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Abstract

In this paper, we introduce a new four paramter continuous model, called the beta compound Rayleigh
(BCR) distribution that extends the compound Rayleigh distribution. Basic properties of the proposed
distribution such as; mean, variance, coefficient of variation, raw and incomplete moments, skewness,
kurtosis, moment and probability generating functions, reliability, analysis, Lorenz, Bonferroni and Zenga
curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum
likelihood estimates and the observed information matrix for the model parameters. Two real data sets are
used to illustrate the usefullness of the new model.

Keywords: Beta distribution; Compound Rayleigh distribution; Maximum likelihood estimation; Order

Statistics; Record Statistics.

1. Introduction

The compound Rayleigh (CR) distribution plays
a vital role for modelling and analysis in
different areas of statistics including reliability
study and life time data espically in biological
and medical science. In the last couple of
decades, statisticans have much attention to
study this distribution. Abushal [1] applied the
maximum likelihood and Bayes approches to
estimate parameters, reliability and hazard
functions of the CR distribution based on
progressive first-failure censord data. Shajaee et
al. [2] obtained the empirical Bayes estimates for
parameter and reliability function associated to
the CR distribution under record data. Barot &
Patal [3] compared the maximum likelihood and
Bayes estimates of the reliability parameters
corresponding to the CR distribution under
progressive  type-ii censored data. Abd-
Elmougod & Mahmoud [4] studied the CR
distribution with constant partially accelerated
life tests under an adaptive type-ii propgressive
hybrid censored data.

The random variable X with CR distribution has
cumulative distribution function (cdf) given by

G(X;a,0)=1-0"(0+x*)*, x>0 a,0>0

@)

where 6 and o« are the scale and shape
parameters respectively. The probability density
function (pdf) corresponding to Eq. (1) takes the
form

g(x;a,0) =220 (0+x2) D x >0,0,6 >0
2

This study aims to suggest a new model namely
the beta compound Rayleigh (BCR) distribution
and studied some of its statistical properties.
Moreover, the parameters of the new distribution
are estimated by using the method of maximum
likelihood. Two real data sets are used to show
the effectiveness of the new distribution.

The rest of this paper is as follows. In Section 2,
we define the beta compound Rayleigh (BCR)
distribution and obtain some associated
reliability functions . The limit of the BCD
distribution is studied in Section 3. The
expansion of BCD distribution is discussed in
Section 4. In Section 5, some statistical
properties of the new model are discussed. In
Section 6, the maximum likelihood estimates and
the observed information matrix are obtained. In
Section 7, two applications of the new model are
applied. Some concluding remarks have been
given in the last Section.

2. The Beta Compound Rayleigh
Distribution

In this section, we present the beta compound
Rayleigh distribution and its sub-models. Some
reliability functions associated to this distribution
are also discussed.

Let G(x) be the cdf of any random variable X .
Eugene et al. [5] introduced a new procedure for
building a new distribution from G (X ) known as
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the beta generalized class of distribution given
by
G(x)

I u?t@1-u)*tdu
0

1

F(x)=I by=——
(x)=lgx)(@b) Bab)
®)

where a>0 and b >0 are the additional shape

parameters  for  the F distribution,

I, (@b) =4, (ab)/B@b) is the incomplete

beta function ratio,
y

B, (ab) = I utl(@-u)*Yduis the incomplete
0

beta function, S(a,b)=T(@)'(b)/T'(@+b)is the

beta function and T°(.)is the gamma function.

The corresponding pdf for Eq.(3) is given by

1

a-1 b-1
= mg (x )[G (x )] [1—G (x )]

f(x)
4)

where g(Xx)=0G(x)/oX is the baseline density
function. Replacing Eqg. (1) in Eq. (3), we obtain
a new distribution, so-called the beta compound
Rayleigh (BCR) distribution with cdf given from

o
B(ab)
1-0% (0+x )™
x .[ u?t@-u)’tdu
0

F(x;a,0,a,b)=

or

F(x;a,0,ab)=1 (a,b)

[1-6 (6+x2)™*]
_ ﬂ[l—e” (6+x2)™%] (a,b)
B@b)

The pdf corresponding to Eq. (5) is given by

Q)

220%
Bab)

f (X;C{,a,a,b): X(g_;,_xz)_(ba"’l)

IR O
for x >0, ¢>0,0>0,a>0and b >0.

