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Abstract

Superpositions of Ornstein Uhlenbeck processes provide convenient ways to build stationary processes with given marginal distributions and
long range dependence. After reviewing some of the basic features, we present several examples of processes with non Gaussian marginal
distributions. Estimation of the parameters of the marginal distribution is undertaken by means of a characteristic function technique. We
provide the relevant asymptotic theory as well as results of simulations and real data applications.
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1. Introduction

The modelling of stochastic processes with given marginal distribu-
tions and tractable depedence structures can be a point of consider-
able interest in fields of applications such as finance and economet-
rics where, for example, the identification of models for assets prices
which are consistent with some stylized features such as heavy tails,
asymmetry and long range dependence (LRD) is quite important as
a first step to pricing derivatives and general risk management.
To this end, the use of stationary processes of the Ornstein Uh-
lenbeck (OU) type and their superpositions (Sup OU) has been
thoroughly studied by Barndorff-Nielsen (1998, 2001), Barndorff-
Nielsen, Jensen and Sorensen (1998), Barndorff-Nielsen and Shep-
hard (2001, 2002); a good reference is also Schoutens (2003). Earlier
related works which exploits the use of superpositions as a way of
modeling long range dependence are those of Granger (1980), Cox
(1991), Ding and Granger (1996), Comte and Renault (1998).
In particular, the use of self decomposable random variables allows
one to obtain Sup OU processes with specified marginal distributions
and, at the same time, given correlation structures; furthermore, spe-
cific constructions allow one to obtain LRD. Most notable examples
include Sup OU processes with weak or long range dependence
and marginal distributions such as the Normal Inverse Gaussian
and the Inverse Gaussian (Barndorff-Nielsen, 1998), the Variance
Gamma (Seneta, 2004), the Meixner (Schoutens and Teugel, 1998),
the Normal and the Gamma.
Leonenko and Taufer (2005) have provided an invariance principle
for Sup OU processes with LRD; the limiting process obtained, a
fractional Brownian motion, connects this approach to the main-
stream ones of the statistical literature which are based on non-linear
transformations of Gaussian LRD processes and linear processes
with LRD. For other related papers see Anh et al. (2010), Leonenko

et al. (2013), Leonenko and Taufer (2013).

In this paper we will concentrate on estimation of the marginal
parameters in Sup OU processes. The main focus will be on Sup
OU processes with LRD. However, the technique adopted, based
on the empirical characteristic function (ECF) will be seen to work
for finite Sup OU processes as well. Estimation of the dependence
structure can be tackled as discussed in Leonenko and Taufer (2005).

Estimation based on the ECF is well established and a good start-
ing point is the paper of Feuerverger and McDunnough (1981) who
show that arbitrarily high levels of efficiency can be obtained by such
methods in the i.i.d. case; furthermore, they discuss the extension to
dependent observations, other references that are relevant to the sub-
sequent development are those of Madan and Seneta (1987), Knight
and Satchell (1997), Knight and Yu (2002), Taufer and Leonenko
(2009) and Taufer et al. (2011) which discuss ECF estimation for
OU processes and stochastic volatility models. Other contributions
on estimation of OU processes are those of Woerner (2004), Baran,
Pap, and van Zuijlen (2003), Gloter (2001), Florens-Landais and
Pham (1999), Pap and van Zuijlen (1996).

Barndorff-Nielsen (1998) has shown how to implement likelihood
analysis for discretely observed OU processes. However, when we
come to Sup OU processes it is not at all straightforward to apply the
methods discussed in the references above. Indeed, likelihood analy-
sis of Sup OU processes does not seem feasible at all. As we will see,
estimation based on the empirical characteristic function fits quite
naturally into the framework of Sup OU processes. Moreover, the
adaptability of ECF estimation method to either i.i.d. or dependent
case is a point of considerable importance in financial applications
where usually estimation of the marginal parameters is undertaken
on the assumption of independence of returns. This may not be
often justifiable in practice where GARCH effects are the rule more
than the exception. This fact was noted also by Seneta(2004) which
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argues that moment based estimation may be less sensitive with
respect to maximum likelihood to departures from the independence
hypothesis.
Last, but not least, several models that are often used in practice
as the Normal Inverse Gaussian or the Variance Gamma do require
special care when using maximum likelihood estimation since the
densities involve modified Bessel functions, as we will see, ECF
estimation will avoid these problems and numerically fast algorithms
are available.

