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Abstract

It is often of interest to undertake a general linear hypothesis testing (GLHT) problem in the one-way
ANOVA without assuming the equality of the group variances. When the equality of the group variances
is valid, it is well known that the GLHT problem can be solved by the classical F-test. The classical F -
test, however, may lead to misleading conclusions when the variance homogeneity assumption is seriously
violated since it does not take the group variance heteroscedasticity into account. To our knowledge, little
work has been done for this heteroscedastic GLHT problem except for some special cases. In this paper,
we propose a simple approximate Hotelling T 2 (AHT) test. We show that the AHT test is invariant under
affine-transformations, different choices of the coefficient matrix used to define the same hypothesis, and
different labeling schemes of the group means. Simulations and real data applications indicate that the
AHT test is comparable with or outperforms some well-known approximate solutions proposed for the
k-sample Behrens-Fisher problem which is a special case of the heteroscedastic GLHT problem.

Keywords: Approximate Hotelling T 2 test, ANOVA under heteroscedasticity, Linear hypothesis test, k-sample Behrens-
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1 Introduction

Given k independent samples with the l-th sample being xlj , j = 1, 2, · · · , nl,
i.i.d∼ N(µl, σ

2
l ) for l =

1, 2, · · · , k, where and throughout, N(µ, σ2) denotes a univariate normal distribution with mean µ and
variance σ2, we want to test the following general linear hypothesis testing (GLHT) problem:

H0 : Cµ = c, vs H1 : Cµ 6= c, (1)

without assuming the equality of the group variances σ2
l , l = 1, · · · , k, where µ = [µ1, µ2, · · · , µk]T ,

C : q × k is a known coefficient matrix with rank(C) = q ≤ k, and c : q × 1 is a known constant vector.
For convenience, the above problem may be referred to as the heteroscedastic GLHT problem. When the
equality of the group variances σ2

l , l = 1, 2, · · · , k is assumed, it is well known that the GLHT problem (1)
can be solved by the classical F-test. For the heteroscedastic GLHT problem (1), however, the classical
F-test may lead to misleading conclusions since it does not take the group variance heteroscedasticity
into account. To our knowledge, little work has been done for this heteroscedastic GLHT problem except
for some special cases. In this paper, we propose a simple approximate Hotelling T 2 (AHT) test. The
AHT test uses the Wald-type test statistic with its null distribution approximated by a Hotelling T 2

distribution with parameters q and d. The parameter d can be easily estimated from the data using
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a simple formula. Moreover, it is shown that the AHT test is invariant under affine-transformations,
different choices of the matrix C for the same hypothesis, and different labeling schemes of the group
means µ1, µ2, · · · , µk.

The heteroscedastic GLHT problem (1) is very general and it has wide applications. Many important
special cases can be obtained via properly specifying the coefficient matrix C and the constant vector c.
For example, when we set c = c, a scalar, and set C = λT , a 1×k row vector, the heteroscedastic GLHT
problem (1) reduces to the problem of testing H0 : λT µ = c versus H1 : λT µ 6= c. In this case, the
AHT test is equivalent to an approximate t-test defined in a similar manner; see Section 2.2 for details.
Using this approximate t-test, we can also construct approximate confidence intervals for λT µ − c if
desired. Another important special case is obtained when we set c = 0 and C = [Ik−1,−1k−1] where
and throughout Ia denotes the identity matrix of size a and 1a the column vector of ones of length a.
In this case, testing the heteroscedastic GLHT problem (1) reduces to testing the following well-known
heteroscedastic one-way ANOVA (ANalysis Of VAriance) problem:

H0 : µ1 = µ2 = · · · = µk versus H1 : H0 is not true, (2)

without assuming the equality of the group variances σ2
l , l = 1, 2, · · · , k. This problem is also known as

the k-sample Behrens-Fisher (BF) problem.

When k = 2, the problem (2) reduces to the well-known two-sample BF problem, which can be
dated back to Behrens [2] and Fisher [8]. This two-sample BF problem has been well addressed by
various authors including Welch [26], Aspin [1], Lee and Gurland [21], among others. In particular, the
Welch test is the most popular and accurate solution ([15]). A good comprehensive review about the
two-sample BF problem was given by Kim and Cohen [13]. In the recent decade, this two-sample BF
problem continuously produced some interesting literature including Gupta and Wang [10], Ruben [24],
and Chang and Pal [5] among others. In particular, Chang and Pal [5]’s parametric bootstrap (PB) test
(also known as computational approach test) is very powerful and easy to implement. It can be easily
extended to solving the k-sample BF problem ([15]) or comparing several population means for normal
data or non-normal data ([6], [4]).

For the general k-sample BF problem (2), exact solutions are generally intractable but many approx-
imate solutions are indeed available in the literature. Well-known approximate solutions include Welch’s
[28] approximate degrees of freedom (ADF) test, James’ [12] second order series expansion solution,
Brown and Forsythe’s [3] modified F-test, and Krishnamoorthy, Lu and Mathew’s [15] PB test, among
others. These approximate solutions represent a number of similar approximate solutions proposed in the
literature for the k-sample BF problem (2). Other well-known approximate solutions for the k-sample
BF problem (2) include Welch [27], James [11], Krutchkoff [18], Wilcox ([29], [30]), Rice and Gaines
[23], Weerahandi [25], Lee and Ahn [20], among others. It is not possible to give a complete list of this
literature even for this k-sample BF problem, not mentioning that there is a vast literature about many
approximate solutions to heteroscedastic two-way ANOVA, one-way MANOVA (Multivariate ANOVA)
and two-way MANOVA problems. The interested reader is referred to the comprehensive review by
Coombs et al. [7] and references therein. For more recent work in these areas, the reader is referred to
Krishnamoorthy, Lu and Mathew [15], Chang and Pal [5], Krishnamoorthy and Lu [14] and references
therein.

The AHT test proposed in this paper performs well in terms of size and power at least for the k-
sample BF problem (2). Simulations presented in Section 3 in this paper show that for the k-sample BF
problem (2) for normal data with various sample sizes and parametric configurations, the proposed AHT
test is comparable with Krishnamoorthy, Lu and Mathew’s [15] PB test and it generally outperforms
Welch’s [28] ADF test in terms of size and power. When k is large, the Welch test is very liberal, i.e.,
its empirical sizes are much larger than the given nominal size but this is not the case for the PB and
AHT tests. Further simulation results presented in Zhang [32], an earlier version of this paper, show
that for the k-sample BF problem (2) for normal and non-normal data with small samples and large k,
the proposed AHT test are comparable with the PB test, but generally outperforms Welch’s [28] ADF
test, James’ [12] second order series expansion solution, and Brown and Forsythe’s [3] modified F-test.
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Notice that although the PB test ([15]) is powerful and easy to implement as mentioned earlier, it requires
substantially more computations than the AHT test. For a single case as in real data application, given
the fast and affordable computational resources available nowadays, this may not be a concern. However,
for mass computation as in simulation studies, the computation work is a big burden. In fact, in the
simulation studies presented in Section 3, the time spent by the PB test is about 10000 times of the time
spent by the AHT test. Therefore, we recommend the AHT test for the heteroscedastic GLHT problem
(1) especially when a number of normal population means are involved and when a quick test result is
desired.

