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Abstract 
 

In this paper two new bivariate Pareto Type I distributions are introduced. The first distribution is based on copula, and the second distri-

bution is based on mixture of and copula. Maximum likelihood and Bayesian estimations are used to estimate the parameters of the pro-

posed distribution. A Monte Carlo Simulation study is carried out to study the behavior of the proposed distributions. A real data set is 

analyzed to illustrate the performance and flexibility of the proposed distributions. 
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1. Introduction 

The Pareto distribution was first introduced by Vilfredo Pareto as 

a model for the distribution of income.. It is used in a wide range 

of fields such as insurance, business, engineering, survival analy-

sis, reliability and life testing, see for example Davis and Feldstein 

[1], Cox and Oakes [2], Cohen and Whitten [3],and Bhattacharya, 

[4].The probability density function (Pdf) of the Pareto type I (PI) 

distribution is given by 

 

f(T) = αβαt−(α+1) , t > β.                                                           (1) 

 

The cumulative density function (Cdf) is given by 

 

F(T) = 1 − (
β

t
)
α
, t > β                                                               (2) 

 

The survivor function (SF) is given by 

 

S(T) = (
β

t
)
α
 , t > β.  

 

The hazard rate function (HRF) is given by: 

 

h(T) =
α

t
, t > β.                                                                           (3) 

 

The cumulative hazard rate function (CHRF) is given by: 

 

H(T) = −α(ln(β) − ln(t)) , t > β.                                              (4) 

 

Howlader [5] studied Bayesian prediction and estimation from 

Pareto distribution of the first kind. Bayesian estimators of the 

scale parameter of Pareto type I model have been obtained by 

direct method and Lindley’s approach, see Setiya, Kumar, and 

Pande [6], for more details see Mahmoud, Sultan, and Moshref 

[7]. 

A copula is a statistical method that approaches the joint distribu-

tion in terms of the marginal distributions and then links the mar-

ginal distribution functions together. A copula function captures 

the dependence relationships amongst the different random varia-

bles. This approach provides a general structure of modeling mul-

tivariate distributions. Sklar [8] has introduced this method in the 

context of probabilistic metric spaces. This approach has been 

formalized by Clemen and Winkler [9]. Copula have become a 

standard tool with many applications for examples, multi-asset 

pricing, credit portfolio modeling, risk management, see Longin 

and Solnik [10], Li [11], Patton [12], Joe [13], Lopez-Paz et al 

[14], and Board et al [15]. Adham and Walker [16] applied the M 

mixture representation of the Gompertz distribution in order to 

motivate a new family of distributions which extends naturally to 

the multivariate case using copula. In addition, they found out that 

the mixing idea and the use of copula method allowed full de-

pendency structures and was easy to analyse. 

Many researchers have used copula to propose new bivariate and 

multivariate distributions. Kundu and Dey [17] studied the maxi-

mum likelihood estimators of the unknown parameters for the 

Marshall-Olkin bivariate Weibull distribution using EM algorithm 

.Diakarya [18]studied the properties of Archimedean copulas of 

stochastic processes and proposed analytical expressions of the 

survival copulas of Archimedean processes. Sankaran and Kundu 

[19] discussed several other new properties for bivariate Pareto 

model such as the maximum likelihood estimator by using two 

stage estimator and analyzed two data sets for the bivariate Pareto 

Type II distribution. Achcar et al [20] introduced Bayesian analy-

sis for a bivariate generalized exponential distribution with cen-

sored data from Copula functions and using MCMC methods to 

simulate samples. Dou et al [21] used order statistics to construct 

multivariate distributions with fixed marginals of the Bernstein 

copula in terms of a finite mixture distribution.  

The main aim of this article is to establish new bivariate Pareto 

type I distribution because of the important role of multivariate 

and bivariate Pareto type I in income’s analysis and ability to fit 

some upper tail of multivariate socio-economic and income’s data, 

see Mandelbrot [22] and Yeh[23].The rest of the paper is orga-

nized as follows: in Section2, we introduce bivariate Pareto Type I 

distribution based on Gaussian copula and bivariate Pareto Type I 

distribution based on mixture and Gaussian copula parameters 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJASP


International Journal of Advanced Statistics and Probability 45 

 
estimation of the proposed new bivariate Pareto Type I distribu-

tions is performed using maximum likelihood and Bayesian meth-

ods in Section 3.In Section 4, Monte Carlo simulation study and 

analyses of real data are conducted to show the usefulness and 

flexibility of the proposed distributions. Finally, some concluding 

remarks are presented in Section 5. 

2. Bivariate Pareto type I distributions 

In this section Bivariate Pareto Type I (BPI) distribution based on 

Gaussian copula and BPI distribution based on mixture and 

Gaussian copula are constructed.  

2.1. Construction of BPI distribution based on Gaussian 

copula 

The simplest method to construct BPI with Gaussian copula is by 

using the inversion method for univariate distribution. Therefore, 

the joint Cdf is given by 

 

F(T1 , T2) = C [F(t1), F(t2)],  
 

Where T1and T2are identical independent distribution (i.i.d) from 

PI(αj, βj). 