For the survival analysis, the reliability function
R(x), hazard function h(x), inverse hazard

function h,(x) and cumulative hazard function
H (x) for the BCR distribution are given from

R(x)=1-F(x)

'3[1—9" (6+x2)*] (@b)

R(x)=1- , 7
(x) 5@b) ()
_f)
h(x)= ™
=2a0% x (0 +x %) D
[1—9“ (@+x%)™ T—l -
ﬂ(a!b) _ﬂ[l—é’“(BJrX 2)*0](alb)
_fx)
)= 20
=200 x (0+x?) D
[1-0% 0 +x ) T‘l
x (9)
'3[179“ (0+x?)™“] (a.b)
and
H(x)=-InR(x)
=—In|1- Aoy @P) (10)
Bla,b)

2.1. Sub-models

The following distributions can be obtained as
special cases of the BCR distribution:

1. If a=1Eq. (6) reduces to the compound
Rayleigh distribution, CR(ab, 8).

2. When a=b=1Eq.(6) represents the
compound Rayleigh distribution, CR( «,8).

3. Suppose @ =a=1then we obtain the
compound Rayleigh distribution, CR(ab,1).

4. Setting @ =a=b =1, the BCR distribution is
reduced to the Burr-XII distribution, BXII( «,2).

5. Assume a=60=a=b=1Eq. (6) becomes
the Burr-XI1 distribution, BXI1(2,1).

3. The Limit of the Beta Compound
Rayleigh Distribution

The limit of the beta compound Rayleigh
distribution when x — 0 is 0 and when x — oo
is 0. We can show this by taking the limit of Eq.
(6) as follows:

. 200" )/
im f (x) ['m ﬁ(a,b)J(vmx)

x(tim(0 +x2) =)




x(lxigg[l—ea O+x2)“ le -0

Because limx =0 and

x—0
lim[ 10" (0 +x 2)-“]"’1_1 -0,

X — oo, we can observe that by replacing the
limit X -0 with X — o0, we get

limf (x)=0

X =0

Similarly, as

Because lim(6+x %) ®« =0,

— @=2§=7a=2b=13
g - @=Ll 8=25a=055=2
03
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Fig. 1. The pdf of the BCR distribution for
different values of the parameters
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Fig. 2. The cdf of the BCR distribution for

different values of the parameters

4. Expansions for the BCR
Distribution

We can expanding the cdf and pdf corresponding
to the BCR distribution in terms of an infinite
(or finite) weighted sums of cdf 's and pdf 's of
random variables having CR distributions
respectively. For b is a real non-integer, then we
have the series representation

gy S ED'TR) "
-u) ,Zéurcn (11)

Therefore, the cdf of BCR distribution can be
expressed as follows:

F(x;a,@,a,b):isza” (x:0,a) (12)
j=0

where
__ (-)'r@+h)
'@+ )ir@re -j)
and H (x; 6, «) deotes the cdf of CR distribution

with parameters 8 and « . If bis an integer,
then the summation in Eq. (12) is stoped at b —1.

Likewise, we can express the pdf in Eqg. (6) as
below

f(x;a,e,a,b):iv,-D(x;aa(b+j)) (13)
j=0

where

__ (-hir(@+b)
b+ )iTe)Ira-i)

and D(x;6,a(+j))deotes the cdf of CR
distribution with parameters fand a( + j). If

a is integer, then the summation in Eq (13) is
stoped at a—1.

5. Statistical Properties

In this section, we present a mathematical
treatment of the proposed distribution such as;
mean, variance, coefficient of variation, raw and
incomplete  moments, skewness,  Kkurtosis,
generating functions, Lorenz, Bonferroni and
Zenga curves, Rényi of entropy, order statistics
and record statistics.

5.1. Raw Moments

Suppose X is a random variable distributed
according to BCR distribtion, then the raw
moments, say ' is given by

w=E(X")

200 |

-1
v Xr+1(9+X2)—(ba+1) 17011(94»)(2)—0: a dx
pab)? [ J



, 2a

" 9BG@b)

© (ba+1) 2\ a1
xj r+1[1+ 9] 1—(1+%J dx
0

By using the binomial expansion in the last term
of above integrand, we get

(-1)i Ta)
= e/f(ab)Z IM@a-j)

o ~[ab+]j)+1]
xj [ [ X’ dx
0

0

-1
2
Let z = [1+ %J in the above equation, so we

have
p ad"? & (<)) Ta)
H @MZUHan

1
<[z D27 )eds

Z (-)'Ta)
(ab) gir@-j)
xBlab+]j)-r/2,r/2+1],ab+])>r/2
(14)
Substituting r =1,2 in Eq. (14), then we get the
mean and variance respectively as follows:

, (-1)i Ta)
= ﬂ(ab)ZJ'F(a i)

xplab +j)-1/2,3/2] (15)
and
ab
V0= B@.b)
ZJ( D Fa) Blab+j)-12]
j=0

X

2
CD'T) proo 2,3/2
ﬁ(ab)gj,r( Ala®+i)-1/2,3/2]
(16)
5.2. Coefficients of Variation, Skewness and
Kurtosis
The coefficients of variation, skewness and
kurtosis of the BCR distribution are given
respectively as follows:

cv =2
u

CV =

S DI i+ j)-1.2)

£¥%(a,b) Zir@-i) | |
a N (-)'Ta) L
b ;ilr(a_j)ﬂ[a(b )-Y2,3/2]
amg j(!_#)(;li?)ﬁ[a(b +i)-Y2,3/2]
(16)
&= (ﬂf‘;s/z
(-1 Fa) _
ﬂl/Z(a )Zle( (b+j)—3/2,5/2]
32
T WP
{;Z_;‘i!F(a—nﬂ[“( +1)-12]
17)
and
£ =4
2 ()
n'r
Bla,b )Z (lr)( a)ﬂ[ b+i)-2.4]

2
(b+j)—1,2]}

(18)

(-1’ 1“61)
{Z |1"(a

5.3. Incomplete Moments
Suppose X is a random variable having the BCR

distribution, then the r™ incomplete moments
denoted as m, (z) can be obtained as follows:

mr(z)zjxff (x )dx
0

_ 200%
B@b)

z
1
<[ x 1O+ x?) D [1-0%(0+x ) | dx
0

ab? & (-1)iTa)
/J’(ab)Z T@-1j)

1 or r
ab+j)-——1 =
x f y 2 (1-y)2dy
l+ﬁ_1
0

Based on the binomial expansion to the last
factor, we get




af"? & () (@) (r/2+1)
ﬂ(ab)lzolz(; liC@—j)r(r/2—-i)

1
a(b+j)+i——1
" J' y(+J)+I2dy

(14—%]
Cab"? &G ()T @ (r/2+1)
B, b)Z; ~ jlill@a—-j)r(r/2-i)

, 2 r/2-[a(b+])+i]
1-11+—

[ab+]j)+i-r/2]

mr(z)_

19
54. Moment and Probability Generagcing]
Functions
The moment generating function, say M, (t) of
the BCR distribution can be obtained as follows:
M, () =EE")

200 ¢

Y
= e%x (0+x2)®eD[1_g7(91x2)y T dx
B@,b) ¢ [ ]

© +hyh

Using % =zt X

h=0

, then we obtain

StV (-1)i Ta)
JiC b)hzc‘;J = h!jil@-j)

xBlab+]j)-h/2,h/2+1],al +])>h/2
(20)
Similarly, the probability generating function
denoted as M, (t) of the BCR distribution can
be derived as below
M[x](t) = E(tx)

20607 7, 2\~(ba+1) o 2y-a 1
_ﬂ(a,b)-c[t X(@+x°) [1—9 @+x°) } dx

M, (t) =

then we have

. - (Int)Y x ¥
Using t* = » ~—~2~ |
P

/2(_1)]
M (t) = ZZ(Int) 6’” ( 1)_ I'a)
ﬂ(ab)w =0j=0 lelr(a_J)

xBlab+j)-w/2w/2+1],ab +j)>w/2
(21)

5.5. Lorenz, Bonferroni and Zenga Curves
The Lorenz, Bonferroni and Zenga curves have
been used in different fields such as
demography, insurance, reliability, medicine and
economics (for more details see Kleiber & Kotz
[6]). Oluyede & Rajasooriya [7] defined the

Lorenz L (x), BonferroniB (F(x))and Zenga
A(x) curves respectively as follows:

L, (x):ﬁjtf (t)dt,

F() x)
(t)dt = AKX)=1- [M+(XJ

E<>
. 1
where M (x)=m.!tf(t)dt

and M *(x) =

1 o0
- X);([tf(t)dt

Therefore, these quantities for the BCR
distribution are obtained below

9
Le(x)= a, (22)
p(a,b)y
F = 23
(F(x)) B oty @D); (23)
and
_ _Q193
A(x)=1 _94 (24)
where
M
h=0 j=0

. 1
yi+h 2 _(a(bﬂ)m_ij
D ) } 1—[1+%]