The good performance of the AHT test is not totally a surprise. When k = 2, the AHT test coin-
cides with Welch’s [27] test which, as mentioned earlier, is known to be the most accurate approximate
solution to the two-sample BF problem ([15]). As shown in Section 2, the AHT test is developed for
the heteroscedastic GLHT problem (1) in a similar manner as the modified Nel and Van der Merwe’s
[22] test was developed for the two-sample multivariate BF problem by Krishnamoorthy and Yu [17]
and they called the new test as the MNV test. Intensive simulations in the literature ([17], [31], [16],
and among others) show that the MNV test performs quite well for various sample sizes and parameter
configurations. It is then natural to expect that the AHT test will have a similar nice performance for
the heteroscedastic GLHT problem (1).

The rest of the paper is organized as follows. In Section 2, the AHT test is developed. Simulation
studies are presented in Section 3. Applications to a real data set are given in Section 4. Some concluding
remarks are given in Section 5. Technical proofs of the main results are outlined in the Appendix.

2 Main results

2.1 The Wald-type test statistic

We now start to construct the test statistic for the heteroscedastic GLHT problem (1). Let µ̂l = x̄l =
n−1

l

∑nl

j=1 xlj and σ̂2
l = (nl − 1)−1

∑nl

j=1(xlj − µ̂l)(xlj − µ̂l)T be the usual unbiased sample mean and
variance of the l-th sample for l = 1, 2, · · · , k. Set µ̂ = [µ̂1, µ̂2, · · · , µ̂k]T . Then µ̂ ∼ Nk(µ,Σ) where
Σ = diag

(
σ2
1

n1
,

σ2
2

n2
, · · · , σ2

k

nk

)
. Since Cµ̂ − c ∼ Nq(Cµ − c,CΣCT ), we can then construct the following

Wald-type test statistic:

T = (Cµ̂− c)T
(
CΣ̂CT

)−1

(Cµ̂− c), (3)

where Σ̂ = diag( σ̂2
1

n1
,

σ̂2
2

n2
, · · · , σ̂2

k

nk
). Let nmin = mink

l=1 nl and nmax = maxk
l=1 nl. Let χ2

q denote a χ2-
distribution with q degrees of freedom and Fr,m an F -distribution with r and m degrees of freedom.

Remark 2.1 When the variance homogeneity is assumed and the sample variances σ̂2
l are replaced by

their pooled sample variance
∑k

l=1(nl − 1)σ̂2
l /(N − k) where N =

∑k
l=1 nl denotes the total sample size

of the k samples, it is easy to show that T/q ∼ Fq,N−k. However, when this homogeneity assumption is
violated, the distribution of T is complicated and its closed-form expression is less tractable unless nmin

is very large.

Remark 2.2 Assume that the sample sizes n1, n2, · · · , nk tend to infinity proportionally. That is,

nl/nmin → rl < ∞, l = 1, 2, · · · , k, as nmin →∞. (4)

Then it is standard to show that as nmin →∞, T asymptotically follows χ2
q. However, we can show that

the convergence rate of T to χ2
q is of order n

−1/2
min which is rather slow when nmin is small or moderate.

Thus, the resulting χ2-test is hardly useful for the heteroscedastic GLHT problem (1).
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2.2 The AHT test

To overcome the problem mentioned in Remark 2.2, we here propose the so-called AHT test based on T .
The key idea of the AHT test is to approximate the null distribution of T by a Hotelling T 2 distribution
with some proper parameters. For this end, following Krishnamoorthy and Yu [17], we re-express T as:

T = zT W−1z, (5)

where z = (CΣCT )−1/2(Cµ̂ − c) and W = (CΣCT )−1/2(CΣ̂CT )(CΣCT )−1/2. Notice that z ∼
Nq(µz, Iq), where µz = (CΣCT )−1/2(Cµ − c). Thus, under the null hypothesis, z ∼ Nq(0, Iq). Let
Wq(m,V) denote a Wishart distribution with m degrees of freedom and covariance matrix V and let T 2

q,d

denote the well-known Hotelling T 2 distribution with parameters q and d. If we can show that for some
d > q + 3,

W ∼ Wq(d, Iq/d) approximately, (6)

then under the null hypothesis and (5), we have

T ∼ T 2
q,d approximately. (7)

Remark 2.3 To make the AHT test work, it is generally required that the first two moments of T and
T 2

q,d be finite. The condition “d > q + 3” guarantees that the first two moments of T 2
q,d are finite as seen

from the moment expression (20) given in Section 2.4.

Thus, the main task of the AHT test is to show that we can approximate the random matrix W by
some Wishart random matrix with d degrees of freedom and covariance matrix Iq/d. This task may be
easily conducted if we can show that W is a Wishart mixture, i.e., a sum of several independent Wishart
random matrices since a Wishart mixture may be well approximated by a single Wishart random matrix
as shown by Nel and Van der Merwe [22].

We now show that W is a Wishart mixture. For this end, write C = [c1, c2, · · · , ck] and H =
(CΣCT )−1/2C = [h1,h2, · · · ,hk], where cl and hl are the l-th columns of C and H respectively, with
hl = (CΣCT )−1/2cl, l = 1, 2, · · · , k.

Proposition 2.4 We have

W = HΣ̂HT =
k∑

l=1

Wl, Wl =
σ̂2

l

nl
hlhT

l ∼ Wq(nl − 1,
Ωl

nl − 1
), (8)

where Wl, l = 1, 2, · · · , k are independent with E(Wl) = Ωl = σ2
l

nl
hlhT

l . Furthermore,

E(W) =
k∑

l=1

Ωl = Iq, Etr(W− EW)2 = 2
k∑

l=1

(nl − 1)−1δ2
l , (9)

where

δl = tr(Ωl) =
σ2

l

nl
cT

l (CΣCT )−1cl, l = 1, 2, · · · , k. (10)

By Proposition 2.4, W is a Wishart mixture and hence its distribution can be approximated by that
of a single Wishart random matrix, say, R ∼ Wq(d,Ω) ([22]). Proposition 2.4 also gives the first moment
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and the total variation of W which will be used to determine d and Ω later. The total variation of a
random matrix X = (xij) : m ×m is defined as Etr(X − EX)2 =

∑m
i=1

∑m
j=1 var(xij), i.e., the sum of

the variances of all the entries of X.

