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Abstract 
 

In this paper, we introduce a new four parameter continuous model, called the beta compound Rayleigh (BCR) distribution that extends 

the compound Rayleigh distribution. Basic properties of the proposed distribution such as; mean, variance, coefficient of variation, raw 

and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and 

Zenga curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum likelihood estimates and 

the observed information matrix for the model parameters. Two real data sets are used to illustrate the usefulness of the new model. 
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1. Introduction 

The compound Rayleigh (CR) distribution plays a vital role for 

modeling and analysis in different areas of statistics, including 

reliability study and life time data, especially in biological and 

medical science. In the last couple of decades, statisticians have 

much attention to study this distribution. Abushal [1] applied the 

maximum likelihood and Bayes approaches to estimate 

parameters, reliability and hazard functions of the CR distribution 

based on progressive first-failure censoed data. Shajaee et al. [2] 

obtained the empirical Bayes estimates for parameter and 

reliability function associated with the CR distribution under 

record data. Barot and Patal [3] compared the maximum 

likelihood and Bayes estimates of the reliability parameters 

corresponding to the CR distribution under progressive type-ii 

censored data. Abd-Elmougod and Mahmoud [4] studied the CR 

distribution with constant partially accelerated life tests under an 

adaptive type-ii propgressive hybrid censored data. 

The random variable X with CR distribution has cumulative 

distribution function (cdf) given by 

 
2G(x; , ) 1 ( x ) , x 0, , 0                                    (1) 

 

where   and   are the scale and shape parameters respectively. 

The probability density function (pdf) corresponding to Eq. (1) 

takes the form 

 
2 ( 1)g(x; , ) 2 x( x ) , x 0, , 0                                     (2) 

 

This study aims to suggest a new model namely the beta 

compound Rayleigh (BCR) distribution and studied some of its 

statistical properties. Moreover, the parameters of the new 

distribution are estimated by using the method of maximum 

likelihood. Two real data sets are used to show the effectiveness of 

the new distribution.  

The rest of this paper is as follows. In Section 2, we define the 

beta compound Rayleigh (BCR) distribution and obtain some 

associated reliability functions . The limit of the BCR distribution 

is studied in Section 3. The expansion of BCR distribution is 

discussed in Section 4. In Section 5, some statistical properties of 

the new model are discussed. In Section 6, the maximum 

likelihood estimates and the observed information matrix are 

obtained. In Section 7, two applications of the new model are 

applied. Some concluding remarks have been given in the last 

Section.  

2. The BCR distribution 

In this section, we present the beta compound Rayleigh distribu-

tion and its sub-models. Some reliability functions associated to 

this distribution are also discussed.  

Let G(x) be the cdf of any random variable X . Eugene et al. [5] 

introduced a new procedure for building a new distribution from 

G(x) known as the beta generalized class of distribution given by  

 
G(x)

a 1 b 1
G(x)

0

1
F(x) I (a, b) u (1 u) du

(a,b)

   


                                 (3) 

 

where a 0  and b 0  are the additional shape parameters for the 

F distribution, y yI (a,b) (a,b) (a,b)   is the incomplete beta 

function ratio, 
y

a 1 b 1
y

0

(a, b) u (1 u) du    is the incomplete beta 

function, (a,b) (a) (b) (a b)      is the beta function and (.) is 

the gamma function. The corresponding pdf for Eq. (3) is given by 

 

   
a 1 b 11

f (x) g(x) G(x) 1 G(x)
(a, b)

 
 


                                          

(4) 
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where g(x) G(x) x   is the baseline density function. Replacing 

Eq. (1) in Eq. (3), we obtain a new distribution, so-called the beta 

compound Rayleigh (BCR) distribution with cdf given from 

 
21 ( x )

a 1 b 1

0

1
F(x; , ,a,b) u (1 u) du

(a,b)

  
    


 

 

Or 

 
2

2

1 ( x )
[1 ( x ) ]

(a,b)[ ]
F(x; , ,a,b) I (a,b)

(a,b)

 

 

 
 


   


                    (5) 

 

The pdf corresponding to Eq. (5) is given by 

 
b a 1

2 (b 1) 22
f (x; , ,a, b) x( x ) 1 ( x )

(a,b)

 
             

 
              (6) 

 

for x 0, 0, 0, a 0      and b 0 . 