Then, the joint Pdf of T1 and T2 is given by 

 

f(T1, T2) = C
′[F(T1), F(T2)]f(T1)f(T2), 

 

Wherefore f (Tj) and F (Tj), j =  1, 2 , are given by (1) and (2) 

respectively, and C′ =
∂2C

∂F(T1) ∂F(T2)
 is the copula density, and it is 

obtained from Gaussian copula given by  

 

 CG
′ =

exp{
−1

2(1−ρ2)
(y1
2−2ρy1y2+y2

2)}

2π√1−ρ2
                                                    (5) 

 

Therefore, the joint Pdf of T1 and T2 can be rewritten as  

 

f(T1, T2) = (
α1β1

t1
α1+1) (

α2β2

t2
α2+1) C′G                                                      (6) 

 

For more explanation, see Joe [24], and Flores [25]. Observing 

that ρ is a parameter associated to the dependence between the 

random variable T1and T2 which related to Kendall’s rank correla-

tion and the Spearman’s rank correlation given by (7) and (8) 

respectively.  

 

ρ = 12∬ uvdC(u, v) − 3 
I2

                                                         (7) 

 

τ = 1 − 4∬
∂C

∂u
(u, v)

I2
∂C

∂v
(u, v) dudv.                                        (8) 

 

Graphical representation of the Pdf, Cdf, and contours plots of the 

BPI distributions based on Gaussian copula for two different val-

ues of the copula parameter (𝜌)are shown in Figure (1). 

 

 

 

 

 

 

 

 
Fig.1: Pdf, Cdf and Contours of BPI Distribution Based on Gaussian Cop-

ula For 𝛼1 = 1.5 , 𝛼2 = 2, 𝛽1 = .01, 𝛽2 = .03, 𝜌 = 𝑐(0.5, .70,0.85) 
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2.2. Construction of BPI distribution based on mixture 

and Gaussian copula 

Let M denotes the Pdf for a random variable T on  0,  which 

has a mixture representation. If(𝑇1, 𝑇2)is a two-dimensional ran-

dom vector conditionally independent given(𝑈1, 𝑈2) , where 𝑈1 

and 𝑈2have bivariate gamma distribution,then the joint Pdf can be 

written in the form of compound distribution given by 

 

𝑓(𝑇1, 𝑇2) =  ∫ ∫ ∏ 𝑓(𝑇1|𝑈1)𝑓(𝑇2|𝑈2)𝑓(𝑈1) 𝑓(𝑈2)×
2
𝑗=1

∞

𝐻(𝑇1)

∞

𝐻(𝑇2)

𝐶′𝐺 𝑑𝑢1𝑑𝑢2                                                                                  (9) 

 

For j=1, 2, 

 

𝑓(𝑇𝑗|𝑈𝑗) =
ℎ(𝑇𝑗)

𝑈𝑗
 𝐼{𝑈𝑗 > 𝐻(𝑇𝑗)}                                                (10) 

 

Therefore, the function can be rewritten as:  

 

𝑓(𝑇𝑗|𝑈𝑗) =
𝛼𝑗

𝑢𝑗𝑡𝑗
, 𝑢𝑗 > −𝛼𝑗 (𝑙𝑛(𝛽𝑗) − 𝑙𝑛(𝑡𝑗))                           (11) 

 

Where 𝑈𝑗  is distributed as gamma (2, 1) given by  

 

𝑓(𝑈𝑗) = 𝑢𝑗𝑒
−𝑢𝑗 , 𝑢𝑗 ≥ 0 , j=1, 2.                                                (12) 

 

For more details, see Walker and Stephens [26], Adham and 

Walker [16].  

The joint Pdf of BPI distribution based on M mixture representa-

tion with Gaussian copula given by (9), can be rewritten as 

 

𝑓(𝑇1, 𝑇2) = ∫ ∫ ∏ [
𝛼𝑗

𝑡𝑗
𝑒−𝑢𝑗] 𝐶′𝐺  𝑑𝑢1𝑑𝑢2

2
𝑗=1

∞

𝐻(𝑇1)

∞

𝐻(𝑇2)
,                (13) 

 

 𝑗 = 1, 2.  

3. Estimation 

The estimation of the parameters for BPI distribution based on 

Gaussian copula and BPI distribution based on mixture and 

Gaussian copula using maximum likelihood (ML) and Bayesian 

methods will be preformed. 

3.1. Parameters estimation for BPI distribution based 

on Gaussian copula 

3.1.1. Maximum likelihood estimation 

 

𝑙(𝜃|𝑇1, 𝑇2) =  
 

𝑛 𝑙𝑛(𝛼1) + 𝑛 𝛼1 𝑙𝑛(𝛽1)   
 

−(𝛼1 + 1)∑ [𝑙𝑛(𝑡1𝑖)]
𝑛
𝑖=1 + 𝑛 𝑙𝑛(𝛼2) + 𝑛 𝛼2 𝑙𝑛(𝛽2) −

(𝛼2 + 1)∑ [𝑙𝑛(𝑡2𝑖)]
𝑛
𝑖=1 + ∑ [𝑙𝑛(𝐶𝐺𝑎𝑢𝑠𝑠

′ (𝑣1, 𝑣2))]
𝑛
𝑖=1 ,                (14) 

 

If (𝑇1, 𝑇2) = ((𝑡11, 𝑡21),… , (𝑡1𝑛 , 𝑡2𝑛))  are i.i.d sample of size n 

from BPI distribution given in (6), then the log-likelihood function 

can be written as where 𝐶𝐺
′  given in (5), and 𝛽𝑗  , 𝑗 = 1,2, is fixed, 

we don’t need to differential of estimate it, and 𝜃 =
(𝛽1 , 𝛼1, 𝛽2, 𝛼2, 𝜌). 
 

