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Abstract 
 

In assessing the preferences of equiradial designs based on design size, axial distance and number of center points in relation to the cen-

tral composite designs, D-absolute deviation (D-AD) and G-absolute deviation (G-AD) are proposed as new measures of similarity of 

experimental designs. Each absolute deviation is positive or zero. The G-absolute deviation is zero or approximately zero at 𝑛𝑐 equals 1 

center point. For 𝑛𝑐 greater than 1, G-absolute deviation decreases for increasing values of 𝑛𝑐. On the other hand, the D-absolute devia-

tion decreases as the design size increases. Designs having G-AD values of zero or approximately zero are identical or near identical in 

G-optimality properties. Also, designs having D-AD values of zero or approximately zero are identical or near identical in D-optimality 

properties. It is conjecturally hoped that at some increased design size, the equiradial design and the central composite design, having 

same axial or radial distance will coincide (be identical) in their properties, with D-AD value of zero or approximately zero. 
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1. Introduction 

Design performance may be greatly influenced by the design re-

gion, the model type, the positioning of the design points, missing 

design points and a number of several other factors. Varying de-

sign regions have been considered in optimal design theory and 

include spherical, cuboidal, simplex and even irregular regions 

(See e.g. Atkinson and Donev [3]). Each design has been related 

to a particular model type and the composition of design points is 

generally a factor of some axial distance and the axial distance 

specifies the nature of the design geometry. Three commonly en-

countered axial distances have been explored in Iwundu [5].   

Antille and Weinberg [2] employed perturbations of design points 

to study the conjecture that the less central a design point is the 

greater its influence on D-efficiency is. Robustness of an experi-

mental design to one or more missing runs has been studied by 

Akram [1], Srisuradetchai [14] and Smucker et al. [13] as an im-

portant characteristic of experimental design. Yakubu et al. [15] 

considered the effects of missing observations on predictive capa-

bility of central composite designs. Kinai [10] examined the loss 

in efficiency when D-optimal designs are used instead of Ds opti-

mal designs for data with missing observations. Iwundu [6] con-

sidered the behavior of alternative second-order N-point equiradial 

designs under variations of model parameters for design radius     

ρ = 1.0 and established relationships among some alphabetic   

optimality criteria with regards to the designs and the models. 

Iwundu and Jaja [7] considered the precision of employing full 

polynomial response surface designs on models with missing co-

efficients (reduced models) using efficiency measures. The loss in 

D- and G-efficiency of constructed first- and second-order exact    

designs were established for models with missing interaction   

coefficients. 

As defined by Khuri and Cornel [9], an equiradial design consists 

of two or more sets of points where the design points for each set 

have the same distance from the design center. For a two-

dimensional design region, an equiradial design comprises of a set 

of five points on the circle of radius ρ ≥ 1 from the design center. 

The center point (or points) forms a second set in a circle of radius 

zero. The rotatable central composite design due to Box and   

Wilson [4] is a member of the larger class of equiradial designs. 

For example, with k = 2 and α = √2  , the four factorial points 

and the four axial points form a set of eight points on the circle of 

radius ρ = √2 and the center point (or points) forms a second set 

on a circle of radius zero. Hence, the inscribed central composite 

design and the circumscribed central composite design automati-

cally belong to the larger class of equiradial designs. Obviously, 

two or more equiradial sets are needed to provide a design for 

fitting a second-order model. The second-order equiradial designs 

that are rotatable include those equiradial set of points that are 

equally spaced on a circle, a sphere or a hypersphere and which 

form the vertices of a regular polygon, polyhedron or polytope. 

Alphabetic optimality criteria and Design efficiency have been 

employed in most comparative studies involving experimental 

designs. We shall in this work examine the equiradial designs for 

second-order model defined on design regions under changing 

axial distances, varying design sizes and varying center runs. In 

addition, the behavior of the designs shall be compared with cen-

tral composite designs on similar design regions.  