For the survival analysis, the reliability function R(x) , hazard 

function h(x) , inverse hazard function h (x)r  and cumulative 

hazard function H(x)  for the BCR distribution are givenrespec-

tivelyas follows: 

 
2[1 ( x ) ](a,b)

R(x) 1 F(x) 1 ,
(a,b)

  
   


                                           (7) 

 

b 2 (b 1)f (x)
h(x) 2 x( x )

R(x)

        

 

                     
2

a 1
2

[1 ( x ) ]

1 ( x )

(a,b) (a,b) 


 

 

    
 

 
                                     (8) 

 

b 2 (b 1)f (x)
h (x) 2 x( x )r

F(x)

        

 

                       
2

a 1
2

[1 ( x ) ]

1 ( x )

(a,b) 


 

 

    
 


                                           (9) 

 

And 

 

2[1 ( x ) ](a,b)
H(x) ln R(x) ln 1

(a,b)

   
     

 
                                (10) 

 

2.1. Sub-models 

The following distributions can be obtained as special cases of the 

BCR distribution: 

1) If a 1, Eq. (6) reduces to the compound Rayleigh distribu-

tion, CR ( b,  ).  

2) When a b 1,  Eq. (6) represents the compound Rayleigh 

distribution, CR ( ,  ). 

3) Suppose a 1,   then we obtain the compound Rayleigh 

distribution, CR ( b,1 ).  

4) Setting a b 1,    the BCR distribution is reduced to the 

Burr-XII distribution, BXII ( ,2 ). 

5) Assume a b 1,      Eq. (6) becomes the Burr-XII dis-

tribution, BXII ( 2,1 ). 

3. The limit of the BCR distribution 

The limit of the beta compound Rayleigh distribution when x 0  

is 0 and when x  is 0. We can show this by taking the limit of 

Eq. (6) as follows: 

 

   
b

2 (b 1)

x 0 x 0 x 0 x 0

2
lim f (x) lim lim x lim ( x )

(a,b)


 

   

 
     

 

 

                
a 1

2

x 0
lim 1 ( x ) 0






            
 

 

Because 
x 0
lim x 0


  and 
a 1

2

x 0
lim 1 ( x ) 0


 



     
 

. 

 

Similarly, as x , we can observe that by replacing the limit 

x 0  with x , we get  

 

x
lim f (x) 0


  

 

Because 2 (b 1)

x
lim ( x ) 0 


   

. 

 

 
Fig. 1: The pdf of the BCR distribution for different values of the 

parameters. 

 

 
Fig. 2: The cdf of the BCR distribution for different values of the 

Parameters. 
 

4. Expansion for the BCR distribution 

We can expand the cdf and pdf corresponding to the BCR 

distribution in terms of an infinite (or finite) weighted sums of 

cdf's and pdf's of random variables having CR distributions 

respectively. For b is a real non-integer,then we have the series 

representation 
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j
b 1 j

j 0

( 1) (b)
(1 u) u

j! (b j)






 
  

 
                                                           (11) 

 

Therefore, the cdf of BCR distributionin Eq. (5) can be expressed 

as follows: 

 

a jF(x; , ,a,b) z H (x; , )j
j 0


    



                                               (12) 

 

Where 

 
j

j

( 1) (a b)
z

(a j) j! (a) (b j)

  


   
 

 

and H(x; , )  deotes the cdf of CR distribution with parameters 

and  . If b is an integer, then the summation in Eq. (12) is stoped 

at b 1 . 

Likewise, we can express the pdf in Eq. (6) as below 

 

 j
j 0

f (x; , ,a,b) v D x; , (b j)




                                                 (13) 

 

Where 

 
j

j

( 1) (a b)
v

(b j) j! (b) (a j)

  


   
 

 

and  D x; , (b j)   deotes the cdf of CR distribution with 

parameters   and (b j).  If a is an integer, then the summation 

in Eq. (13) is stoped at a 1 . 

 

5. Statistical properties 

In this section, we present a mathematical treatment of the 

proposed distribution such as; mean, variance, coefficient of 

variation, raw and incomplete moments, skewness, kurtosis, 

generating functions, Lorenz, Bonferroni and Zenga curves, Rényi 

of entropy, order statistics and record statistics.  