𝜕𝑙

𝜕𝛼1
= 0 ⇒ �̂�1 =

𝑛

∑ 𝑙𝑛(
𝑡1𝑖
�̂�1
)𝑛

𝑖=1

𝜕𝑙

𝜕𝛼2
= 0⇒ �̂�2 =

𝑛

∑ 𝑙𝑛(
𝑡2𝑖
�̂�2
)𝑛

𝑖=1

𝜕𝑙

𝜕𝜌
= 0⇒ �̂� = ∑ ∑

𝑦𝑗𝑖𝑦−𝑗𝑖

𝑛
, 𝑗 ≠ −𝑗𝑛

𝑖=1
2
𝑗=1 }

 
 
 
 

 
 
 
 

                                 (15) 

 

The ML estimate of the unknown parameters can be obtained by 

maximizing (14) with respect to the unknown parame-

ters𝛽1 , 𝛼1, 𝛽2, 𝛼2  and  𝜌 , such that 𝛽1 , 𝛼1, 𝛽2, 𝛼2 > 0 , and −1 <
𝜌 < 1 . That is, differentiating (14) with respect to 

𝛽1, 𝛼1, 𝛽2, 𝛼2, 𝑎𝑛𝑑 𝜌 and equating it to zero, the first partial deriva-

tives are given by: 

 

Therefore, ML estimate of the parameter can be obtained by solv-

ing the system of non-linear equations in (15) numerically. 

Sampling information matrix and approximate confidence inter-

val. 

Approximate confidence interval of the parameters 𝜃 can be ob-

tained based on the asymptotic distribution of the ML estimates of 

𝜃  when 𝜃 > 0 . Using the large sample and under appropriate 

regularity conditions, the ML estimates for the parameters 𝜃 have 

approximately multivariate normal distribution with mean 𝜃 and 

asymptotic variance-covariance matrix 𝐼−1(𝜃). See (Algorithm 1 

in Appendix). 

Then the 100(1 − 𝛾)% approximate confidence interval for the 

parameters𝛽1, 𝛼1, 𝛽2, 𝛼2, 𝑎𝑛𝑑 𝜌 are: 

 

�̂�𝑗 = 𝑚𝑖𝑛(𝑡𝑗𝑖), �̂�𝑗 ∓ 𝑧𝛾 2⁄ √𝑣𝑎𝑟(�̂�𝑗), 𝑗 = 1, 2 and  �̂� ∓

𝑧𝛾 2⁄ √𝑣𝑎𝑟(�̂�), 

 

Where, 𝑧𝛾 2⁄  is the upper (𝛾 2⁄ )  the percentile of the standard 

normal distribution. 

3.1.2. Bayesian estimation 

Let (𝑇1 , 𝑇2 )be a bivariate random samples from BPI distribution 

given by (6) and assuming non informative independent priors for 

the parameters such that. 

 

𝜋(𝛽𝑗) ∝
1

𝛽𝑗
 𝜋(𝛼𝑗) ∝

1

𝛼𝑗
 , j=1, 2, (𝜌) =

1

2
                                    (16) 

 

Therefore, the joint posterior distribution can be written as 

To get the posterior summaries of interest, samples are simulated 

for the joint posterior distribution in (17) by using MCMC, see 

Silva and Lopes [27].  

That is, simulate samples from the conditional distributions  

 

 𝜋(𝛼1|𝛽1 , 𝛽2 , 𝛼2, 𝜌, 𝑇1 , 𝑇2 ),  
 

 𝜋(𝛼2|𝛽1, 𝛼1, 𝛽2, 𝜌, 𝑇1 , 𝑇2 ), 
 

 𝜋(𝜌|𝛽1, 𝛼1, 𝛽2, 𝛼2, 𝑇1 , 𝑇2 )  
 

By using Metropolis-Hastings algorithm, since the conditional 

distributions in this case are not identified as known distributions, 

see Achcar et al [20].  

3.2. Parameters estimation for BPI distribution based 

on mixture and Gaussian copula  

3.2.1. Maximum likelihood estimation 

Suppose that, (𝑇1, 𝑇2) = ((𝑡11, 𝑡21), … , (𝑡1𝑛, 𝑡2𝑛))  is a random 

samples from BPI distribution given in (13), and (𝑈1, 𝑈2) =
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((𝑢11, 𝑢21), … , (𝑢1𝑛, 𝑢2𝑛))  is a random samples from bivariate 

gamma distribution. The likelihood function is given by: 

 

𝐿(𝜃1|𝑇1, 𝑇2, 𝑈1, 𝑈2) = ∏ 𝑓(𝑇1, 𝑇2)
𝑛
𝑖=1  =

∏ ∏
𝛼𝑗

𝑡𝑗𝑖
𝑒−𝑢𝑗𝑖𝐶′𝐺𝑎𝑢𝑠𝑠(𝑣1, 𝑣2)

𝑛
𝑖=1

2
𝑗=1   

 

𝐼 (𝑢𝑗𝑖 > −𝛼𝑗 (𝑙𝑛(𝛽𝑗) − 𝑙𝑛(𝑡𝑗𝑖)))  

 

Where 𝐶′𝐺𝑎𝑢𝑠𝑠(𝑣1, 𝑣2) is given by (5), and 𝑣𝑗 = 𝐹(𝑈𝑗) , 𝑗 = 1, 2,  

and 𝜃 = (𝛽1 , 𝛼1, 𝛽2, 𝛼2, 𝜌). 
The likelihood function can be rewritten as  

 