2. Methodology 

We commence our investigation with 6-point equiradial design ξ6 

whose set of five equidistant design points consists of the equally 

spaced points, supported on the vertices of a regular pentagon and 
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the second set of equidistant design points consists of nc ≥ 1 cen-

ter points. The design ξ6 and its design matrix, X, are as expressed 

in Khuri and Cornel [9], Myers et al. [11] and Iwundu [6]. The    

6-point equiradial design with ρ = 1.0 and a center point is 

 

ξ6 = 

(

  
 

1 0
0.31  0.95
−0.81  0.59
−0.81 −0.59
0.31 −0.95
0 0 )

  
 

 

 

The design measures associated with the equiradial designs are 

such that the design matrices are expressed as 

 

x1 x2 

{ρ Cos (θ + 2πu/n1) ρ Sin (θ + 2πu/n1)}; 

u = 0, 1, 2,… , n1 − 1 
 

where x1and x2 represent the two controllable variables, ρ is the 

radius of the design, n1  represents the number of points on the 

sphere and nc  represents the number of center points. This    

standard expression shall be employed in obtaining the design 

measures for the required N-point equiradial designs. Following 

Myers et al. [11], the value of θ is assumed equal to zero since θ 

has no effect on the information matrix, XTX, of the design. For 

the design matrix, X, the associated information matrix, X′X, is 

assumed nonsingular and normalized as 
X′X

N
 = M, where N is the 

design size. For the purpose of this research, the non-center points 

n1, called the radial points, shall lie between 5 and 8, inclusive. In 

addition to the n1  radial points of the design, 1≤ nc ≤ 5 center 

points shall be included in the design. Thus, the N-point design 

shall comprise of a set of n1  radial points and nc  center points. 

There exists the inverse matrix M−1 which is symmetric and rep-

resents a matrix of estimates of variances of parameters and covar-

iances among parameters. The inverse matrix is cardinal when 

comparing designs as most optimality criteria, as in Rady et al. 

[12], are defined as functional of M−1. In establishing the prefer-

ences of the equiradial designs over the central composite designs 

under changing axial distances, design sizes and varying center 

runs, we shall concern ourselves with the D- and G-efficiency. 

These criteria have been well explained and illustrated in a good 

number of literatures on optimal design of experiments with recent 

works offering modifications to suit experimental conditions. An 

example of such documentations is due to Srisuradetchai [14]. The 

determinant of information matrix as well as the scaled predictive 

variances associated with each design shall be computed. Two 

axial distances α = 1.0 and α = 1.414 shall define the geometry of 

the design region. Specifically, the equidistant points (different 

from the center points) of the equiradial designs shall make radius 

of ρ = 1.0 or ρ = 1.414 thus resulting in axial distance of α = 1.0 or 

α = 1.414, respectively. The rotatable central composite design 

shall be defined for α = 1.414. Such rotatable central composite 

design is called circumscribed central composite design and com-

prises of the design points (–1, –1), (1, –1), (–1, 1), (1, 1), (α, 0), 

(–α, 0), (0, α), (0, –α) and nc centre points (0, 0), where α ≅ 1.414. 

The inscribed central composite design also uses α value of 1.414 

to describe a circular geometric region. However, the inscribed 

central composite design restricts the actual design region to the 

defined variable ranges ±1 by locating the axial points at the lower 

and upper bounds of the variable ranges. Thus, the factorial points 

are brought into (inscribed into) the interior of the design space. 

This way, α value becomes 1.0. Unlike the rotatable circumscribed 

central composite design which uses design points ranging be-

tween –1.414 and +1.414, the rotatable inscribed central compo-

site design uses design points ranging between –1 and +1 and 

comprises of the design points (–0.7, –0.7), (0.7, –0.7), (–0.7, 0.7), 

(0.7, 0.7), (1, 0), (–1, 0), (0, 1), (0, –1) and nc centre points (0, 0). 