[a(b+j)+h—;

0 -1 ) .
QZ:JZ[""J. j(—l)Jﬂ[a(bﬂ)—%,g}
Q= @)~ By g gorty o1 @),

Qy = Fy_ge(paxzy@D)

. 13
x 1 a2 ab+
,z( j j( )ﬂ[lﬁ} { ey 2}
6

5.6. Rényi Entropy

The concept of entropy has been successfully
used in different fields including statistic,
queuing theory and reliability estimation. The
entropy is a measure the variation of the
uncertainty corresponding to the distribution of a
random variable The Rényi entropy is defined as

1% (6) = [|09 1(3)],

where I(S):If (x)dx, §>0 ands #0.

Using Eq. (6) yields



5 5 poap
|(5)=2;‘f—‘9
A" (@b)
[ %@ +x2y 20D 10 4x2) ] ax
0

2y S (-D)IT(s-1)+1)
D285 (5 b = IT(S(@a-1)- j+1)
x Bla(sb +j)+(6-1)/2,(5+1)/2]

Therefore, the Rényi entropy is given below

10 (0) =

(5 - %j log(2) + 5 log(«x)

X

_(%}og(e)—élog [A(ab)]

+Y_log(Bla(dh +j)+(5-1)/2.(5+1)/2])
j=0

(25)
5.7. Order Statistics
Order statistics play an important role in
probability and statistics. Let
X1n X, < Xy b the ordered sample from
a continuous population with pdf f (x)and cdf
F(x). The pdf of X ., , the k™ order statistics
is given by
n!
f X)=— ——
Xin () (k =1)}(n —k)!
<[FOO] M L-F O™ r=1,2,.,n
Then, the pdf the k ™ order BCR random variable
X, can be obtained by using Egs.(5) and (6)
in above equation to be
2n1gH™
fx., X)=7———+1)
m (k =D!(n—k)!

f(x)

-1
xX (0+x2) e+ [1—0“ (O+x%) T
(26)

_ k+j-1
_ n—k n —k j ﬂ[l_‘gfz(‘9+X2)—/x](avb)
Il - Z . (_1) k+j
| J B (ab)

Therefore, the pdf the 1" order BCR random
variable X ., is given by

fr,, (00) = 2000 1, x (0+x %) 0=

[1-o70+x?) ]
(@7)

where
_ i
0 B (@.b)

Also, the pdf the n'™ order BCR random variable
X nn IS given from

fx (X)=2nad® 13 (0+x%) O«

-1
x[1-0%(0+x7)™ T‘ (28)
Where
- -1
|3 =ﬂ " (aib)ﬂ[;,ga(gﬂﬂ)*a](alb)
Moreover, the joint distribution of two order
statistics X ., <X, is given by
n!
(k =D)!s -k =2)(n —s)!
Kk =
<t (x)f ()[F )]
—k = —
X[F ) —F o)™ T L-F o)
Then, for the BCR distribution we obtain
R 4n1a?H> |
X1,X5) = X1X
Xesn VB2 () 1s —k —D)I(n—s)1 4 12

ka:s:n (Xl'xz) =

x[(¢9+ XZ)(O+x 22)]7“)(“1) [1— 0% (O+xE)™“ ]ail

x[l—@“ O+x3)™ ]H (29)

where

n-ss—k-1 _ —k — o
y :iz:l: JZ_(; (ni s](s ! 1j(_1).+1

ﬂkﬂ—l (a’b)ﬂs+i—(k+j+1) (a.,b)

[1-6% (0+x2)™*] [1-6% (6+x2)™*]

ﬂ(SH)(a,b)

5.8. Record Statistics

Record values and the corresponding statistics
are of interest and important in many real life
applications including meteorological analysis,
industrial stress testing, hydrology and athletic
events. Let X,,X,,..,X, be a sequence of
independent and identically distributed (iid)
random variables having cdf F(x) and pdf

f(x). Set Y, =max(min){X,X,,..X,} for
n>1.Wecall X; isan upper (or lower) record

X

value of this sequence if Y; >(<)Y 4, j >1.
Thus X ; will be named an upper (or lower)
record value if its value is greater (or lower) than
all previous observations.