𝐿(𝜃|𝑇1, 𝑇2, 𝑈1, 𝑈2) =  
 

∏ 𝛼𝑗
𝑛 𝑒

−∑ 𝑢𝑗𝑖
𝑛
𝑖=1

∏ 𝑡𝑗𝑖
𝑛
𝑖=1

∏ 𝐶′𝐺𝑎𝑢𝑠𝑠(𝑣1, 𝑣2)
𝑛
𝑖=1

2
𝑗=1                                       (18) 

 

𝐼 (𝛼𝑗 < 𝑚𝑖𝑛(
𝑢𝑗𝑖

−𝑙𝑛(
𝛽𝑗

𝑡𝑗𝑖
)

))  

 

The log-likelihood function can be written as 

 

𝜋(𝛼𝑗 , 𝛽𝑗 , 𝜌|𝑇1 , 𝑇2 ) ∝

∏ 𝑓(𝑡1𝑖 , 𝑡2𝑖; 𝛽1, 𝛼1, 𝛽2 , 𝛼2)
𝑛
𝑖=1 ∏ {𝜋(𝛼𝑗)𝜋(𝜌)}

2
𝑗=1  , j=1, 2.         (17) 

 

𝑙(𝜃|𝑇1, 𝑇2, 𝑈1, 𝑈2) =  
 

𝑛 𝑙𝑛 𝛼1 – ∑ 𝑢1𝑖
𝑛
𝑖=1 −∑ 𝑙𝑛 𝑡1𝑖

𝑛
𝑖=1   

 

+𝑛 𝑙𝑛 𝛼2 − ∑ 𝑢2𝑖
𝑛
𝑖=1 − ∑ 𝑙𝑛 𝑡2𝑖

𝑛
𝑖=1   

 

+∑ 𝑙𝑛 𝐶𝐺𝑎𝑢𝑠𝑠
′ (𝑣1, 𝑣2)

𝑛
𝑖=1   

 

𝐼 (𝛼𝑗 < 𝑚𝑖𝑛(
𝑢𝑗𝑖

−𝑙𝑛(
𝛽𝑗

𝑡𝑗𝑖
)

)) , 𝑗 = 1,2                                            (19) 

 

The ML estimates of the unknown parameters can be obtained by 

maximizing (19) with respect to the unknown parame-

ters𝛽1 , 𝛼1, 𝛽2, 𝛼2 and 𝜌.  

That is, ML estimates can be obtained by solving numerical the 

five dimensional optimization problems. The first derivative are 

given by  

 

𝜕𝑙

𝜕𝛼𝑗
= 0⇒ �̂�𝑗 =

𝑛

∑ 𝑙𝑛(
𝑡𝑗𝑖

�̂�𝑗
)𝑛

𝑖=1

, j=1, 2, 

 
𝜕𝑙

𝜕𝜌
= 0⇒ �̂� = ∑ ∑

𝑦𝑗𝑖𝑦−𝑗𝑖

𝑛

𝑛
𝑖=1

2
𝑗=1 , 𝑗 ≠ −𝑗. 

 

Sampling information matrix and approximate confidence interval 

is obtained by Algorithm 1 in Appendix. 

3.2.2. Bayesian estimation  

If we have a bivariate random sample (𝑇1, 𝑇2) =

((𝑡11, 𝑡21), … , (𝑡1𝑛 , 𝑡2𝑛)), n=1,2,…,n, from BPI distribution, then 

the corresponding latent variables (𝑈1, 𝑈2) =

((𝑢11, 𝑢21), … , (𝑢1𝑛, 𝑢2𝑛)) , n=1,2,…,n, is generated from gam-

ma(2,1) where 𝑈𝑗~𝑔𝑎𝑚𝑚𝑎(2,1), 𝑗 = 1,2.The Gibbs sampler pro-

cedure is used to obtain Bayesian estimates of the parame-

ters(𝛽1 , 𝛼1, 𝛽2, 𝛼2, 𝜌) of the BPI distribution based on mixture and 

Gaussian copula. Assuming non-informative prior distribution of 

the parameters as in (17).Therefore, the joint posterior distribution 

can be written as  

𝜋(𝜃1|𝑇1, 𝑇2, 𝑈1, 𝑈2) ∝
∏ {𝜋(𝛽𝑗)𝜋(𝛼𝑗)𝜋(𝜌)}𝐿(𝛽𝑗 , 𝛼𝑗 , 𝜌|𝑇1, 𝑇2, 𝑈1, 𝑈2)
2
𝐽=1   

 

𝑗 = 1,2, 𝑖 = 1,2,… , 𝑛  
 

Where 𝐿(𝜃1|𝑇1, 𝑇2, 𝑈1, 𝑈2) is given by (18). 

Now, the full conditional distributions of the Gibbs sampler can be 

obtained by the following:  

1) Sample𝑈𝑗from𝜋(𝑈𝑗|𝛽𝑗 , 𝛼𝑗 , 𝜌, 𝑇1, 𝑇2). 