 

5.1. Raw moments 

Suppose X is a random variable distributed according to BCR 

distribtion, then the raw moments, say r  is given by 

 
b a 1

r r 1 2 (b 1) 2
r

0

2
E(X ) x ( x ) 1 ( x ) dx

(a,b)

  
             

 

 

                 

a 1
(b 1)

2 2
r 1

0

2 x x
x 1 1 1 dx

(a,b)


  




                       

 

 

By using the binomial expansion in the last term of above inte-

grand, we get 

 
[ (b j) 1]

j 2
r 1

r
j 0 0

2 ( 1) a) x
x 1 dx

(a,b) j! (a j)

   






   
          

 

 

Let 

1
2x

z 1


 

    
in the above equation, so we have 

 

rr 2 j 1 (b j) 1 r 22
r

j 0 0

( 1) a)
z (1 z) dz

(a,b) j! (a j)

    



  
   

  
 

 

      
r 2 j

j 0

( 1) a)
(b j) r 2, r 2 1

(a,b) j! (a j)





  
     
  

                              (14) 

 

Substituting r 1,2  in Eq. (14), then we get the mean and variance 

respectively as follows: 

 

 
1 2 j

1
j 0

( 1) a)
(b j) 1 2,3 2

(a,b) j! (a j)





  
     

  
                                   (15) 

 

And 

 

 

 

j

j 0

2
j

j 0

( 1) a)
(b j) 1,2

j! (a j)
v(x)

(a, b) ( 1) a)
(b j) 1 2,3 2

(a,b) j! (a j)









  
    

  
  
     

      
     

           (16) 

 

5.2. Coefficients of variation, skewness and kurtosis 

The coefficients of variation, skewness and kurtosis of the BCR 

distribution are given respectively as follows: 

 

C.V





 

 

     

 

 

 

j

j 0
1 2

2
j

j 0

j
1 2

j 0

( 1) a)
(b j) 1, 2

j! (a j)
(a, b)

( 1) a)
(b j) 1 2,3 2

(a, b) j! (a j)
,

( 1) a)
(b j) 1 2,3 2

j! (a j)













 
   

 


   
     
    


 

    
 

       (16) 

 

 

 

j
1 2

j 03
1 3 2 3 2

j2 1 2

j 0

( 1) a)
(a, b) (b j) 3 2,5 2

j! (a j)

( ) ( 1) a)
(b j) 1, 2

j! (a j)









 
    

  
  

    
     

   

                  (17) 

 

And 

 

 

 

j

j 04
2 2 2

j2

j 0

( 1) a)
(a, b) (b j) 2,3

j! (a j)

( ) ( 1) a)
(b j) 1,2

j! (a j)









 
    

  
  

    
     

   

                             (18) 

 

5.3. Incomplete moments 

Suppose X  is a random variable having the BCR distribution, 

then the thr incomplete moments denoted as rm (z)  can be ob-

tained as follows: 

 
bz

r
r

0

2
m (z) x f (x)dx

(a,b)


 


 

 

           
z a 1

r 1 2 (b 1) 2

0

x ( x ) 1 ( x ) dx
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1
2

rr 2 j 1 (b j) 1 r 22
r

j 0 z
1

( 1) a)
m (z) y (1 y) dy

(a, b) j! (a j) 

    

  
 
 

  
  
  

 

 

Based on the binomial expansion to the last factor, we get 

 

 
  1

2

ri jr 2 1r 2 (b j) i 1
2

r
j 0 i 0 z

1

( 1) (a) r 2 1
m (z) y dy

(a,b) j!i! (a j) r 2 i 

     

   
 
 

   
   
    

 

 

         
 
 

i jr 2 r 2

j 0 i 0

( 1) (a) r 2 1

(a,b) j!i! (a j) r 2 i



 

   
  
    

 

 

          

 

 

r 2 (b j) i
2z

1 1

(b j) i r 2

     
       

   
                                                (19) 

 

5.4. Moment and probability generating functions 

The moment generating function, say xM (t) of the BCR distribu-

tion can be obtained as follows: 

 
b a 1

tx tx 2 (b 1) 2
x

0

2
M (t) E(e ) e x( x ) 1 ( x ) dx

(a,b)

  
           

 

 

Using 
h h

tx

h 0

t x
e

h!