These design points shall make up the N-point exact design com-

positions. Iwundu and  Otaru [8] presented the composition of N-

point exact designs for each of the inscribed and circumscribed 

central composite designs. The 6-point circumscribed central 

composite design contains the design points (–1, –1), (1, –1),       

(–1, 1), (1, 1), (1, 0), (0, 0). The 7-point circumscribed central 

composite design contains the design points (–1, –1), (1, –1),       

(–1, 1), (1, 1), (1, 0), (0, –1), (0, 0). The 8-point circumscribed 

central composite design contains the design points (–1, –1),      

(1, –1), (–1, 1), (1, 1), (1, 0), (–1, 0), (0, 1), (0, 0). The 9-point 

circumscribed central composite design contains the design points 

(–1, –1), (1, –1), (–1, 1), (1, 1), (1, 0), (–1, 0), (0, 1), (0,–1), (0, 0). 

The 6-point inscribed central composite design contains the design 

points (–0.7, 0.7), (0.7, 0.7), (0, –1), (–1, 0), (1, 0), (0, 0). The 7-

point inscribed central composite design contains the design 

points (–0.7, 0.7), (0.7, 0.7), (–0.7, –0.7), (0, –1), (–1, 0), (1, 0), 

(0, 0). The 8-point inscribed central composite design contains the 

design points (–0.7, 0.7), (0.7, 0.7), (-0.7, -0.7), (0.7, –0.7), (0,–1), 

(–1, 0), (1, 0), (0, 0). The 9-point inscribed central composite de-

sign contains the design points (–0.7, 0.7), (0.7, 0.7), (–0.7, –0.7), 

(0.7, –0.7), (0, –1), (0, 1), (–1, 0), (1, 0), (0, 0).  

With these arrangements, we shall (i) Examine the behaviour of 

the spherical equiradial designs for changing axial distances.      

(ii) Examine the behaviour of the spherical equiradial designs for 

changing design sizes. (iii) Examine the behaviour of the spherical 

equiradial designs for increased center points. (iv) Examine the 

behaviour of the spherical central composite designs for changing 

axial distances. (v) Examine the behaviour of the spherical central 

composite designs for changing design sizes. (vi) Examine the 

behaviour of the spherical central composite designs for increased 

center points. (vii) Compare the spherical equiradial designs and 

the spherical central composite designs on the basis of D- and     

G- efficiencies. (viii) Propose new measures of similarity of    

experimental designs. A simple layout comprising the radial 

points (n1), the center points (nc), the design size (N), the deter-

minant of  information matrix (det (M)), the maximum scaled 

predictive variance (SPVmax ), the D-efficiency (Deff  ) and the     

G-efficiency (Geff) shall be presented as summary of computa-

tions. Each layout component has been well explained in Myers   

et al. [11], which serves as a major reference in Response Surface 

Methodology. 

3. Results 

3.1. Spherical equiradial designs (ρ= 1.0, 𝐧𝐜 ≥ 1) 

The computations involving equiradial designs constructed using 

𝛒 = 1.0 and nc ≥ 1 are as in Table 1. 

3.2. Spherical equiradial designs (ρ = 1.414, 𝐧𝐜 ≥ 1) 

The computations involving equiradial designs constructed using 

𝛒 = 1.414 and 𝑛𝑐 ≥ 1 are as in Table 2. 

3.3. Circumscribed central composite designs (α = 1.414, 

𝐧𝐜 ≥ 1) 

The computations involving Circumscribed Central Composite 

designs constructed using α = 1.414 and 𝒏𝒄 ≥ 1 are as in Table 3. 

3.4. Inscribed central composite designs (α = 1.0, 𝐧𝐜 ≥ 1) 

The computations involving Inscribed Central Composite designs 

constructed using α = 1.0 and 𝒏𝒄 ≥ 1 are as in Table 4. 

3.5. D-absolute deviation and G-absolute deviation 

An absolute deviation is a measure of variability or variation. In 

particular, each calculated distance between any two points is 

called an absolute deviation. In the context of design efficiency, 

we shall refer to the absolute deviation of two D-efficiency values  
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Table 1: Summary of Computations for Spherical Equiradial designs (𝛒 = 1.0, NC ≥ 1) 

Design size  

N 

Radial point 

n1 
Center point 

nc 
Determinant of infor-

mation matrix det(M) 