2. Background

The present section reviews some known results; for further details
the reader is referred to Wolfe (1982), Barndorff Nielsen et al. (1998)
and Barndorff Nielsen (1998, 2001), Leonenko and Taufer (2005)
in which stationary processes of Ornstein Uhlenbeck (OU) and their
superpositions (Sup OU) with weak or long range dependence and
self decomposable marginal distributions are constructed.
Recall that a random variable X with characteristic function (CF)
φ(ζ ) is self decomposable if, for all c ∈ (0,1), there exists a CF
φc(ζ ) such that φ(ζ ) = φ(cζ )φc(ζ ).
An OU process {X(t), t ≥ 0} satisfies the stochastic differential
equation

d X(t) =−λX(t)dt +dZ̀(t), (2.1)

where λ > 0 and Z̀(t) is a homogeneous Lévy process for which
E[log(1 + |Z̀(1)|)] < ∞; it is commonly referred to as the back-

ground driving Lévy process (BDLP). Equation (2.1) has the solution

X(t) = e−λ tX(0)+
∫ t

0
e−λ (t−s)dZ̀(s). (2.2)

Let φ(ζ ) and κ(ζ ) = logφ(ζ ) be respectively the CF and the cumu-
lant function of X . If X(t) is to be stationary, then it must be that
φ(ζ ) = φ(ζ e−λ t)φt(ζ ) for all t ≥ 0, where φt(ζ ) denotes the CF of
the second term in the r.h.s. of (2.2).
If ζ κ ′(ζ ) can be defined at 0 by continuity, then (Barndorff-Nielsen
et al. 1998, Lemma 3.1) exp{ζ κ ′(ζ )} is an infinitely divisible CF.
It follows that the choice ϕ(ζ ) = λζ κ ′(ζ ) where exp{ϕ(ζ )} is the
CF of Z̀(1) implies that

φt(ζ ) = exp
{∫

ζ

ζ e−λ t
κ
′(w)dw

}
(2.3)

from which, by continuity, as φ(ζ ) = limt→∞ φt(ζ ) , it follows that
φ(ζ ) is the CF of the marginal distribution of the OU process (2.2).

Remark 1. The stationary process X(t), t ≥ 0 can be extended to a
stationary process on the whole real line as indicated in Barndorff-
Nielsen (1995) by introducing an independent copy of the process
Z̀(t) but modifying it to be cadlag.

As noted by Wolfe (1982), for self decomposable distributions, a
discrete AR(1) process

Xn+1 = cXn + εn+1, n≥ 1 (2.4)

can be embedded into the OU process (2.2) if we set c = e−λ and
εn

D
= Z(1) where,

Z(1) = e−λ

∫ 1

0
eλ sdZ̀(s). (2.5)

Note in fact that, from (2.3), we can make the estimate

E(eiζ Z(1)) = exp{
∫

ζ

ζ e−λ

κ
′(w)dw}= exp{[κ(ζ )−κ(ζ e−λ )]}.

(2.6)

and if εn has CF corresponding to (2.6) then Xn has CF φ(ζ ). The
processes Xn and X(t), sampled at n, t = 0,1 . . . will have the same
marginal distribution. Given this paper will concentrate on estima-
tion of discretely sampled OU or AR(1) processes we will use the
following common definition.

Definition 1. Xn, n≥ 0 will be defined an OU process with CF φ(ζ )
if it satisfies (2.2) with t = 0,1 . . . or (2.4) with c = e−λ .

The sum of independent OU processes can be exploited in order to ob-
tain processes with given marginal distribution and more elaborated
correlation structures. Suppose we have a sequence of independent
OU processes of the form

dX (k)(t) =−λkX (k)(t)dt +dZ̀(k)(t), k = 1,2 . . . (2.7)

From the discussion above note that the choice ϕk(ζ ) = δkλkζ κ ′(ζ ),
where exp{ϕk(ζ )} is the CF of Z̀(k)(1), implies that the CF of X (k)(t)
is φ(ζ )δk . Then, for an integer M

X(t) =
M

∑
k=1

X (k)(t) (2.8)

has marginal distribution with CF φ(ζ )δ , where δ = ∑
M
k=1 δk. Let-

ting σ2 = Var(X(t)),

Cov(X(t),X(t + τ)) = σ
2

M

∑
k=1

δke−|τ|λk τ ∈ R (2.9)

From Barndorff-Nielsen (2001) the superposition stretched to the
case M = ∞ provides well defined stationary process in the sense
of mean square or almost sure convergence. In this latter case,
for a constant c and H ∈ (0,1), the choice δk = ck−1−2(1−H), and
λk = λ/k, implies that the correlation function (2.8) satisfies

L(u)u−2(1−H) (2.10)

where L(u) is slowly varying at infinity. Thus, if H ∈ (1/2,1), X(t)
exhibits LRD. Note that the same features will be present in the
superposition of discrete AR(1) processes. Without loss of gener-
ality we may consider δ = 1, and hence we will use the following
definitions:

Definition 2. X(t) satisfying (2.8) with finite M and marginal distri-
bution with CF φ(ζ ), having finite variance σ2, will be defined Sup
OU process. The notation Xn, n = 0,1 . . . will be used when X(t) is
sampled at instants t = 0,1 . . . .