  , then we obtain 

 

 
h h 2 j

x
h 0 j 0

t ( 1) a)
M (t) (b j) h 2,h 2 1

(a,b) h! j! (a j)

 

 

   
      
  

          (20) 

 

Similarly, the probability generating function denoted as [x]M (t)  

of the BCR distribution can be derived as below 

 
b a 1

x x 2 (b 1) 2
[x]

0

2
M (t) E(t ) t x( x ) 1 ( x ) dx

(a,b)

  
           

 

 

Using 
w w

x

w 0

(ln t) x
t

w!





  , then we have 

 
w w 2 j

[x]
w 0 j 0

(ln t) ( 1) a)
M (t)

(a,b) w!j! (a j)

 

 

   
  
  

 

 

           (b j) w 2,w 2 1                                                   (21) 

 

5.5. Lorenz, Bonferroni and Zenga curves 

The Lorenz, Bonferroni and Zenga curves have been used in dif-

ferent fields such as demography, insurance, reliability, medicine 

and economics (for more details see Kleiberand Kotz [6]). Oluye-

deand Rajasooriya [7] defined the Lorenz FL (x) , Bonferroni

 B F(x) and Zenga A(x)  curves respectively as follows: 

x

F
0

1
L (x) t f (t) dt,

E(x)
   

 

 
x

F

0

1 L (x)
B F(x) t f (t)dt

F(x)E(x) F(x)
   

 

And 

M (x)
A(x) 1

M (x)





 
   

  

 

 

where 
x

0

1
M (x) t f (t)dt

F(x)

    and 
x

1
M (x) t f (t)dt

1 F(x)


  


 

 

Therefore, these quantities for the BCR distribution are obtained 

below 

 

1
F

2

L (x) ,





                                                                               (22) 

 

 
2

1

[1 ( x ) ] 2

(a, b)
B F(x)

(a, b)  

 

 

                                                  (23) 

 

And 

 

1 3

4

A(x) 1
 

 


                                                                           (24) 

 

Where 

 
1

(b j) h
j h 2 2

1
h 0 j 0

a 1 1 2 ( 1) x
1 1 ,

1j h
(b j) h

2

 
        

 

 
     

                        

 

 

j
2

j 0

a 1 1 3
( 1) (b j) , ,

j 2 2





   
          

  
 

 

23 [1 ( x ) ](a,b) (a,b)      

 

And 

 

j
12 2

j 0
4 [1 ( x ) ] x

1

a 1 1 3
(a,b) ( 1) (b j) ,

j 2 2



 


   

 
 

   
          

  
 

 

5.6. Rényi entropy 

The concept of entropy has been successfully used in different 

fields including statistic, queuing theory and reliability estimation. 

The entropy is a measure the variation of the uncertainty corre-

sponding to the distribution of a random variable. The Rényi en-

tropy is defined as 

 

 R

1
I ( ) log I( )

1
  

 
,  

 

where I( ) f (x)dx, 0     

 

I( ) f (x)dx, 0     and 0  . 

 

Using Eq. (6) yields 

 
b (a 1)

2 (b 1) 2

0

2
I( ) x ( x ) 1 ( x ) dx

(a,b)

     
    



         
 

 

 
 

 
j1 2

( 1) 2
j 0

( 1) (a 1) 12
( b j) ( 1) 2,( 1) 2

j! (a 1) j 1(a,b)

  

 


    
       

     
 

 

Therefore, the Rényi entropy is given below 

 



International Journal of Advanced Statistics and Probability 61 

 

 

 

  

R

j 0

1
log(2) log( )

2

1 1
I ( ) log( ) log (a,b)

1 2

log ( b j) ( 1) 2, ( 1) 2




  
      
  
    

        
    

 
          
  

                 (25) 

 

5.7. Order statistics 

Order statistics play an important role in probability and statistics. 

Let 1,n 2:n n:nx x ,... x  be the ordered sample from a continuous 

population with pdf f (x) and cdf F(x) . The pdf of k:nX , the thk

order statistics is given by 

   
k:n

k 1 n k
X

n!
f (x) f (x) F(x) 1 F(x) , r 1, 2,..., n

(k 1)!(n k)!