Maximum scaled 

predictive variance 

SPVmax 

D-efficiency Deff 
% 

G-efficiency Geff 
% 

6 5 1 2.6100 x 10-4 6 25.28 100.00 

7  2 2.0700 x 10-4 7 24.32 85.71 
8  3 1.3954 x 10-4 8 22.77 75.00 

9  4 9.1756 x 10-5 9 21.24 66.67 

10  5 6.1000 x 10-5 10 19.84 60.00 
7 6 1 2.5845 x 10-4 7 25.24 85.71 

8  2 2.3198 x 10-4 6.671 24.79 89.94 

9  3 1.717 x 10-4 7.505 23.58 79.95 
10  4 1.2163 x 10-4 8.339 22.26 71.95 

11  5 8.5819 x 10-5 9.173 21.00 65.41 

8 7 1 2.5016 x 10-4 8 25.10 75 
9  2 2.4679 x 10-4 6.492 25.05 92.33 

10  3 1.9673 x 10-4 7.146 24.12 83.96 

11  4 1.4807 x 10-4 7.861 23.00 76.33 

12  5 1.0981 x 10-4 8.576 21.88 69.96 

9 8 1 2.4189 x 10-4 9 24.96 66.67 

10  2 2.5710 x 10-4 6.259 25.22 95.86 
11  3 2.1769 x 10-4 6.886 24.53 87.13 

12  4 1.7220 x 10-4 7.510 23.59 79.89 

13  5 1.3316 x 10-4 8.136 22.60 73.75 

 
Table 2: Summary of Computations for Spherical Equiradial designs (𝛒 = 1.414, 𝒏𝒄 ≥ 1) 

Design size 

𝑁 

 

Radial point 

𝑛1 
 

Center point 

𝑛𝑐 
Determinant of infor-

mation matrix det(𝑀) 

Maximum scaled 

predictive variance 

𝑆𝑃𝑉𝑚𝑎𝑥 

D-efficiency 𝐷𝑒𝑓𝑓 

% 

G-efficiency 𝐺𝑒𝑓𝑓 

% 

6 5 1 6.6822 x 10-2 6 63.70 100.00 

7  2 5.2999 x 10-2 7 61.29 85.71 

8  3 3.5679 x 10-2 8 57.38 75.00 
9  4 2.3466 x 10-2 9 53.51 66.67 

10  5 1.5588 x 10-2 10 49.98 60.00 

7 6 1 6.5951 x 10-2 7 63.56 85.71 
8  2 5.9197 x 10-2 6.670 62.43 89.96 

9  3 4.3800 x 10-2 7.504 59.37 79.97 

10  4 3.1036 x 10-2 8.338 56.06 71.96 
11  5 2.1899 x 10-2 9.171 52.89 65.42 

8 7 1 6.4659 x 10-2 7.995 63.35 75.05 

9  2 6.3769 x 10-2 6.498 63.21 92.34 
10  3 5.0829 x 10-2 7.174 60.86 83.64 

11  4 3.8254 x 10-2 7.941 58.05 75.56 

12  5 2.8369 x 10-2 8.608 55.23 69.70 
9 8 1 6.1549 x 10-2 9 62.84 66.67 

10  2 6.5419 x 10-2 6.257 63.48 95.89 

11  3 5.5391 x 10-2 6.883 61.74 87.17 
12  4 4.3817 x 10-2 7.508 59.38 79.91 

13  5 3.3883 x 10-2 8.134 56.88 73.76 

  
Table 3: Summary of Computations for Circumscribed Central Composite Designs (α = 1.414, 𝑛𝑐 ≥ 1) 

Design size 

𝑁 

Radial point 

𝑛1 
Center point 

𝑛𝑐 
Determinant of infor-

mation matrix det(𝑀) 