To approximate the distribution of W by that of R ∼ Wq(d,Ω), Nel and Van der Merwe [22] deter-
mined d and Ω via matching the first two moments of W and R. They obtained a few different solutions
to d, with the simplest one being the same as the one we shall obtain here. In a slightly different way
from that used by Nel and Van der Merwe [22], we determine d and Ω via matching the first moments
and the total variations of W and R. That is, we solve the following two equations for d and Ω:

E(W) = E(R) and Etr(W− EW)2 = Etr(R− ER)2. (11)

The solution is given in Proposition 2.5 below together with the lower and upper bounds of d.

Proposition 2.5 The solution of (11) is given by Ω = Iq/d and

d =
q(q + 1)/2∑k

l=1(nl − 1)−1δ2
l

. (12)

Moreover, we have the following inequality:

q + 1
2

(nmin − 1) ≤ d ≤ q + 1
2q

(N − k). (13)

Remark 2.6 Proposition 2.5 indicates that provided nmin > 3 + 4/(q + 1), we always have d > q + 3,
guaranteeing that the first two moments of T 2

q,d are finite as required in Remark 2.3.

Remark 2.7 From (12) and (13), it is seen that when nmin becomes large, d generally becomes large;
and when nmin → ∞, we have d → ∞ so that T 2

q,d weakly tends to χ2
q, the limit distribution of T as

pointed out in Remark 2.2.

Remark 2.8 When the assumption (4) is not satisfied, the ratio nmax/nmin will tend to ∞ as nmin →∞
so that the limit of nminΣ is not a full rank matrix and hence the limit of nminCΣCT is not invertible.
In this case, the test statistic T and the quantities δl, l = 1, · · · , k are not well defined so that T may not
have finite first two moments as required in Remark 2.3. In this case, the proposed AHT test may not
perform well as demonstrated by some simulation results presented in Section 3.

In real data application, the parameter d has to be estimated based on the data. A natural estimator
of d is obtained via replacing δl, l = 1, 2, · · · , k by their estimators:

δ̂l =
σ̂2

l

nl
cT

l (CΣ̂CT )−1cl, l = 1, 2, · · · , k, (14)

so that

d̂ =
q(q + 1)/2∑k

l=1(nl − 1)−1δ̂2
l

. (15)

Notice that
∑k

l=1 δ̂l = q so that the range of d given in (13) is also the range of d̂.

Remark 2.9 Under the assumption (4), it is standard to show that as nmin → ∞, we have d̂ → d. In
addition, we can show that E(T 2

q,d̂
) = E(T )[1 + O(n−2

min)] and Var(T 2
q,d̂

) = Var(T )[1 + O(n−1
min)]. That is,

the means of T and T 2
q,d̂

are matched up to order n−2
min while the variances of T and T 2

q,d̂
are matched

only up to order n−1
min. This indicates that when nmin is too small, the AHT test may not perform well

as demonstrated by some simulation results presented in Section 3.
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In summary, the AHT test is based on approximating the distribution of the Wald-type test statistic
T (5) by a Hotelling T 2 distribution T 2

q,d̂
. By the property of the Hotelling T 2 distribution, the AHT test

can be conducted using the usual F -distribution since we can write

T ∼ qd̂

d̂− q + 1
Fq,d̂−q+1 approximately. (16)

Provided nmin > 3+4/(q+1), Proposition 2.5 guarantees that d̂−q+1 > 4 so that the first two moments
of T 2

q,d̂
are finite as seen from the moment expression (20). Based on (16), the critical value of the AHT

test can be specified as qd̂

d̂−q+1
Fq,d̂−q+1(1 − α) for the nominal significance level α. We reject the null

hypothesis in (1) when this critical value is exceeded by the observed test statistic T . The AHT test can
also be conducted via computing the p-value based on the approximate distribution specified in (16).

We conclude this subsection by three more remarks as mentioned briefly in the introduction.

Remark 2.10 When q = 1, the matrix C reduces to a 1 × k row vector, namely, λT and the constant
vector c reduces to a scalar, namely, c. In this case, equivalently, one can conduct an approximate t-test
for (1), i.e., H0 : λT µ = c vs H1 : λT µ 6= c, using

λT µ̂− c√
λT Σ̂λ

∼ td̂ approximately,

where d̂ is still computed using (15) except replacing C and c with λT and c respectively. It is not
a surprise since the Hotelling T 2 test is a multivariate generalization of the usual univariate t-test.
Alternatively, one can construct the 100(1− α)% confidence interval for λT µ− c as

(λT µ̂− c)± td̂(α/2)
√

λT Σ̂λ,

where td̂(α/2) denotes the upper (50α)-th percentile of the t-distribution with d̂ degrees of freedom.

Remark 2.11 For the two-sample BF problem, the AHT test coincides with Welch’s [27] approximate
degrees of freedom (ADF) test but the two tests are different for k ≥ 3. In fact, when k = 2, the k-sample
BF problem (2) reduces to the well-known two-sample BF problem. In this case, by setting C = [1,−1]
and c = 0, the test statistic T (3) reduces to Welch’s [27] test statistic and the parameter d̂ (15) reduces to
the ADF of Welch [27]. Therefore, the AHT test in this case reduces to Welch’s [27] ADF test. However,
for the general k-sample BF problem (2) with k ≥ 3, the AHT test is different from Welch’s [28] ADF
test which was proposed for the k-sample BF problem (2) only.

Remark 2.12 The AHT test can be regarded as an extension of the MNV test of Krishnamoorthy and
Yu [17] to the context of the heteroscedastic GLHT problem (1). From the previous parts of this section, it
is seen that the AHT test was developed for the heteroscedastic GLHT problem (1) in a similar manner as
the MNV test was developed for the two-sample multivariate BF problem. The development of the MNV
test can be briefly described as follows. Nel and Van der Merwe [22] first investigated how to approximate
a Wishart mixture by a single Wishart random matrix. Using this technique, they proposed an AHT test
for the two-sample multivariate BF problem. Unfortunately, the AHT test they proposed is not affine-
invariant, as pointed out by Krishnamoorthy and Yu [17]. The latter two authors then modified Nel and
Van der Merwe’s [22] AHT test via expressing the associated test statistic in the form (5), resulting in
the so-called MNV test. Intensive simulations in the literature ([17], [31], [16], and among others) show
that the MNV test performs quite well for various sample sizes and parameter configurations. It is then
natural to expect that the AHT test will have a similar nice performance for the heteroscedastic GLHT
problem (1).
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2.3 Invariance properties of the AHT test

The AHT test has several desirable invariance properties. First of all, the AHT test is affine-invariant.
That is, it is invariant under the following affine-transformation:

x̃lj = axlj + b, j = 1, 2, · · · , nl; l = 1, 2, · · · , k, (17)

where a and b are two constants but a 6= 0.