 
  

 
 

 

Then, the pdf the thk order BCR random variable k:nX can be 

obtained by using Eqs.(5) and (6) in above equation to be  

k:n

b a 1
2 (b 1) 2

X 1

2n!
f (x) I x( x ) 1 ( x )

(k 1)!(n k)!

 
           

  
       (26) 

 

Where 

 

2

k j 1
n k [1 ( x ) ]j

1 k j
j 0

(a,b)n k
I ( 1)

j (a,b)

 

 
  




 
   

 
 

 

Therefore, the pdf the th1 order BCR random variable 1:nX is given 

by 

 

1:n

a 1
b 2 (b 1) 2

X 2f (x) 2n I x( x ) 1 ( x )


            
 

               (27) 

 

Where 

 

2

j
n 1 [1 ( x ) ]j

2 j 1
j 0

(a,b)n 1
I ( 1)

j (a,b)

   




 
   

 
 

 

Also, the pdf the thn order BCR random variable n:nX is given 

from 

 

n:n

a 1
b 2 (b 1) 2

X 3f (x) 2n I x( x ) 1 ( x )


            
 

                (28) 

 

Where 

 

2

n n 1
3 [1 ( x ) ]

I (a,b) (a,b) 

 

 
    

 

Moreover, the joint distribution of two order statistics k:n s:nX X  

is given by 

 

 

   

k:s:n

k 1
X 1 2 1 2 1

s k 1 n s
2 1 2

n!
f (x , x ) f (x )f (x ) F(x )

(k 1)!(s k 1)!(n s)!

F(x ) F(x ) 1 F(x )



  


   

  

 

 

Then, for the BCR distribution we obtain 

 

k:s:n

2 2 b (b 1)
2 2

X 1 2 4 1 2 1 2

4n!
f (x , x ) I x x ( x )( x )

(k 1)!(s k 1)!(n s)!

         
    

 

 

a 1 a 1
2 2
1 21 ( x ) 1 ( x )

 
             

   
                                   (29) 

 

Where 

 

n s s k 1
i j

4
i 1 j 0

n s s k 1
I ( 1)

i j

  


 

    
     

  
 

 

     
2 2

1 2

s i (k j 1)

[1 ( x ) ] [1 ( x ) ]

s i

k j 1
(a,b) (a,b)

(a,b)

   

   

   



 
 




 

 

5.8. Record statistics 

Record values and the corresponding statistics are of interest and 

important in many real life applications including meteorological 

analysis, industrial stress testing, hydrology and athletic events. 

Let 1 2 nX ,X ,...,X be a sequence of independent and identically 

distributed (iid) random variables having cdf F(x)  and pdf f (x) . 

Set  n 1 2 nY max(min) X ,X ,...,X for n 1 . We call jX  is an upper 

(or lower) record value of this sequence if j j 1Y ( ) Y , j 1   . Thus 

jX  will be named an upper (or lower) record value if its value is 

greater (or lower) than all previous observations. 

The pdf of U(r)X , the thr upper record is given as ( see Ahsanullah 

[8] and Arnold et al. [9]) 

 

 
U ( r )

r 1
X

1
f (x) R(x) f (x)

(r 1)!





 

 

Where 

 

 R(x) ln 1 F(x)    

 

Then, the pdf the thr upper record BCR random variable U(r)X can 

be obtained to be 

 

U ( r )
5

b a 1
r 1 2 (b 1) 2

X

2
f (x) I x( x ) 1 ( x )

(r 1)! (a, b)

 
            

  
     (30) 

 

Where 

 

2

2

5
[1 ( x ) ]

(a,b)
I ln

(a,b) (a,b)  

 
  

   

 

 

Furthermore, the joint distribution of the first n  upper record 

values  U(1) U(2) U(n)x x , x ,..., x  is given by (see Ahsanullah [8]) 

 

n 1 U(i)
1,2,...,n U(1) U(2) U(n) U(n)

i 1 U(i)

f (x )
f (x , x ,..., x ) f (x )

1 F(x )





 


 

 

Consequently, for the BCR we get 

 

 
n n n b

1,2,..., n U(1) U(2) U(n) 6 7 8

2
f (x , x ,..., x ) exp I I I

(a, b)

 
  


              (31) 

 

Where 

 
n n

2
6 i i

i 1 i 1

I ln x (b 1) ln( x ),
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n

2
7 i

i 1

I (a 1) ln 1 ( x ) 



        
 

 

And 

 

2

n 1

8 [1 ( x ) ]
i 1

I ln (a, b) (a, b) 



 


       

 

Moreover, the pdf of L(r)X , the thr lower record is given as (see 

Ahsanullah [8] and Arnold et al. [9]) 

 

 
U ( r )

r 1
X

1
f (x) H(x) f (x)

(r 1)!