Maximum scaled 

predictive variance 

𝑆𝑃𝑉𝑚𝑎𝑥 

D-efficiency 𝐷𝑒𝑓𝑓 

% 

G-efficiency 𝐺𝑒𝑓𝑓 

% 

6 5 1 3.1930 x 10-2 6 56.32 100.00 

7  2 2.5325 x 10-2 7 54.19 85.71 
8  3 1.7048 x 10-2 8 50.73 75.00 

9  4 1.1213 x 10-2 9 47.31 66.67 

10  5 7.4485 x 10-3 10 44.19 60.00 
7 6 1 3.8352 x 10-2 7 58.07 85.71 

8  2 3.4424 x 10-2 7.547 57.04 79.50 

9  3 2.5470 x 10-2 8.490 54.24 70.67 
10  4 1.8048 x 10-2 9.434 51.22 63.60 

11  5 1.2735 x 10-2 10.377 48.32 57.82 

8 7 1 4.6803 x 10-2 8 60.03 75.00 
9  2 4.6173 x 10-2 7.811 59.90 76.81 

10  3 3.6807 x 10-2 8.679 57.68 69.13 

11  4 2.7702 x 10-2 9.547 55.01 62.85 

12  5 2.0545 x 10-2 10.415 52.33 57.61 

9 8 1 6.1548 x 10-2 9 62.84 66.67 
10  2 6.5418 x 10-2 6.251 63.48 95.99 

11  3 5.5390 x 10-2 6.876 61.74 87.26 

12  4 4.3817 x 10-2 7.501 59.38 79.99 
13  5 3.3883 x 10-2 8.126 56.88 73.84 
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Table 4: Summary of Computations For Inscribed Central Composite Designs (α = 1.0, 𝑛𝑐 ≥ 1) 

Design size  

𝑁 

Radial point 

𝑛1 
Center point 

𝑛𝑐 
Determinant of infor-

mation matrix det(𝑀) 

Maximum scaled 

predictive variance 

𝑆𝑃𝑉𝑚𝑎𝑥 

D-efficiency 𝐷𝑒𝑓𝑓 

% 

G-efficiency 𝐺𝑒𝑓𝑓 

%  

6 5 1 1.1660 x 10-4 6 22.10 100 
7  2 9.2480 x 10-5 7 21.27 85.71 

8  3 6.2269 x 10-5 8 19.91 75.00 

9  4 4.0946 x 10-5 9 18.57 66.67 
10  5 2.7200 x 10-5 10 17.34 60.00 

7 6 1 1.3847 x 10-4 7 22.75 85.71 
8  2 1.2428 x 10-4 7.547 22.34 79.50 

9  3 9.1951 x 10-5 8.490 21.25 70.67 

10  4 6.5155 x 10-5 9.434 20.06 63.60 
11  5 4.5972 x 10-5 10.377 18.93 57.82 

8 7 1 1.6676 x 10-4 7.996 23.46 75.04 

9  2 1.6447 x 10-4 7.795 23.41 76.97 
10  3 1.3110 x 10-4 8.661 22.54 69.28 

11  4 9.8663 x 10-5 9.527 21.50 62.98 

12  5 7.3168 x 10-5 10.393 20.45 57.73 
9 8 1 2.2241 x 10-4 8.993 24.61 66.72 

10  2 2.3630 x 10-4 6.301 24.86 95.22 

11  3 2.0005 x 10-4 6.931 24.18 86.57 
12  4 1.5824 x 10-4 7.561 23.26 79.35 

13  5 1.2236 x 10-4 8.191 22.28 73.25 

 

as D-absolute deviation (D-AD). Similarly, we shall refer to the 

absolute deviation of two G-efficiency values as G-absolute devia-

tion (G-AD). Mathematically, we shall write 

 

D-AD = | Deff (1) - Deff (2)|; 0 ≤Deff (1), Deff (2)≤ 1 

 

where 

Deff (1) is the D-efficiency associated with design 𝜉1 and Deff (2) is 

the D-efficiency associated with design 𝜉2.  

In a similar form, we shall write 

 

G-AD = | Geff (1) - Geff (2)|; 0 ≤ Geff (1), Geff (2)≤ 1 

 

where 

Geff (1) is the G-efficiency associated with design ξ1 and Geff (2) is 

the G-efficiency associated with design ξ2 . Thus, D-absolute   

deviation is related to D-efficiency and G-absolute deviation is 

related to G-efficiency. 

In comparing pairs of N-point designs, {ξ11, ξ12} and {ξ21 , ξ22}, 

the pair of designs ξ11 and ξ12 are assumed more closely related in 

D-efficiency property than the pair of designs ξ21 and ξ22 if and 

only if 

| Deff ( ξ11) − Deff ( ξ12)| ≤ | Deff ( ξ21) − Deff ( ξ22)|. 