The pdf of Xy, the r™ upper record is given

as ( see Ahsanullah [8] and Arnold et al. [9])

fy0 00 = g ROOT 60



where
R(x)=-In[1-F(x)]

Then, the pdf the r™" upper record BCR random
variable Xy ) can be obtained to be

20:0™ | r
(r-D!@b) °
X (6+X 2)—(b0t+l) |:1_901 (9+X 2)—0( :Ia—l (30)

where

fxu(r)(x):

B(@.b)
B@b) =B g2y« @b)
Furthermore, the joint distribution of the first n
upper record values x s(xu(l),xu(z),...,xu(n))

I5=

is given by (see Ahsanullah [8])
f12..0(Xu@Xu@)rXu @)
i (Xuay)
=f (Xy ) 0
U(H)Hl F(xuq))
Consequently, for the BCR we get
f12..n o Xu @) Xum)

2n n pnab

=Wexp(l6+l7—|8) (31)

where

Is :zn:mxi —(ba+1)zn:|n(e+xf),
i=1 i=1

., = (a—1)zn:|n[1—e“(e+xf)-“}
and -

n-1
lo = I B@D) = Fiy_peguriy o @D) |
i=1

Moreover, the pdf of Xy, the r™ lower

record is given as ( see Ahsanullah [8] and
Arnold et al. [9])

fxu(r) (x)=
where
H (x) =-In[F(x)]

So, for the BCR distribution we have

200" B
fx ()=

" (r-1!p(@a,b)
-1

xx (0+x2) Ce D [1-6%(@+x ) ]a 32)
where Ig =1Ing(a,b)—In ﬂ[l_ga(9+xz),a](a,b)
In addition, the joint distribution of the first n
lower record values x E(XL(J_),XL(Z),...,XL(“)) is

1),[H(x)] ')

given by (see Ahsanullah [8])
fra..n XL XLy XL ()

(XL()y)
=f (XL(n))HF(XII:EI)))

Then, for the new model we obtain
fl,2,...,n (XL(l)’XL(Z)’---:XL(n))

on ;N gnab exp(|5—|7—|10) (33)
where

n-1
Lo = D 1N B e (guyy e @b)
i=1

6. Estimation of Parameters

In this section, we discuss the maximum
likelihood estimates (MLEs) for the parameters
of the BCR distribution. Let x,X,,...,X,, be an

independent random sample from the this
distribution, then the corresponding log-
likelihood function is given by
L=nIn(2)+nlIn(a)+nab In(@)—nT'(a)

—nl“(b)+nl"(a+b)+Zn:In(xi )

i=1l

n n
—(ba+1)2|n(mi )+(a—1)ZIn(wi)
i=1 i=1
(34)
where m; =@+x? and w; =1-6“m
The components of the score vector
( ot o ot ot

are given below:
oa.' 90 0a’ b

o0 [1 ,
—-n [Zm |n(0)}—b§ln(mi )

_(a_l)gaz”:[—m(e) —In(m, )}, (35)

i-1 mi"w;

nab b+1 Zm

ae
a-1 Xi2
—a(@a-180 Zl:{mmley (36)
o |v9@) \I’(O)(a+b)
5_4{ r@  T(a+b) Z_l:'”(w )
@37
and
%zn{aln(e){‘l’“’)(b)+‘P(°)(a+b)}}
ab r'b) TC(@a+h)
—ozznlln(mi ) (38)
i=1

where W™ (x) is the polygamma function. The

MLEs, say (d,0,4,b)of (@ 0,ab)can be
obtained by solving the system of nonlinear



equations (35) through (38). These equations
cannot be solved analytically and it needed
iterative techniques such as Newton-Raphson
algorithm.

For the purposes of interval estimation and
testing of hypotheses for the model parameters
(a,0,a,b), we derive the 4x4 observed

information matrix J(©) ={J,, } (for

w,\v =a,0,a,b)tobe
J ‘]aH Jaa ‘Jab

aa
J J J J
‘]aa ‘]aH ‘]aa Jab
Joe Jbo Jpba Jmo
whose elements are obtained in Appendix A.