Proposition 2.13 The AHT test is affine-invariant in the sense that both the test statistic T (3) and
the estimated parameter d̂ (15) are invariant under the affine-transformation (17).

Notice that in the heteroscedastic GLHT problem (1), the matrix C can be a contrast matrix with
rows being contrasts such that the row totals of the matrix equal to 0. It is well known that for the
same hypothesis in (2), the contrast matrix C is not unique. For example, both C =

(
Ik−1,−1k−1

)
and

C̃ =
(
− 1k−1, Ik−1

)
are the contrast matrices for the hypothesis in (2). It is known from Kshirsagar

([19], Ch. 5, Sec. 4) that for any two contrast matrices C and C̃ for the same hypothesis, there is a
nonsingular matrix P such that

C̃ = PC. (18)

The AHT test is invariant to the choice of the contrast matrix C used in (1) for the same hypothesis.
That is, it is invariant under the transformation (18). More generally, we have the following result.

Proposition 2.14 The AHT test is invariant when the coefficient matrix C and the constant vector c
in (1) are replaced with

C̃ = PC and c̃ = Pc, (19)

respectively where P is any nonsingular matrix.

Finally, we have the following result.

Proposition 2.15 The AHT test is invariant under different labeling schemes of the group means µl, l =
1, 2, · · · , k.

2.4 Minimum sample size determination

Let [a] denote the integer part of a. When X ∼ Fq,v, it is easy to show that X has ([v/2] − 1) finite
moments:

E(Xr) =
vrq(q + 2) · · · {q + 2(r − 1)}
qr(v − 2)(v − 4) · · · (v − 2r)

, r = 1, 2, · · · , [v/2]− 1. (20)

This moment expression can be used to determine the minimum sample size required to guarantee that
the AHT test is validly constructed. In fact, from (20), we see that the condition

nmin > 3 +
4(r − 1)
q + 1

, (21)

which is obtained via using the lower bound of d (and d̂ as well) given in (13), guarantees that T 2
q,d̂

has
r finite moments for all possible situations.
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Remark 2.16 When r = 2, the condition (21) reduces to nmin > 3 + 4/(q + 1), guaranteeing that T 2
q,d̂

has finite first two moments for all possible situations so that the AHT test will be well defined. When
this condition is not satisfied, i.e., nmin ≤ 3 + 4/(q + 1), the first two moments of T 2

q,d̂
may not be finite.

In this case, the AHT test may not work well when the underlying null distribution of T actually has
finite first two moments.

Remark 2.17 For the heteroscedastic one-way ANOVA problem (2), q = k − 1 so that the sufficient
condition given in Remark 2.16 can be further expressed as

nmin ≥




6, when k = 2,
5, when k = 3, 4,
4, when k ≥ 5.

(22)

Therefore, “nmin ≥ 6” guarantees that the AHT test is well defined for any given k.

3 Simulation studies

In this section, intensive simulations are conducted to evaluate the empirical Type I error rates and
powers of the AHT test, together with Welch’s [28] ADF test and the PB test ([15]). We choose the
Welch and PB tests as the competitors for the AHT test since the Welch test is the most popular test
and the PB test is the most accurate test for heteroscedastic one-way ANOVA ([15]).

For a given sample size vector n = [n1, n2, · · · , nk], the mean vector µ = [µ1, µ2, · · · , µk] and the
variance vector σ2 = [σ2

1 , σ2
2 , · · · , σ2

k], we first generate a sample mean vector x̄ = [x̄1, · · · , x̄k] and a
sample variance vector σ̂2 = [σ̂2

1 , · · · , σ̂2
k] by x̄l ∼ N(µl, σ

2
l /nl) and σ̂2

l ∼ σ2
l

nl−1χ2
nl−1, l = 1, 2, · · · , k,

then apply the AHT, Welch and PB tests to the generated x̄ and σ̂2 and record their p-values. Notice
that in this section only, row vectors instead of column vectors are used for easy presentation of the
simulation results. For the PB test, 10000 inner bootstrap replicates are conducted. This process is
repeated N = 10000 times. The empirical Type I error rates of the tests are the proportions of rejecting
the null hypothesis, i.e., when their p-values are less than the nominal significance level α. In all the
simulations conducted, we use α = 5% for simplicity.

For simplicity, the tuning parameters and sample sizes are specified exactly the same as those in Kr-
ishnamoorthy, Lu and Mathew [15]. This allows to compare our simulation results with theirs, especially

Table 1: Empirical Type I error rates for k = 2, σ2
1 = 1.

n (3, 3) (5, 5) (8, 8) (4, 8)

σ2
2 Welch PB AHT Welch PB AHT Welch PB AHT Welch PB AHT

0.01 .0576 .0670 .0576 .0507 .0517 .0507 .0468 .0474 .0468 .0514 .0549 .0514
0.05 .0565 .0647 .0565 .0478 .0506 .0478 .0532 .0536 .0532 .0587 .0646 .0587
0.10 .0505 .0577 .0505 .0563 .0596 .0563 .0526 .0532 .0526 .0569 .0633 .0569
0.20 .0432 .0500 .0432 .0530 .0553 .0530 .0494 .0504 .0494 .0572 .0629 .0572
0.30 .0398 .0452 .0398 .0495 .0515 .0495 .0480 .0488 .0480 .0577 .0639 .0577
0.40 .0362 .0408 .0362 .0464 .0480 .0464 .0470 .0475 .0470 .0546 .0590 .0546
0.50 .0378 .0426 .0378 .0456 .0474 .0456 .0480 .0493 .0480 .0569 .0611 .0569
0.60 .0393 .0434 .0393 .0424 .0438 .0424 .0470 .0477 .0470 .0565 .0606 .0565
0.70 .0323 .0371 .0323 .0426 .0438 .0426 .0485 .0495 .0485 .0509 .0547 .0509
0.80 .0359 .0417 .0359 .0426 .0446 .0426 .0487 .0489 .0487 .0546 .0576 .0546
0.90 .0356 .0392 .0356 .0446 .0461 .0446 .0455 .0458 .0455 .0486 .0515 .0486
1.00 .0387 .0423 .0387 .0450 .0456 .0450 .0493 .0496 .0493 .0496 .0516 .0496