 

𝜋(𝑈𝑗|𝛽𝑗 , 𝛼𝑗 , 𝜌, 𝑇1, 𝑇2) ∝  𝑒
−𝑢𝑗𝑖−

𝑥𝑖
2   

 

𝐼 (𝑢𝑗𝑖 > −𝛼𝑗 𝑙𝑛 (
𝛽𝑗

𝑡𝑗𝑖
))  

 

Where  𝑥𝑖 =
𝑦1𝑖
2 +𝑦2𝑖

2 −2𝜌𝑦1𝑖𝑦2𝑖

1−𝜌2
. Sample of 𝑈𝑗  

from  𝜋(𝑈𝑗|𝛽𝑗 , 𝛼𝑗 , 𝜌, 𝑇1, 𝑇2) are calculated using Algorithm 2 in 

Appendix. 

Then sample 𝑢𝑗𝑖  as follow  

 

𝑢𝑗𝑖 = − 𝑙𝑛[𝑒
−𝐴𝑗𝑖 − (𝑒−𝐴𝑗𝑖 − 𝑒−𝐵𝑗𝑖)𝑉] , j=1, 2, i=1, 2… n. 

 

2) Sample αj from π(αj|βj, T, U), for j = 1, 2. 

 

𝜋(𝛼𝑗|𝛽𝑗 , 𝑇1, 𝑇2, 𝑈1, 𝑈2) ∝  

 

𝛼𝑗
𝑛−1 𝐼 (𝛼𝑗 < 𝑚𝑖𝑛 (

𝑢𝑗𝑖

−𝑙𝑛(
𝛽𝑗

𝑡𝑗𝑖
)

)) , j=1, 2, i=1, 2… n. 

 

If 𝑑𝑗 = 𝑚𝑖𝑛 (
𝑢𝑗𝑖

−𝑙𝑛(
𝛽𝑗

𝑡𝑗𝑖
)

), then the full conditional distribution of 𝛼 

 

𝜋(𝛼𝑗|𝑇1, 𝑇2, 𝑈1, 𝑈2) =
𝑛𝛼𝑗

𝑛−1

𝑑𝑗
𝑛  𝐼(𝛼𝑗 < 𝑑𝑗), j=1, 2. 

 

The cumulative distribution is given by 

 

𝐹(𝛼𝑗|𝑇1, 𝑇2, 𝑈1, 𝑈2) = ∫ 𝜋(𝛼𝑗|𝑇, 𝑈)𝑑𝛼𝑗
𝛼𝑗
0

  

 

= ∫
𝑛𝛼𝑗

𝑛−1

𝑑𝑗
𝑛 𝑑𝛼𝑗

𝛼𝑗
0

=
𝛼𝑗
𝑛

𝑑𝑗
𝑛. 

 

Let 𝛿 = 𝐹(𝛼𝑗|𝑇1, 𝑇2, 𝑈1, 𝑈2) ⇒ 𝛿 =
𝛼𝑗
𝑛

𝑑𝑗
𝑛, 

 

By using inverse method to sample 𝛼𝑗  

 

𝛼𝑗 = 𝑑𝑗𝛿
1
𝑛                                                                                   (22) 

 

Where 𝛿 is Uniform (0, 1). 
3) Finally, sample ρ from 

 

 𝜋(𝜌|𝛽𝑗 , 𝛼𝑗 , 𝑇1, 𝑇2, 𝑈1, 𝑈2) ∝ (1 − 𝜌
2)

−𝑛

2 𝑒
∑

𝑦1𝑖
2 +𝑦2𝑖

2 −2𝜌𝑦1𝑖𝑦2𝑖

2(1−𝜌2)
𝑛
𝑖=1 ,  

 

i=1, 2… n. 

 

Metropolis hasting is used to obtain estimate of 𝜌. See Abd Elaal 

et al [28]. 
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4. Simulation study 

Table 1: MLE and Bayesian Estimation of BPI Parameters Based on 

Gaussian Copula and with Their Mean, RMSE with 𝜌 = 0.70 for Different 

Value of Parameters 

Sample size Parameters 
MLE 
 

Bayesian estimation 
 

Mean RMSE Mean RMSE 

n=35 

�̂�1 1.2505 0.2534 1.1769 0.0393 

�̂�2 1.1535 0.2593 1.0616 0.0360 

�̂� 0.8076 0.0350 0.7750 0.0054 

n=50 

�̂�1 1.2408 0.0776 1.2231 0.0389 

�̂�2 1.1315 0.0696 1.1237 0.0296 

�̂� 0.8009 0.0057 0.7836 0.0014 

n=100 

�̂�1 1.2242 0.0430 1.2160 0.0104 

�̂�2 1.1254 0.0453 1.1154 0.0114 

�̂� 0.8012 0.0040 0.7924 0.0018 

n=150 

�̂�1 1.2042 0.0154 1.2128 0.0090 

�̂�2 1.1028 0.0132 1.1095 0.0051 

�̂� 0.8018 0.0039 0.7950 0.0009 

4.1. Simulation study of BPI distribution based on 

Gaussian copula  

A Monte Carlo simulation study is performed to investigate and 

compare the ML and Bayesian estimates of the parame-

ters𝛼1, 𝛼2, 𝜌, while 𝛽1  and𝛽2  are fixed. Different samples sizes, 

n=35, 50,100,150, were considered using different values of the 

parameters, with 𝛽1𝑎𝑛𝑑 𝛽2 set to the minimum fixed values and 

the copula parameter taking the values  𝜌 = (0.70, 0.80). The BPI 

distribution is fitted to the data and the ML and Bayesian estimate 

of the parameters of BPI distribution based on Gaussian copula are 

obtained. Then, the average estimates along with their relative 

mean square error (RMSE) over 1000 replication are calculated. 

