0,1

XRCD

:

, we have

 

[image: image96.wmf][

]

1

22

1

1

()1cos()

2

nn

EXxxdx

p

-

éù

=+

êú

ëû

ò

,

which, on successive integration (that is, using reduction formula), is easily expressed as
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where 
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Remarks: Also, following Gradshteyn and Ryzhik [12], and Prudnikov et al. [19], Vol. 1, Eq. 2.5.8.1, page 393, we easily obtain the following expressions for the event moment, 
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 is the generalized hypergeometric function defined by the equation
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which is an absolutely convergent series for all real values of 
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Table 1
First Ten Even Moments of the standard raised cosine distribution, 
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It’s observed from Table 1 that the even moment 
[image: image119.wmf]2

()

n

EX

 of 
[image: image120.wmf](

)

0,1

XRCD

:

 is a decreasing function of 
[image: image121.wmf]n

.


Percentile Points: Here we compute the percentile points of the standard raised cosine distribution, 
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Table 2
Percentile Points of the standard raised cosine distribution, 
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3. Characterizations: In this section, we present some new characterizations of the raised cosine distribution by truncated first moment, order statistics and upper record values. Without loss of generality, we will consider the standard raised cosine distribution, 
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Assumption and Lemmas: In order to prove our main results on characterization, we will need the following assumption (Assumption 1), along with two lemmas, (Lemmas 1 and 2), which will be useful in proving our main results.   

Assumption 1: Suppose the random variable 
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Proof: We have 
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Differentiating the above equation with respect to respect to 
[image: image158.wmf]x

, we obtain

 

[image: image159.wmf](

)

(

)

(

)

x

g

x

f

x

g

x

f

x

f

x

/

/

)

(

)

(

+

=

.

From the above equation, we obtain
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On integrating the above equation with respect to 
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Differentiating the above equation with respect to respect to 
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From the above equation, we obtain
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On integrating the above equation with respect to 
[image: image180.wmf]x

, we have


 

[image: image181.wmf](

)

(

)

(

)

du

u

g

u

g

u

x

e

c

x

f

ò

+

-

=

g

/

,               

where 
[image: image182.wmf]c

 is obtained by the condition  
[image: image183.wmf]1

)

(

=

ò

dx

x

f

d

g

. This completes the proof of Lemma 2.

Main Results

Here, we establish our main results in Theorems 1 - 5.

Characterization by Truncated First Moment: The following two theorems are based on truncated first moment.
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Consequently, the proof of “if” part of the Theorem 1 follows from Lemma 1. 


Conversely, we will now prove the “only if” condition of Theorem 1. Suppose that
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On integrating the above equation (4) with respect to 
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Theorem 2: If the random variable 
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Consequently, the proof of “if” part of the Theorem 2 follows from Lemma 2. 


Conversely, we will now prove the “only if” condition of Theorem 2. Suppose that
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from which, after differentiation, we easily have
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Consequently, by using Lemma 2, we obtain
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On integrating the above equation (5) with respect to 
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Characterizations by Order Statistics: Here, we will provide the characterizations based on order statistics, for which we first recall the following well-known results.
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In the following two theorems, we will provide the characterizations of the standard raised cosine distribution, 
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Theorem 3: Suppose the random variable 
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Thus the result follows from Theorem 1.

Theorem 4: Suppose the random variable 
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Proof: It is known, see Ahsanullah et al. [3], and David and Nagaraja [8], that

 

[image: image280.wmf],,

(|)(|)

knkn

ETXxEXXx

==³

.


Thus the result follows from Theorem 2.

Characterization by Upper Record Values: Here, we will provide the characterizations based on upper record values, for which we first recall the following definitions. Suppose that  
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In the following theorem, we will provide the characterization of the standard raised cosine distribution, 
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, based on upper record values. Without loss of generality, we will consider the pdf (2) of the standard raised cosine distribution, that is,
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Theorem 4: Suppose the random variable 
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Proof: It is known, see Ahsanullah et al. [3], and Nevzorov [18], that
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Thus the result follows from Theorem 2.

4. Concluding Remarks: A probability distribution can be characterized through various methods. In this paper, we present some new characterizations of the raised cosine distribution by truncated first moment, order statistics and upper record values. It is hoped that the findings of the paper will be useful for researchers in the fields of probability, statistics, and other applied sciences.
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