ARE 21 17.8 21 9 8.2 9 4.6 3.8 4.6 9.6 17.6 9.6
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Table 2: Empirical Type I error rates for k = 3, σ2
1 = 1.

n (5, 5, 5) (10, 10, 10) (4, 6, 20) (2, 3, 2)

(σ2
2 ,σ2

3) Welch PB AHT Welch PB AHT Welch PB AHT Welch PB AHT

(1, 1) .0471 .0467 .0427 .0525 .0525 .0521 .0560 .0565 .0521 .0380 .0309 .0096
(1, 0.5) .0471 .0459 .0418 .0476 .0478 .0474 .0613 .0627 .0566 .0347 .0293 .0096
(1, 0.1) .0538 .0527 .0488 .0450 .0448 .0444 .0647 .0620 .0557 .0507 .0419 .0135
(0.5, 0.5) .0460 .0448 .0413 .0506 .0511 .0504 .0562 .0569 .0529 .0400 .0323 .0110
(0.5, 0.7) .0449 .0441 .0402 .0451 .0451 .0448 .0602 .0610 .0562 .0408 .0334 .0077
(0.1, 0.1) .0498 .0477 .0453 .0506 .0494 .0502 .0631 .0587 .0569 .0596 .0520 .0159
(0.1, 0.9) .0551 .0536 .0489 .0495 .0494 .0487 .0593 .0552 .0554 .0600 .0461 .0134
(0.5, 0.9) .0444 .0437 .0393 .0522 .0519 .0519 .0527 .0538 .0501 .0377 .0309 .0096
(0.3, 0.9) .0476 .0461 .0422 .0486 .0490 .0481 .0593 .0579 .0556 .0430 .0341 .0096
(0.3, 0.6) .0492 .0475 .0442 .0513 .0520 .0507 .0618 .0604 .0584 .0452 .0359 .0106
(0.1, 0.3) .0517 .0491 .0458 .0518 .0512 .0508 .0615 .0581 .0581 .0521 .0419 .0124
(0.05, 0.05) .0495 .0464 .0443 .0497 .0484 .0488 .0615 .0552 .0546 .0671 .0609 .0195

ARE 5.8 7.4 12.6 4 4.2 4 19.6 16.4 10.4 18.4 26 76.2

Table 3: Empirical Type I error rates for k = 6, σ2
1 = 1, a = (σ2

2 , ..., σ2
6).

n (55) (105) (3, 3, 4, 5, 6, 6) (4, 8, 12, 24, 30, 40)

a× 10 Welch PB AHT Welch PB AHT Welch PB AHT Welch PB AHT

(105) .0576 .0438 .0404 .0502 .0477 .0487 .0708 .0429 .0374 .0705 .0586 .0655
(12, 53) .0668 .0474 .0435 .0542 0507 .0522 .0806 .0491 .0446 .0735 .0524 .0684
(1 : 1 : 5) .0661 .0461 .0432 .0505 .0460 .0484 .0749 .0441 .0399 .0711 .0576 .0682
(1, 104) .0688 .0492 .0463 .0556 .0516 .0530 .0755 .0463 .0427 .0689 .0561 .0662
(2, 42, 2, 1) .0629 .0450 .0415 .0537 .0500 .0512 .0835 .0478 .0435 .0726 .0534 .0671
(54, 10) .065 .0463 .0430 .0540 .0496 .0517 .0895 .0550 .0494 .0700 .0540 .0664
(3, 9, 4, 7, 1) .0674 .0498 .0464 .0571 .0531 .0547 .0902 .0554 .0505 .0734 .0539 .0682
(.12, .6, 12) .0677 .0485 .0466 .0560 .0503 .0531 .0845 .0537 .0532 .0725 .0508 .0684

ARE 30.6 6 12.2 7.8 3.2 4.6 62.4 8.4 11.6 43.2 9.2 34.6

when one wants to compare the AHT test with the generalized F -test considered in Krishnamoorthy, Lu
and Mathew [15]. In addition, some shorthand notations are used in the sample size vector n and the
variance vector σ2, e.g. (ar) denotes a vector meaning “a repeats r times” and (a : b : c) denotes “a
sequence from a to c with increment of b units”. For example, (12 : 22 : 52) represents (1, 1, 3, 3, 5, 5).
Tables 1-5 show the empirical Type I error rates for various sample sizes, ranging from very small to
moderate with k = 2, 3, 6, 10 and 20. In each table, the last row lists the values of ARE associated with

Table 4: Empirical Type I error rates for k = 10, σ2
1 = 1, a = (σ2

2 , · · · , σ2
10).

n (510) (1510) (33, 43, 54) (43, 123, 154)

a× 10 Welch PB AHT Welch PB AHT Welch PB AHT Welch PB AHT

(109) .0801 .0447 .0444 .0517 .0476 .0511 .1155 .0409 .0349 .0921 .0609 .0793
(1 : 1 : 9) .0892 .0471 .0481 .0506 .0473 .0498 .1080 .0382 .0331 .0868 .0561 .0754
(12 : 12 : 42, 5) .0860 .0471 .0467 .0537 .0496 .0532 .1076 .0402 .0365 .0839 .0534 .0717
(15, 24) .0836 .0449 .0450 .0544 .0497 .0536 .1154 .0439 .0403 .0922 .0588 .0793
((1, 10)4, 1) .0883 .0484 .0501 .0565 .0519 .0558 .1317 .0508 .0485 .0939 .0584 .0802
(33, 63, 93) .0836 .0431 .0427 .0530 .0494 .0519 .1043 .0374 .0329 .0893 .0576 .0760
(19) .0782 .0432 .0422 .0531 .0490 .0525 .1210 .0456 .0410 .0908 .0552 .0769

ARE 63.2 9 8.8 6.6 2.6 5.2 129.6 15.6 23.6 79.8 14.4 54
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Table 5: Empirical Type I error rates for k = 20, σ2
1 = 1.

n (520)

(σ2
2 , · · ·σ2

20) Welch PB AHT

(119) .1334 .0437 .0524
(.12 : .12 : .92, 1) .1262 .0448 .0521
((.1 : .1 : .5)3, .1 : .1 : .4) .1263 .0477 .0554
(.119) .1252 .0443 .0521
((.24 : .24 : .84), 13) .1253 .0426 .0504
((.9 : .1 : .1)2, 1) .1356 .0472 .0558
(.013, .053, .13, .53, .63, .84) .1402 .0516 .0637

ARE 60.6 9 9.2

Table 6: Powers of the tests for k = 3, σ2
1 = 1 and µ1 = 0.