The results are reported in Tables 1 and 2. 

 
Table 2: MLE and Bayesian Estimation of BPI Parameters Based on 

Gaussian Copula and with Their Mean, RMSE with 𝜌 = 0.80 for Different 

Value of Parameters 

Sample size Parameters 
MLE 
 

Bayesian estimation 
 

Mean RMSE Mean RMSE 

n=35 

�̂�1 1.2708 0.2987 1.2109 0.0391 

�̂�2 1.2277 0.2792 1.0633 0.0357 

�̂� 0.7162 0.0669 0.6652 0.0125 

n=50 
�̂�1 1.2669 0.1058 1.2190 0.0266 

�̂�2 1.1525 0.0937 1.0963 0.0245 

�̂� 0.7056 0.0229 0.6767 0.0093 

n=100 

�̂�1 1.2315 0.0478 1.2082 0.0176 

�̂�2 1.1290 0.0475 1.1231 0.0146 

�̂� 0.7009 0.0078 0.6886 0.0022 

n=150 
�̂�1 1.2164 0.0238 1.2143 0.0096 

�̂�2 1.1173 0.0259 1.1094 0.0052 

�̂� 0.6998 0.0032 0.6928 0.0022 

 

It can be seen fromTables1 and 2 that, for all selected values of 

𝛼1, 𝛼2 and𝜌 , the RMSE of the estimates �̂�1,�̂�2,  and �̂�  become 

smaller as the sample size increases. In addition, it can be seen 

that we have better estimates and smaller RMSE when the copula 

parameter𝜌 = 0. 80.Moreover, the Bayesian method gave better 

and more accurate estimates for the parameters than the ML meth-

od especially with small samples size.  

4.2. Simulation study of BPI distribution based on mix-

ture and Gaussian copula 

A Monte Carlo simulation study is performed to investigate and 

compare ML and Bayesian estimates of the parameters of BPI 

distribution based on Mixture and Gaussian copula. The compari-

son and the performances of the estimates are studied mainly with 

respect to their RMSE. These are illustrated in Tables (3), and (4) 

using different samples sizes n=10, 25, 50, 100 and the different 

values of the parameters, with 𝛽1𝑎𝑛𝑑 𝛽2  set to minimum fixed 

values and copula parameter𝜌 = (0.70, 0.80). For each sample of 

generated data, the BPI distribution is fitted and the ML and 

Bayesian estimate of the parameters of BPI distribution based on 

mixture and Gaussian copula are obtained. Then, the average es-

timates along with their relative mean square error (RMSE) over 

1000 replication are calculated.  

 
Table 3: MLE and Bayesian Estimation of BPI Parameters Based on Mix-

ture and Gaussian Copula and with Their Mean, RMSE with 𝜌 = 0.70  for 

Different Value of Parameters 

Sample size Parameters 

MLE 

 

Bayesian estimation 

 
Mean RMSE Mean RMSE 

n=10 

�̂�1 1.2578 0.0923 1.2097 0.0195 

�̂�2 1.1557 0.0913 1.1089 0.0190 

�̂� 0.7003 0.0287 0.8151 0.2697 

n=25 

�̂�1 1.2431 0.0843 1.2030 0.0043 

�̂�2 1.1413 0.0832 1.1028 0.0043 

�̂� 0.7001 0.0109 0.7638 0.1453 

n=50 

�̂�1 1.2296 0.0453 1.2015 0.0015 

�̂�2 1.1296 0.0477 1.1013 0.0016 

�̂� 0.7004 0.0059 0.7370 0.0818 

n=100 
�̂�1 1.2179 0.0251 1.2001 0.0002 

�̂�2 1.1176 0.0260 1.1001 0.0002 

�̂� 0.9680 0.0066 0.7363 0.0763 

 
Table 4: RMSE for BPI Distribution Based on Gaussian Copula and 

RMSE for BPI Distribution Based on Mixture and Gaussian Copula 

𝛼1 = 1.2 𝛼2 = 1.1 𝜌 = 0.80  

The 

Mod
els 

n 

RMSE 

MLE 
Bayesian estima-
tion AIC BIC 

�̂�1 �̂�2 �̂� �̂�1 �̂�2 �̂� 

BPI 

base

d on 
Gau

ssia

n 
cop-

ula 

50 
.07

76 

.06

96 

.00

57 

.03

89 

.02

96 

.00

15 

520.

6 

524.

4 

100 
.04

30 

.04

53 

.00

40 

.01

04 

.01

14 

.00

18 

1039

.9 

1045

.1 

BPI 
base

d on 

Gau
ssia

n 

cop-
ula

& 

mix-

ture 

50 
.04
55 

.03
90 

.00
68 

.00
05 

.00
05 

.06
86 

511.
5 

515.
4 

100 
.02

54 

.03

81 

.00

66 

.00

03 

.00

03 

.08

03 

1018

.6 

1023

.8 

 
Table 5: MLE and Bayesian Estimation of BPI Parameters Based on Mix-

ture and Gaussian Copula and with Their Mean, RMSE with 𝜌 = 0.80  for 

Different Value of Parameters 

Sample size Parameters 

MLE 

 