If | Deff ( ξ11) − Deff ( ξ12)| = 0, then design ξ11 and design ξ12 are  

identical in optimality property.  

Also, if | Deff ( ξ21) − Deff ( ξ22)| = 0, then design ξ21 and design ξ22  

are identical in optimality property. 

 

If | Deff ( ξ11) − Deff ( ξ12) | = | Deff ( ξ21) − Deff ( ξ22) |, then all four 

designs ξ11, ξ12, ξ21 and ξ22 are identical in optimality property. 

Similarly, in comparing pairs of N-point designs, {ξ11, ξ12} and 

{ξ21  , ξ22 }, the pair of designs ξ11  and ξ12  are assumed more 

closely related in G-efficiency property than the pair of designs 

ξ21 and ξ22 if and only if 

| Geff ( ξ11) − Geff ( ξ12)| ≤ | Geff ( ξ21) − Geff ( ξ22)|. 

If | Geff ( ξ11) − Geff ( ξ12) | = 0, then design ξ11  and design ξ12  are 

identical in optimality property. 

Also, if | Geff ( ξ21) − Geff ( ξ22)| = 0, then design ξ21 and design ξ22 

are identical in optimality property. 

 

If | Geff ( ξ11) − Geff ( ξ12) | =  | Geff ( ξ21) − Geff ( ξ22) |, then all four 

designs ξ11, ξ12, ξ21 and ξ22 are identical in optimality property. 

For the designs studied in this research work, we present the D- 

and G-absolute deviations in Table 5. Each absolute deviation is 

positive or zero. The D- and G- absolute deviations are compared 

for the equiradial designs and central composite designs having 

same axial or radial distance.  
 

Table 5: D- and G-Absolute Deviations for Equiradial and Central Composite Designs 

Axial or Radial distance (α = 1.0) Axial or Radial distance (α = 1.414) 

Design size  

N 

Radial 

point 

n1 
 

Center 
point 

nc 

D-absolute 

deviation 

D-AD 

G-absolute 

deviation 

G-AD 

Design size  

N 

Radial 

point 

n1 
 

Center 
point 

nc 

D-absolute 

deviation 

D-AD 

G-absolute 

deviation 

G-AD 

6 5 1 3.18 0 6 5 1 7.38 0 

7  2 3.05 0 7  2 7.10 0 

8  3 2.86 0 8  3 6.65 0 
9  4 2.67 0 9  4 6.20 0 

10  5 2.50 0 10  5 5.79 0 

7 6 1 2.49 0 7 6 1 5.49 0 
8  2 2.45 10.44 8  2 5.39 10.46 

9  3 2.33 9.28 9  3 5.13 9.29 

10  4 2.20 8.35 10  4 4.84 8.36 
11  5 2.07 7.59 11  5 4.57 7.60 

8 7 1 1.64 0 8 7 1 3.25 0.05 

9  2 1.64 15.45 9  2 3.31 15.53 
10  3 1.67 14.68 10  3 3.18 14.51 

11  4 1.50 13.35 11  4 3.04 12.71 

12  5 1.43 12.23 12  5 2.90 12.09 
9 8 1 0.35 0.05 9 8 1 0 0 

10  2 0.36 0.64 10  2 0 0.09 

11  3 0.35 0.56 11  3 0 0.09 
12  4 0.33 0.54 12  4 0 0.08 

13  5 0.32 0.50 13  5 0 0.08 
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4. Discussion of results 

4.1. Findings regarding the equiradial designs 

For each N-point equiradial design, the determinant value of   

information matrix increases for increasing axial distance. The 

maximum and minimum scaled variances of prediction remain 

constant, except for approximation error, for changing axial    

distances. As n1  increases, the determinant value of information 

matrix decreases when the equiradial design contains only one 

center point. For equiradial designs having nc ≥ 1 center point, 

the determinant value of the associated information matrix      

decreases for increasing nc . This holds true irrespective of the 

axial distance. At nc = 1, the maximum scaled variance of predic-

tion associated with equiradial designs exactly equals the number 

of design points, N. However, for nc > 1, the maximum scaled 

variance of prediction increases as nc  increases with a ratio  

SPVmax : SPVmin being 1 at N = 6, nc = 1. This shows that the 

design is rotatable at N = 6 and nc = 1. As n1 increases, the de-

terminant value of information matrix of the equiradial design 

increases for nc >  1. However as n1  increases, the maximum 

scaled variance of prediction increases at nc = 1 and decreases at 

nc > 1. 