 

 

Where 

 

 H(x) ln F(x)  

 

So, for the BCR distribution we have 

 

L( r )

b a 1
r 1 2 (b 1) 2

X 9

2
f (x) I x( x ) 1 ( x )

(r 1)! (a,b)

 
            

  
     (32) 

 

Where 

 

29 [1 ( x ) ]I ln (a,b) ln (a,b)       

 

In addition, the joint distribution of the first n  lower record values

 L(1) L(2) L(n)x x , x ,..., x  is given by (see Ahsanullah [8]) 

 

n 1 L(i)
1,2,...,n L(1) L(2) L(n) L(n)

i 1 L(i)

f (x )
f (x , x ,..., x ) f (x )

F(x )





   

 

Then, for the new model we obtain 

 

 n n n b
1,2,...,n L(1) L(2) L(n) 6 7 10f (x ,x ,..., x ) 2 exp I I I                    (33) 

 

Where 

 

2

n 1

10 [1 ( x ) ]
i 1

I ln (a, b) 



 


   

 

6. Estimation of parameters 

In this section, we discuss the maximum likelihood estimates 

(MLEs) for the parameters of the BCR distribution. Let

1 2 nx , x ,..., x  be an independent random sample from the this distri-

bution, then the corresponding log-likelihood function is given by 

 

     nln(2) nln( ) n bln( ) nln (a) nln (b) nln (a b)            l  

 

     
n n n

i i i
i 1 i 1 i 1

ln(x ) (b 1) ln(m ) (a 1) ln(w )
  

                                    (34) 

 

Where 2
i im x   and i iw 1 m    

 

The components of the score vector , , ,
a b

    
   

    

l l l l
l are 

given below: 

 

n n
i

i
i 1 i 1 i i

1 ln( ) ln(m )
n bln( ) b ln(m ) (a 1) ,

m w




 

    
               

l
         (35) 

 
2n n

1 1 i
i 1

i 1 i 1 i i

n b x
b 1 m (a 1) ,

m w

 


 

  
         

    

l
                   (36) 

 
n

(0) (0)
i

i 1

n (a) (a b) ln(w )
a 

         

l
                                    (37) 

 

And 

 

 
n

(0) (0)
i

i 1

n ln( ) (b) (a b) ln(m )
b 

          

l
                      (38) 

 

where (n) (x)  is the polygamma function. The MLEs, say 

ˆˆˆ ˆ( , ,a,b)   of ( , ,a,b)   can be obtained by solving the system of 

nonlinear equations (35) through (38). These equations cannot be 

solved analytically and it needed iterative techniques such as 

Newton-Raphson algorithm. 

For the purposes of interval estimation and testing of hypotheses 

for the model parameters ( , ,a,b)  , we derive the 4 4 observed 

information matrix  wvJ( ) J   (For w,v , ,a,b  ( 

 

To be 

 

a b
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J J J J
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Whose elements are obtained in Appendix A. 

 

7. Applications 

In this section, we present two applications of the BCR distribu-

tion to two real data sets. The first data set consists of 63 observa-

tions of the strengths of 1.5 cm glass fibers which obtained by 

workers at the UK National Physical Laboratory. The data are: 

0.55, 0.74, 0.77, 0.81, 0.84,0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 

1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49,1.49, 1.50, 1.50, 

1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 

1.61,1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 

1.70, 1.70, 1.73, 1.76, 1.76,1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 

2.00, 2.01, 2.24. These data have also been used by Smith & 

Naylor [10] and Merovci et al. [11].The second data set represents 

the relief times of 20 patients receiving an analgesic which are 

given by Gross and Clark [12]. The data are: 1.1, 1.4, 1.3, 1.7, 1.9, 

1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 

2.These data set is previously studied by Rodrigues et al. [13] and 

Mead [14]. 