Bayesian estimation 

 
Mean RMSE Mean RMSE 

n=10 

�̂�1 1.2798 0.1583 1.2097 0.0544 

�̂�2 1.1618 0.1612 1.1088 0.0188 

�̂� 0.7930 0.0268 0.8435 0.0925 

n=25 
�̂�1 1.2431 0.0842 1.2046 0.0053 

�̂�2 1.1409 0.0830 1.1042 0.0054 

�̂� 0.8016 0.0087 0.7884 0.0268 

n=50 

�̂�1 1.2299 0.0455 1.1999 0.0005 

�̂�2 1.1163 0.0390 1.0999 0.0005 

�̂� 0.7976 0.0068 0.7587 0.0686 

n=100 
�̂�1 1.2182 0.0254 1.1997 0.0003 

�̂�2 1.1116 0.0381 1.0997 0.0003 

�̂� 0.7988 0.0066 0.7497 0.0803 

 

The results in Tables3and 4 indicate that for all selected values of 

𝛼1, 𝛼2  and𝜌 , the RMSE of the estimates �̂�1,�̂�2,  and �̂�  become 

smaller as the sample size increases. The copula parameters at𝜌 =
0. 80provides better estimate of the parameters copula to 𝜌 = 0.7. 

Also, the Bayesian method provides better and more accurate 
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estimates for the parameters compared to the ML method especial-

ly with small samples sizes. 

4.3. Models comparison  

The performance of the two proposed BPI distributional models 

are compared based on RMSE. In addition, Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) are 

calculated.  

The results are reported in Table 5 indicate that the BPI distribu-

tion based on mixture and Gaussian copula have lower RMSE, 

AIC, and BIC values compared to BPI distribution based on 

Gaussian copula. Therefore, we conclude that BPI distribution 

based on mixture and Gaussian copula is more flexible compared 

to BPI based on Gaussian copula. 

4.5. Data analysis 

This data set represents the two different measurements of stiff-

ness, ‘Shock’ and ‘Vibration’ of each of 30 boards. Here 𝑇1 repre-

sents the first measurement (Shock) involves sending a shock 

wave down the board and 𝑇2 represents the second measurement 

(Vibration) is specified while vibrating the board. The data set was 

originally from William Galligan, and it has been reported in 

Johnson et al [28], and illustrated in Table6.The PI distribution is 

fitted to the marginals. 

 
Table 6: Summary for the Estimation and the Test for Comparisons Two 

Models 

Model Method �̂�1 �̂�2 �̂� AIC BIC 

BPI based 

on Gauss-

ian copu-

la 

MLE 2.817 2.281 0.975 

162.9042 167.1078 
Bayesian  2.767 2.272 0.970 

BPI based 
on Gauss-

ian copu-

la and 
Mixture 

MLE 2.706 2.226 0.984 

136.5605 140.7641 
Bayesian  2.784 2.187 0.951 

 
Table 7: Two Different Stiffness Measurements of 30 Boards 

no

. 

Shoc

k 

Vibra-

tion 

no

. 

Shoc

k 

Vibra-

tion 

no

. 

Shoc

k 

Vibra-

tion 

1 1889 1651 2 2403 2048 3 2119 1700 
4 1645 1627 5 1976 1916 6 1712 1713 

7 1943 1685 8 104 1820 9 2983 2794 

10 1745 1600 11 1710 1591 12 2046 1907 
13 1840 1841 14 1867 1685 15 1859 1649 

16 1954 2149 17 1325 1170 18 1419 1371 

19 1828 1634 20 1725 1594 21 2276 2189 
22 1899 1614 23 1633 1513 24 2061 1867 

25 1856 1493 26 1727 1412 27 2168 1896 

28 1655 1675 29 2326 2301 30 1490 1382 

 

Table 7 shows the Kolmogorov-Simrnov test along with associat-

ed p-values for the two marginals. 

 
Table 8: The K-S Test for the Data 

The sample p-value K-S 

𝑡1(Shock) 0.06705 0.2318 

𝑡2(Vibration) 0.05274 0.2462 

 

The BPI distribution based on the Gaussian copula and the BPI 

distribution based on mixture and Gaussian copula are fitted and 

the results are shown in Table (8). The AIC and BIC values in 

Table (8) indicate that 

The BPI distribution based on mixture and Gaussian copula pro-

vides better fit for the data compared to BPI model based on 

Gaussian copula. 

5. Summary remarks 

In this article, we proposed two new bivariate distributions the 

first one is BPI distribution based on Gaussian copula and the 

second one is BPI distribution based on mixture and Gaussian 

copula. Parameter estimates of the proposed new BPI distributions 

are obtained using ML and Bayesian methods. Monte Carlo simu-

lation study and analyses of real data are conducted to show the 

usefulness of the proposed distributions. We can conclude that the 

BPI distribution based on mixture and Gaussian copula is more 

flexible and performed better than the BPI distribution based on 

Gaussian copula. 
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Appendix 

Algorithm 1: fisher information matrix 

I−1(θ) =

(

 
 
 
 
 
 

n

α1
2

0
∂2l

∂α1 ∂β1

∂2l

∂α1 ∂β2

∂2l

∂α1 ∂ρ

0
n

α2
2

∂2l

∂α2 ∂β1

∂2l

∂α2 ∂β2

∂2l

∂α2 ∂ρ

∂2l

∂α1 ∂β1

∂2l

∂α2 ∂β1

∂2l

∂β1
2

∂2l

∂β1 ∂β2

∂2l

∂β1 ∂ρ

∂2l

∂α1 ∂β2

∂2l

∂α2 ∂β2

∂2l

∂β1 ∂β2

∂2l

∂β2
2

∂2l
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∂2l

∂α2 ∂ρ

∂2l

∂β1 ∂ρ

∂2l

∂β2 ∂ρ

∂2l

∂ρ2 )

 
 
 
 
 
 

−1

 , 

 

Where I is the asymptotic Fisher information matrix. 