(µ2, µ3)
(σ2

2 , σ2
3) Tests (0, 0) (0, 0.2) (0, 0.5) (0, 0.7) (0.5, 1) (0, 1) (1.5, 1)

n = (10, 10, 10)

(0.3, 0.9)
Welch .0510 .0729 .2184 .3722 .4582 .6755 .9333
PB .0511 .0727 .2171 .3708 .4572 .6759 .9326

AHT .0509 .0718 .2170 .3704 .4562 .6736 .9324

(0.1, 0.5)
Welch .0498 .1011 .3510 .6331 .5877 .9121 .9752
PB .0491 .1012 .3509 .6314 .5851 .9108 .9745

AHT .0492 .0998 .3486 .6305 .5841 .9099 .9747
n=(10,5,15)

(0.3, 0.9)
Welch .0454 .0676 .2248 .4224 .5076 .7376 .8633
PB .0466 .0685 .2279 .4251 .5091 .7396 .8654

AHT .0451 .0671 .2221 .4182 .5032 .7344 .8594

(0.1, 0.5)
Welch .0444 .0948 .4220 .7198 .6821 .9619 .9556
PB .0446 .0956 .4237 .7222 .6821 .9626 .9561

AHT .0440 .0938 .4201 .7174 .6805 .9613 .9550

the Welch, PB or AHT tests. The quantity ARE is referred to as the average relative error (in percentage)
and is defined by ARE = 100M−1

∑M
j=1 |α̂j − α|/α where α̂j denotes the j-th Type I error rate and M

Table 7: Powers of the tests for k = 10, (µ1, · · · , µ8) = 0.

(µ9, µ10)
σ2 Tests (0, 0) (0, 0.2) (0, 0.5) (0, 0.7) (0.5, 1) (0, 1) (1.5, 1)

n=(153, 203, 254)

(1, .1 : .1 : .9)
Welch .0496 .0832 .3272 .6217 .9794 .9387 1
PB .0466 .0794 .3183 .6113 .9779 .9354 1

AHT .0497 .0833 .3278 .6223 .9794 .9393 1

(1, .13, .33, .73)
Welch .0527 .0954 .4285 .7555 .9968 .9821 1
PB .0508 .0922 .4197 .7472 .9965 .9810 1

AHT .0530 .0956 .4291 .7558 .9968 .9823 1
n=(15 : 2 : 33)

(1, .1 : .1 : .9)
Welch .0466 .0982 .4395 .7800 .9973 .9858 1
PB .0450 .0933 .4329 .7733 .9971 .9846 1

AHT .0472 .0986 .4409 .7808 .9974 .9858 1

(1, .13, .33, .73)
Welch .0504 .1104 .5724 .8871 .9997 .9981 1
PB .0489 .1072 .5658 .8837 .9997 .9980 1

AHT .0510 .1111 .5738 .8877 .9997 .9981 1
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is the number of the empirical Type I error rates in the associated column. The smallest ARE value (in
boldface) indicates the best overall performance of the associated test among the three tests in terms of
maintaining the nominal significance level. Tables 6 and 7 give the empirical powers of the three tests
with k = 3 and 10.

First of all, from Tables 1-5, it is seen that in terms of ARE, the PB test generally outperforms the
other two tests. That is, it is the best among the three tests in the sense of maintaining the nominal
significance level most closely. This conclusion is consistent with the one drawn by Krishnamoorthy, Lu
and Mathew [15]. However, carefully comparing the empirical Type I error rates of the AHT test and
the PB test for various cases allows us to conclude that the AHT test is generally comparable to the PB
test in the sense that for most cases, their empirical Type I error rates are about the same, and in some
cases, e.g., the last case (associated with n) of Table 1 and the central two cases of Table 2, the AHT
test slightly outperforms the PB test while in some other cases, e.g., the first case of Table 1 and the last
cases of Tables 2-4, the PB test outperforms the AHT test. In these latter cases, either nmin is too small,
e.g., nmin < 3 + 4/k, or the ratio nmax/nmin is too large, or both, so that the AHT test may not perform
well as pointed out in Remarks 2.8, 2.9, 2.16, and 2.17.

From Tables 1-5, it is seen that the AHT test generally outperforms the Welch test. When k = 2
(see Table 1), the two tests produce identical empirical Type I error rates as pointed out in Remark 2.11
and when k = 3 (see Table 2), the Welch test slightly outperforms the AHT test in the first case, and
substantially outperforms the AHT test in the last case in which nmin = 2 which is much smaller than
5 required by the AHT test as given Remark 2.17. However, in other two cases, the AHT test performs
similarly or outperforms the Welch test. When k = 6, 10, 20 (see Tables 3-5), the AHT test outperforms
the Welch test substantially in various cases. Based on the above results, it is expected that when k is
large, the AHT test will generally outperform the Welch test.

Tables 6 and 7 show the empirical powers of the three tests for k = 3 and 10. It is seen that with large
sample sizes, all the tests control the Type I error rates satisfactorily, and exhibit similar power properties
for various sample sizes and parameter configurations although when k = 3 (resp. when k = 10), the
Welch test has slightly higher (resp. lower) powers than the AHT test.

In summary, the AHT test generally outperforms the Welch test and is comparable to the PB test
most of time. One may also conclude that the AHT test is also comparable with the James second order
test when one compares the empirical Type I error rates of the AHT test with those of the James second
order test presented in Krishnamoorthy, Lu and Mathew [15]; see also Zhang [32] for some simulation
results about comparisons of the AHT test with several well-known approximate tests, including the
James second order test, for heteroscedastic one-way ANOVA. Although the PB test generally controls
the Type I error rates better than the AHT test, it requires substantially more computational efforts than
the AHT test. For a single case as in real data application, given the fast and affordable computational
resources available nowadays, this may not be a concern. However, for mass computation as in simulation
studies, this is a big burden. In fact, the time spent by the PB test in the simulation studies presented
in this paper is about 10000 times of the time spent by the AHT test. Therefore, we generally prefer the
AHT test especially when many normal population means are compared and when a quick test result is
desired.

4 The PTSD data

The study by Foa, Rothbaum, Riggs, and Murdock [9] involved 45 subjects (rape victims) who were ran-
domly assigned to one of four groups treated by four different treatments: (1) Stress Inoculation Therapy
(SIT) in which subjects were taught a variety of coping skills; (2) Prolonged Exposure (PE) in which sub-
jects went over the rape in their mind repeatedly for seven sessions; (3) Supportive Counseling (SC) which
was a standard therapy control group; and (4) a Waiting List (WL) control. In the actual study, pre- and
post-treatment measures were taken on a number of variables. Here, however, we only look at the post
traumatic stress disorder (PTSD) data (the total number of symptoms endorsed by the subject). The data
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are available at http://www.uvm.edu/~dhowell/StatPages/FoaFolder/Foa_Anova.html where David
C. Howell presented a standard ANOVA analysis, assuming homogeneity of the group variances. How-
ever, the sample group variances of the PTSD data are quite different, ranging from 15.61 to 123.6, as
seen from Table 8. In fact, Chang, Pal, Lim and Lin [6] analyzed this dataset using a heteroscedastic
t-model. They showed that for this dataset, the normality assumption is satisfied but the group variance
homogeneity assumption is violated.