4.2. Findings regarding the central composite designs 

For N-point central composite design, the determinant values of 

information matrices are maximized for increasing axial distances. 

On the other hand, the maximum and minimum scaled variances 

of prediction remain constant for changing axial distances, except 

for approximation error. As n1 increases, the determinant value of 

information matrix increases for nc ≥  1. Also, as n1  and nc     
increase, the maximum scaled variance of prediction generally 

increases (except at n1  = 8). As regards the addition of center 

points, the determinant value of information matrix decreases for 

increasing center points and rotatability is attained at N=6, nc = 1. 

4.3. Findings regarding the design efficiency 

The D-efficiency value associated with N-point equiradial design 

at ρ = 1.414 is higher than the D-efficiency value associated with 

the corresponding N-point equiradial design at ρ = 1.0. However, 

G-efficiency value remains constant for the two categories of de-

sign, except for approximation error. The D-efficiency values 

associated with N-point circumscribed central composite designs 

at α = 1.414 are higher than the D-efficiency values associated 

with corresponding N-point inscribed central composite designs at 

α = 1.0. Also, G-efficiency values remain constant for the two 

categories of design, except for approximation error. For a fixed 

axial distance or radius, the D-efficiency value associated with   

N-point equiradial design is higher than the D-efficiency value 

associated with the corresponding N-point central composite   

design. Similarly for a fixed axial radius distance, the G-efficiency 

associated with N-point equiradial design is generally higher than 

the D-efficiency associated with the corresponding N-point central 

composite design. At nc  = 1, D-efficiency associated with the 

equiradial design decreases as N increases but increases as N  

increases at fixed nc> 1. At nc = 1, G-efficiency associated with 

the equiradial design decreases as N increases but increases as N 

increases at fixed nc> 1.  

For changing nc center points, D-efficiency of equiradial design 

deceases as nc increases. For fixed nc center points, D-efficiency 

associated with central composite design increases as N increases. 

For changing nc center points, D-efficiency associated with cen-

tral composite design decreases as nc increases. Although, varia-

tions seem to exist with n1 = 8 axial points, the G-efficiency asso-

ciated with central composite design generally decreases with 

increasing design size, N, for fixed center point, nc. The D- and 

G-absolute deviations present themselves as good measures of 

similarity of experimental designs. Their values are zero if the 

pairs of designs are identical. For the two cases of design types 

studied, the G-absolute deviation (G-AD) is zero at nc = 1 center 

point and decreases for increasing values of nc. It can further be 

seen from the results that as the design size N increases, D-

absolute deviation (D-AD) decreases. It is conjecturally hoped that 

at some large design size, the equiradial design and the central 

composite design having the same axial or radial distance will 

coincide (be identical) in their properties. 

5. Conclusion 

The behaviours of the spherical equiradial designs and central 

composite designs have been examined for changing axial dis-

tances, changing design sizes and increased center points. Two 

new measures of similarity of experimental designs have been 

proposed for comparing experimental designs defined by some 

related properties. When two or more designs are identical in 

terms of D-efficiency property, the new measure called D-absolute 

deviation (D-AD) will be zero. Similarly, when two or more de-

signs are identical in terms of G-efficiency property, the new 

measure called G-absolute deviation (G-AD) will be zero. The 

similarity of equiradial design to the central composite design, as 

measured by D-absolute deviation is stronger as the design size, 

N, increases. Although numerical illustrations presented in Table 5 

reveal interesting properties associated with the new measures of 

similarity of experimental designs, there is need for analytical 

verification and justification.   
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