The second partial derivatives will be simplified as follows: 

 

I11 = −E [
∂2l

∂α1
2] =

n

α1
2 , I 12 = I21 = −E [

∂2l

∂α1 ∂α2
] = 0,  

 

Ii3 = I3i = −E [
∂2l

∂α1 ∂β1
] =

n

∑ ln(t1i)
n
i=1 −

1
β1

 ,  

 

i = 1,2  
 

I33 = −E [
∂2l

∂β1
2],  

 

Ii4 = I4i = −E [
∂2l

∂α1 ∂β2
] =

n

∑ ln(t2i)
n
i=1 −

1

β2

, i = 1,2,  

 

I44 = −E [
∂2l

∂β2
2]  

 

I22 = −E [
∂2l

∂α2
2] =

n

α2
2 ,  

 

I34 = I43 = −E [
∂2l

∂β1 ∂β2
] = 0  

 

 Ii5 = I5i = −E [
∂2l

∂α1 ∂ρ1
] = 0 , i = 1,2,3,4, I55 = −E [

∂2l

∂ρ2
].  

Algorithm 2: 

1)  Introduce a non-negative latent variable τ, such that 

 

π(Uj, τ) ∝ π(Uj|τ). π(τ) ∝ e
−ujie−

xi
2

1

e−
xi
2

  

 

I (τ < e−
xi
2 ) I (uji > −αj ln (

βj

tji
)) , j=1, 2, i=1, 2… n. 

 

2)  Choose the initial values of Uj to be  

 

uji = [−αj ln (
βj

tji
)] + 1, j = 1,2 , i=1, 2… n. 

 

3)  Sample τ from Uniform(0, e
−xi
2 ). 

 

π(τ) =
1

e−
xi
2

I (τ < e−
xi
2 )  

 

• 0 < 𝜏 < e−
xi
2  

 

xi < −2 ln(τ)  
 

Where 

 

 xi =
yji
2+y−ji

2 −2ρyjiy−ji

1−ρ2
. 

 

( 1 − ρ2) xi = yji
2 + y−ji

2 − 2ρyjiy−ji − 2 ln(τ) ( 1 − ρ
2) = yji

2 +

y−ji
2 − 2ρyjiy−ji  

 

= yji
2 − 2yji (y−ji(ρ)) + y−ji

2 + (y−ji
2 (ρ2)) − (y−ji

2 (ρ2))  

 

 −2 ln(τ) ( 1 − ρ2) = (yji − ρy−ji)
2
+ y−ji

2 − (y−ji
2 (ρ2))  

 

(yji − ρy−ji)
2
= −2( 1 − ρ2) [ln(τ) +

y−ji
2

2
]  

 

(yji − ρy−ji)
2
= ±√−2( 1 − ρ2) [ln(τ) +

y−ji
2

2
]  

 

Let 

 

qji = √−2( 1 − ρ
2) [ln(τ) +

y−ji
2

2
]  

 

yji = ρy−ji ± qji  

 

let δ1i = ρy−ji − qji , δ2i = ρy−ji + qji 

 

• uji > −αj ln (
βj

tji
) 

 

Where 

 

uji > F
−1[ϕ(yji)],  

 

yji~N(0, ( 1 − ρ
2)(1))  

 

Then 

 

Let 

 

Aji = max [−αj (ln (
βj

tji
)) , Fuji

−1[ϕ(δ1i)]], Bji = Fuji
−1[ϕ(δ2i)] 

 

Then 
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(Aji < uji < Bji)  

 

4) Sample uji from f(uji|τ) 

 

π(uji|τ) ∝ e
−uji I(Aji < 𝑢ji < Bji)  

 

k∫ π(uji|τ) duji

Bji

Aji

= 1 

 

k−1 = ∫ π(uji|τ) duji
Bji
Aji

= ∫ e−uji duji
Bji
Aji

= e−Aji − e−Bji  

 

k = (e−Aji − e−Bji)
−1

  

 

π(uji|τ) = (e
−Aji − e−Bji)

−1
e−uji ,  

 

I(Aji < 𝑢ji < Bji)  

 

Find the Cdf of Uj 

 

F(Uj) = ∫ π(uji|τ) duji
uji
Aji

= ∫ (e−Aji − e−Bji)
−1
e−uji duji

uji
Aji

=

(e−Aji − e−Bji)
−1
×(e−Aji − e−uji), j = 1,2, i = 1,2, … , n  

 

π(Uj|τ) is a double truncated distribution that can be sampled by 

using the inverse distribution function method. Then, for v~Uni-

form(0,1) 
• Generating V~Uniform(0,1) 
 

V = F(uji) =
(e
−Aji− e

−uji)

(e
−Aji− e

−Bji)
  

 

(e−Aji − e−Bji)V = (e−Aji − e−uji)  
 

e−uji = e−Aji − (e−Aji − e−Bji)V  

 

uji = − ln[e
−Aji − (e−Aji − e−Bji)V], j=1, 2 , i=1, 2… n. 