7. Applications

In this section, we present two applications of the
BCR distribution to two real data sets. The first
data set consists of 63 observations of the
strengths of 1.5 cm glass fibers which obtained
by workers at the UK National Physical
Laboratory. The data are: 0.55, 0.74, 0.77, 0.81,
0.84,0.93,1.04,1.11, 1.13, 1.24, 1.25, 1.27, 1.28,
1.29,1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49,1.49,
1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55,
1.58,1.59, 1.60, 1.61, 1.61, 1.61, 1.61,1.62, 1.62,
1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68,
1.69, 1.70, 1.70, 1.73, 1.76, 1.76,1.77, 1.78, 1.81,
1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. These
data have also been used by Smith & Naylor [10]
and Merovci et al. [11]. The second data set
represents the relief times of 20 patients
receiving an analgesic which are given by Gross

& Clark [12]. The data are: 1.1, 1.4, 1.3, 1.7, 1.9,
18,16, 22,17, 27, 4.1, 1.8, 15, 1.2, 1.4, 3,
1.7, 2.3, 1.6, 2. These data set is previously
studied by Rodrigues et al. [13] and Mead [14].
We use these two data sets to compare the fit of
the new model, beta compound Rayleigh (BCR)
with six models: compound Rayleigh (CR),
Rayleigh (R), Burr-XIl (BXII), generalized
Rayleigh (GR), transmuted generalized Rayleigh
(TGR) (Morovci [15]) and exponentiated
transmuted generalized Rayleigh (ETGR) (Afify
et al. [16]).

First, we derive the maximum likelihood
estimates (MLEs) for each model and then
comparing the results within some goodness-of-
fit statistics AIC (Akaike information criterion),
AICC (corrected Akaike information criterion),
CAIC (consistent Akaike information criterion)
and BIC (Bayesian information criterion). The
better model corresponds to smaller AIC, AICC,
CAIC and BIC values.

where
AIC =2k —21(), AlcC =Alc +2KK+D
n-k -1
and
CAIC = 2kkn l_gz(.), BIC =k log(n)—27())
n-k -

where 7(.) denotes the log-likelihood function
evaluated at the MLEs, k is the number of
parameters, and n is the sample size. The MLEs
and the values of AIC, AICC, CAIC and
BIC displayed in Tables (1-2).

Table 1: MLEs for BCR, CR, R, BXII, GR, TGR and ETGR models and the statistics AIC, AICC,

CAIC and BIC; first data set

Estimates Statistics
Model é 0 a b 27 AIC AICC  CAIC BIC
BCR  21.907 332532 5.067 30558 41.848 49.848 50.538 50538 58.421
CR  5228x10% 1.241x10* 99.592 103.592 103.792 103.792 107.878
R 1.187 159.841 161.841 161.906 161.906 163.984
BXII 0.321 7.482 97.442 101.442 101.642 101.642 105.729
GR 5.486 0.987 47858 51.858 52.058 52.058 56.144
TGR 5.372 0932  0.312 49319 55319 55725 55725 61.748
ETGR  1.937 0.947 0262 2993 50506 58506 59.196 59.196 67.079




Table 2: MLEs for BCR, CR, R, BXII, GR, TGR and ETGR models and the statistics AIC, AICC,

CAIC and BIC; second data set

Estimates Statistics
Model a 6 4 2/ AIC AICC CAIC  BIC
BCR 5.841 1.699 58.076 0.421 30.81 38.81  41.477 41477 42.793
CR 201.728 819.593 44985 48.985 49.691 49.691 50.977
R 2.041 85.76 87.76  87.982 87.982 88.755
BXII 0.018 95.12 42.415 46.415  47.12 47.12  48.406
GR 3.246 0.691 36.805 40.805 41.51 4151  42.796
TGR 3.329 0.635 0.592 35.424  A41.424 42,924  42.924 44412
ETGR  22.403 0.691 411x10° 0145 36.805 44.805 47.471 47471 48.787
From Tables 1 and 2, we can notice that the BCR censored data for constant partially
model has the smallest values for the AIC, accelerated life tests. Global Journal of
AICC, CAIC and BIC statistics between all fitted Pure and Applied Mathematics, 12(4):
distributions. Consequently, we can deduct that 3253-3273.
the BCR distribution can provide a significantly [5] Eugene, N., Lee, C. & Famoye, F. (2002).
better fit than the other models. The beta-normal distribution and its
8. Conclusion applications. Communication in Statistics-
This paper introduces a new distribution namely Theory and Methods, 31,497-512.
the beta compound Rayleigh (BCR) distribution [6] Kleiber, C. & Kotz, S. (2003). Statistical
which generalizes the compound Rayleigh (CR) size  distributions in economics and
distribution. important properties of the new actuarial ~ sciences. Wiley Series in
distribution are studied including the mean, Probability and Statistics. John Wily &
variance, coefficient of variation, raw and Sons.
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Appendix A
The elements of the observed information matrix
are given below
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