We use these two data sets to compare the fit of the new model, 

beta compound Rayleigh (BCR) with six models: compound Ray-

leigh (CR), Rayleigh (R), Burr-XII (BXII), generalized Rayleigh 

(GR), transmuted generalized Rayleigh (TGR) (Morovci[15]) and 

exponentiated transmuted generalized Rayleigh (ETGR) (Afify et 

al. [16]). 

First, we derive the maximum likelihood estimates (MLEs) for 

each model and then comparing the results withinsome goodness-

of-fit statistics AIC (Akaike information criterion), AICC (cor-

rected Akaike information criterion), CAIC (consistent Akaike 

information criterion) and BIC (Bayesian information criterion). 

The better model corresponds to smaller AIC, AICC, CAIC and 

BICvalues.  

Where 

 

2k(k 1)ˆAIC 2k 2 (.), AICC AIC
n k 1


   

 
l  

 

And 
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2kn ˆ ˆCAIC 2 (.), BIC k log(n) 2 (.)
n k 1

   
 

l l Where ˆ(.)l  

 

Denotes the log-likelihood function evaluated at the MLEs, k  is 

the number of parameters, and n  is the sample size. The MLEs 

and the values of AIC , AICC , CAIC and BIC displayed in Tables 

(1-2). 

 

 
Table 1: MLEs for BCR, CR, R, BXII, GR, TGR and ETGR Models and the Statistics AIC, AICC, CAIC And BIC; First Data Set 

Model 
Estimates Statistics 

̂  ̂  â  b̂  ˆ2 l  AIC  AICC  CAIC  BIC  

BCR 21.907 332.532 5.067 30.558 41.848 49.848 50.538 50.538 58.421 

CR 35.228 10  41.241 10  -- -- 99.592 103.592 103.792 103.792 107.878 

R -- 1.187 -- -- 159.841 161.841 161.906 161.906 163.984 

BXII 0.321 7.482 -- -- 97.442 101.442 101.642 101.642 105.729 

GR 5.486 0.987 -- -- 47.858 51.858 52.058 52.058 56.144 
TGR 5.372 0.932 0.312 -- 49.319 55.319 55.725 55.725 61.748 

ETGR 1.937 0.947 0.262 2.993 50.506 58.506 59.196 59.196 67.079 

 
Table 2: MLEs for BCR, CR, R, BXII, GR, TGR and ETGR Models and the Statistics AIC, AICC, CAIC and BIC; Second Data Set 

Model 

Estimates Statistics 

̂  ̂  â  b̂  ˆ2 l  AIC  AICC  CAIC  BIC  

BCR 5.841 1.699 58.076 0.421 30.81 38.81 41.477 41.477 42.793 
CR 201.728 819.593 -- -- 44.985 48.985 49.691 49.691 50.977 

R -- 2.041 -- -- 85.76 87.76 87.982 87.982 88.755 

BXII 0.018 95.12 -- -- 42.415 46.415 47.12 47.12 48.406 
GR 3.246 0.691 -- -- 36.805 40.805 41.51 41.51 42.796 

TGR 3.329 0.635 0.592 -- 35.424 41.424 42.924 42.924 44.412 

ETGR 22.403 0.691 
94.11 10  0.145 36.805 44.805 47.471 47.471 48.787 

 

From Tables 1 and 2, we can notice that the BCR model has the 

smallest values for the AIC, AICC, CAIC and BIC statistics be-

tween all fitted distributions. Consequently, we can deduct that the 

BCR distribution can provide a significantly better fit than the 

other models. 

 

8. Conclusion 

This paper introduces a new distribution namely the beta com-

pound Rayleigh (BCR) distribution which generalizes the com-

pound Rayleigh (CR) distribution. Important properties of the new 

distribution are studied including the mean, variance, coefficient 

of variation, raw and incomplete moments, skewness, kurtosis, 

moment and probability generating functions, reliability, hazard, 

reverse hazard and cumulative hazard functions, Lorenz, Bonfer-

roni and Zenga curves, Rényi of entropy, order statistics and rec-

ord statistics. The parameters of the new distribution are estimated 

by using the maximum likelihood criteria and the observed Fisher 

information matrix is derived. Two real data sets are used to show 

that the new model can present a better fit than some other known 

distributions. 
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Appendix A 

The elements of the observed information matrix are given below 
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