Table 8: Summary statistics for the PTSD Data.

Group Size Group Mean Group Variance

1 (SIT) 14 11.07 15.61
2 (PE) 10 15.40 123.60
3 (SC) 11 18.09 50.89
4 (WL) 10 19.50 50.50

We made use of this PTSD data only to illustrate the AHT test and to compare it with the Welch
and PB tests, and the standard ANOVA as well. This is not a formal analysis of the PTSD data. For
this purpose, we considered all the four and three-group mean comparisons (first 5 cases) and a contrast
and a non-contrast linear hypothesis tests (last 2 cases) as listed in Column 1 of Table 9. For the first 5
cases, the tests were conducted using only the related 3 or 4 samples so that the Welch and PB tests can
be applied properly. For the last two cases, all the 4 samples were involved and the results of the Welch
and PB tests are not directly available unless some further development for these two tests is done. From
Table 8, it is seen that the homogeneity assumption is violated in various degrees in these cases with
Case (2) most seriously and Case (4) most lightly. Overall speaking, the degrees of heteroscedasticity for
Cases (1)-(3) are much higher than those for Cases (4)-(5). For the first 5 cases, the test results of the
standard ANOVA, Welch, PB, and AHT tests are presented in Columns 2-5 of Table 9 respectively. For
good accuracy, the p-values of the PB test were obtained based on 100000 inner bootstrap replicates.

We first compare the results by the AHT test with those by the Welch and PB tests. Since the group
sizes are relatively large and are close to each other, it is seen that the p-values of the AHT test are
nearly the same as those of the Welch and PB tests for the first five cases.

Secondly, we compare the results by the AHT test with those by the standard ANOVA. This allows
us to check the impact of the heteroscedasticity on the test results. We did this via looking at the p-value
discrepancies between the standard ANOVA and the AHT test for all the seven cases. It is seen that
for Cases (4), (5) and (7) where the degrees of heteroscedasticity are not high, the p-value discrepancies
between the standard ANONA and the AHT test are not large enough to yield inconsistent conclusions.
For Cases (1)-(3) and (6), where the degrees of heteroscedasticity is high, however, the p-values of the
standard ANOVA are about 2 to 5 times larger than those of the AHT test. Depending on the specified
nominal significance level α, the conclusions made by the standard ANOVA may be opposite to those
made by the AHT test. For example, when α = 1%, the standard ANOVA accepts (while the AHT test
rejects) the null hypotheses of Cases (1), (3) and (6); when α = 5%, the standard ANOVA accepts (while
the AHT test rejects) the null hypothesis of Case (2). Since the AHT test assumes much weaker conditions

Table 9: Group mean comparisons and tests of linear hypotheses for the PSTD data.

p-values
Case (Null Hypothesis) ANOVA Welch PB AHT
(1) H0 : µ1 = µ2 = µ3 = µ4 .0394 .0075 .0080 .0074
(2) H0 : µ1 = µ2 = µ3 .0785 .0295 .0299 .0298
(3) H0 : µ1 = µ2 = µ4 .0371 .0136 .0137 .0136
(4) H0 : µ1 = µ3 = µ4 .0031 .0033 .0034 .0032
(5) H0 : µ2 = µ3 = µ4 .5629 .6336 .6329 .6372
(6) H0 : 3µ1 − µ2 − 2µ3 = 0 .0241 - - .0076
(7) H0 : µ1 − µ2 − 3µ4 = 0 .0000 - - .0000
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than the standard ANOVA does, the conclusions made by the AHT test will be more reliable than those
made by the standard ANOVA. Thus, when the degree of heteroscedasticity is high, application of the
standard ANOVA may yield misleading conclusions and the Welch, PB or AHT test should be used.

5 Concluding remarks

In this paper, we proposed the AHT test for the heteroscedastic GLHT problem (1) which includes the
well-known k-sample BF problem (2) as a special case. Simulation studies and real data applications
indicate that the AHT test is comparable with Krishnamoorthy, Lu and Mathew’s [15] parametric boot-
strap test and generally outperforms Welch’s [28] approximate degrees of freedom test to the k-sample
BF problem (2) with small samples and large k. We also discussed the effect of the sample sizes to the
AHT test and identified the minimum sample sizes which guarantee that the AHT test will work. These
two issues are often overlooked in the development of approximate solutions to the BF problems by other
authors.

MATLAB codes for carrying out the computations in the paper and some further simulation re-
sults comparing the AHT test against some other well-known tests can be requested from the author
(stazjt@nus.edu.sg).
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Appendix: Technical Proofs

Proof of Proposition 2.4 First of all, notice that when U ∼ Wp(m,V), by the property of Wishart
random matrices and a lemma of Johansen (1980, p. 89), we have

E(U) = mV and Etr(U− EU)2 = m[tr(V2) + tr2(V)]. (A.1)

Let X
d= Y denote “X and Y have the same distribution”. Since σ̂2

l ∼ χ2
nl−1

nl−1

d= W1(nl − 1,
σ2

l

nl−1 ),

we have Wl = σ̂2
l

nl
hlhT

l ∼ Wq(nl − 1, Ωl

nl−1 ) where Ωl = σ2
l

nl
hlhT

l . Applying (A.1) to Wl, we have
E(Wl) = Ωl and Etr(Wl − EWl)2 = (nl − 1)−1[tr(Ω2

l ) + tr2(Ωl)] = 2(nl − 1)−1δ2
l , where we use the

fact that tr(Ω2
l ) = tr2(Ωl) =

[
σ2

l

nl
hT

l hl

]2

= δ2
l . Since Wl are independent, we have E(W) =

∑k
l=1 Ωl =

∑k
l=1

σ2
l

nl
hlhT

l = HΣH = Iq and Etr(W − EW)2 =
∑k

l=1 Etr(Wl − EWl)2 = 2
∑k

l=1(nl − 1)−1δ2
l . The

proposition is proved.

Proof of Proposition 2.5 By Proposition 2.4, we have E(W) = Iq and Etr(W−EW)2 = 2
∑k

l=1
δ2

l

nl−1 .
Applying (A.1) to R, we have E(R) = dΩ and Etr(R− ER)2 = d[tr(Ω2) + tr2(Ω)]. Equating E(R) and
E(W) leads to Ω = Iq/d. We then have Etr(R − ER)2 = q(q + 1)/d. Equating Etr(W − EW)2 and
Etr(R− ER)2 then leads to the expression in (12).

By (12), finding the lower and upper bounds of d is equivalent to finding the upper and lower bounds
of the function g(δ1, δ2, · · · , δk) =

∑k
l=1(nl − 1)−1δ2

l where δl, l = 1, 2, · · · , k are defined as in (10). By
Proposition 2.4, we have

∑k
l=1 δl =

∑k
l=1 tr(Ωl) = tr(Iq) = q. Then δk = q−∑k−1

l=1 δl. Taking the partial
derivatives of g with respect to δl, l = 1, 2, · · · , k − 1 and setting them to 0 leads to the following normal
equation system:

∂g

∂δl
=

2δl

nl − 1
− 2(q −∑k−1

r=1 δr)
nk − 1

= 0, l = 1, 2, · · · , k − 1.
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Solving the above equation system with respect to δl, l = 1, 2, · · · , k − 1 leads to

δl = q
nl − 1
N − k

, l = 1, 2, · · · , k, (A.2)

where N =
∑k

l=1 nl as defined before. Since

∂2g

∂δl∂δr
=

{
2(nl − 1)−1 + 2(nk − 1)−1, if r = l < k,
2(nk − 1)−1, if r 6= l, r, l < k,

the associated Hessian matrix is positive definite. Thus, the function g(δ1, · · · , δk) has minimum value
q2

N−k when δl, l = 1, 2, · · · , k take the values in (A.2). It follows that the upper bound of d is q+1
2q (N − k).

We now find the lower bound of d. Notice that for any real matrix A, the matrices AAT and AT A
have the same nonzero eigenvalues. This implies that Ωl = σ2

l

nl
(CΣCT )−1/2clcT

l (CΣCT )−1/2 has only one

nonzero eigenvalue δl = σ2
l

nl
cT

l (CΣCT )−1cl. Since
∑k

l=1 Ωl = Iq, we have Iq −Ωl =
∑k

r=1,r 6=l Ωr. This
implies that Iq−Ωl is nonnegative. Using the singular value decomposition of Ωl, it is easy to show that
the nonzero eigenvalue δl of Ωl is less than 1. We then have

∑k
l=1(nl − 1)−1δ2

l ≤ (nmin − 1)−1
∑k

l=1 δl =
(nmin − 1)−1q. It follows that d ≥ (nmin − 1) q+1

2 . The proposition is proved.

Proof of Proposition 2.13 Recall that µl and σ2
l are the mean and variance of the responses xlj and

their unbiased estimators are µ̂ and σ̂2 as defined previously. We now denote the mean and variance of
the affine-transformed responses x̃lj by µ̃l and σ̃2

l respectively with their unbiased estimators denoted by
̂̃µl and ̂̃σ2

l respectively.

First of all, under the affine-transformation (17), we have µ̃l = aµl + b and σ̃2
l = a2σ2

l , l = 1, 2, · · · , k.
It follows that µl = (µ̃l− b)/a. As we defined the mean vector µ and the covariance matrix Σ in Sections
1 and 2, we now define µ̃ and Σ̃ similarly. Then we have µ = (µ̃− b1k)/a and Σ̃ = a2Σ. It follows that
the GLHT problem (1) can be equivalently expressed as H̃0 : C̃µ̃ = c̃ versus H̃1 : C̃µ̃ 6= c̃, where
C̃ = C/a and c̃ = bC/a + c.

Similarly, under the affine-transformation (17), we have ̂̃µl = aµ̂l + b, and ̂̃σ2

l = a2σ̂2
l . It follows that

̂̃µ = aµ̂ + b1k and ̂̃Σ = a2Σ̂. Therefore, C̃̂̃µ− c̃ = Cµ̂− c and C̃ ̂̃ΣC̃
T

= CΣ̂CT . That is, both Cµ̂− c
and CΣ̂CT are affine-invariant. It follows that the test statistic T (3) is affine-invariant.

To show that d̂ is affine-invariant, by (15), it is sufficient to show that δ̂2
l are affine-invariant. Notice

that C̃ = C/a implies c̃l = cl/a, l = 1, 2, · · · , k and ̂̃Σ = a2Σ̂ implies ̂̃σ2

l = a2σ̂2
l l = 1, 2, · · · , k.

Furthermore, we have already showed that C̃ ̂̃ΣC̃
T

= CΣ̂CT . By (14), we have showed that δ̂2
l are

affine-invariant. The proposition is then proved.

Proof of Proposition 2.14 First of all, under (19), we have C̃µ̂ − c̃ = P(Cµ̂ − c) and (C̃Σ̂C̃
T
)−1 =

(P−1)T (CΣ̂CT )−1P−1. The invariance of T under (19) then follows.

To show that d̂ is invariant under (19), by (15), it is sufficient to show that δ̂2
l are invariant un-

der (19). Notice that C̃ = PC implies that c̃l = Pcl, l = 1, 2, · · · , k and again (C̃Σ̂C̃
T
)−1 =

(P−1)T (CΣ̂CT )−1P−1. By (14), the invariance of δ̂2
l , l = 1, 2, · · · , k under (19) then follows. The

proposition is then proved.

Proof of Proposition 2.15 Let l1, l2, · · · , lk be any permutation of 1, 2, · · · , k. Then it is easy to see
that

∑k
l=1 clµ̂l =

∑k
u=1 clu µ̂lu and

∑k
l=1 n−1

l σ̂2
l clcT

l =
∑k

u=1 n−1
lu

σ̂2
lu

clucT
lu

, showing that Cµ̂ =
∑k

l=1 clµ̂l

and CΣ̂CT =
∑k

l=1 n−1
l σ̂2

l clcT
l are invariant under different labeling schemes of the group means µl, l =

1, 2, · · · , k and so is the Wald-type test statistic T (3).

To show that d̂ is invariant under different labeling schemes of the group means, by (15), it is suf-
ficient to show that the denominator of d̂ has such a property. This is actually the case by noticing
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that the denominator of d̂ =
∑k

l=1(nl − 1)−1δ̂2
l =

∑k
l=1(nl − 1)−1

[
σ̂2

l

nl
cT

l (CΣ̂CT )−1cl

]2

=
∑k

u=1(nlu −
1)−1

[
σ̂2

lu

nlu
cT

lu
(CΣ̂CT )−1clu

]2

, where we have used the fact that CΣ̂CT is invariant under different labeling
schemes of the group means. This completes the proof of the proposition.
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