Definition 3. X(t) satisfying (2.8) with infinite M, δk =
ck−1−2(1−H), and λk = λ/k, c a constant and H ∈ (0.5,1), hav-
ing marginal distribution with CF φ(ζ ) and finite variance σ2, will
be defined LRD Sup OU process. The notation Xn, n = 0,1 . . . will
be used when X(t) is sampled at instants t = 0,1 . . . .

Leonenko and Taufer (2005) have provided an invariance principle
for sums and partial sums of Sup OU and LRD Sup OU processes.
For the purposes of the methods studied in this paper it will suffice
to consider the following

Proposition 1. Let SN = ∑
N
n=1(Xn− EXn) then we have asymptotic

normality of:

• N−1/2 SN if Xn, n = 1 . . .N, is a Sup OU process;
• N−HL(N)−1/2 SN if Xn, n = 1 . . .N, is an LRD Sup OU process

and L(·) a slowly varying function at infinity.
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3. Characteristic function estimation

We will consider a situation where we have a sample Xn, n = 1, . . .N
of a (LRD) Sup OU process with marginal distribution Fθ , where
θ ∈Θ⊂ Rp, p ∈ N, is a vector of parameters. Our main aim will be
to estimate the parameter vector θ .
Note that we are concerned with estimation of the parameters of the
marginal distribution of the process and not about the long memory
parameter H; this may be tackled, for example, as discussed in
Leonenko and Taufer (2005).
In order to stress the dependence on a parameter vector θ we will
denote by φθ (u) the CF of the random variable with distribution Fθ .

3.1. A simple procedure

Let Xn n = 1, . . . ,N be a (LRD) Sup OU process with marginal
distributon having CF φθ (u) where θ has unknown true value θ 0.
Let 0< u1 < · · ·< uq be a fixed grid; define the empirical counterpart
of φθ (u) as φN(u). To estimate the parameters of the marginal
distribution, choose θ to minimize the quadratic form

θ̂ N = argmin
θ

QN(θ), QN(θ) =
q

∑
j=1
|φN(u j)−φθ (u j)|2. (3.11)

We will implicitly assume that the parametrization used brings to
an identifiable problem, i.e. φθ

′(u) 6= φθ (u) if θ
′ 6= θ . Given this,

to prove consistency and asymptotic normality of the proposed pro-
cedure, we need some standard regularity conditions which we list
here.
A1. Let the parameter space Θ be a compact set and θ 0 ∈ Int(Θ)
and assume φθ (u) is continuously differentiable in θ .
A2. The matrix B(θ) = ∑

q
j=1

∂ φθ (u j)
∂θ

∂ φθ (u j)

∂θ
′ is of full rank.

Theorem 1. Let Xn, n = 1 . . .N, be a Sup OU process or a LRD Sup
OU process. Then, under A1, θ̂ N → θ a.s..

Theorem 2. Let AN(θ) =
1
2

∂QN(θ)
∂θ

. Then, under A1 and A2,

• if Xn, n = 1 . . .N, is a Sup OU process,

N1/2 (
θ̂ −θ 0

) D→N
(

0,B(θ 0)
−1A(θ 0)B(θ 0)

−1
)
. (3.12)

with A(θ) = limN→∞ N−1 E [AN(θ)AN(θ)
′]

• if Xn, n = 1 . . .N, is an LRD Sup OU process,

N1−HL(N)−1/2 (
θ̂ −θ 0

) D→N
(

0,B(θ 0)
−1A∗(θ 0)B(θ 0)

−1
)
.

(3.13)

with A∗(θ) = limN→∞ N−2HL(N)−1 E [AN(θ)AN(θ)
′]

Remark 2. It is clear that the estimator proposed will work also
in a i.i.d. setting providing a consistent and asymptotically normal
procedure. For the asymptotic variance in such a case the reader is
referred to Feuerverger and McDunnough (1981).

Table 1 gives some distributions which are self decomposable and
can be exploited in order to construct (LRD) Sup OU processes
with given marginal distribution by superposition of independent
OU processes.
Together with common distributions such as the Normal and the
Gamma, we find some less known examples such as the Simmetric
Gamma, for which the reader is referred to Dufresne (1997), Kotz
et Al. (2001, p. 179) and Steutel and van Harn (2004, p. 504), the
Meixner, for which one can consult Schoutens and Teugel (1998)
and Grigelionis (1999), the Normal Inverse Gaussian and the Inverse
Gaussian which are well known in applications to financial data, see
Barndorff-Nielsen (1997, 1998), Rydberg (1997), Barndorff-Nielsen
and Shephard (2001); and the Variance Gamma distribution which
provides a suitable model for financia data as well, as discussed,
for example, in Madan and Seneta (1990) and Seneta (2004), a gen-
eral reference text on self decomposable distributions and financial
applications is Schoutens (2003).

Table 1: Distributions which may be used to construct (LRD) Sup OU
processes

Name and Reference log CF
Normal
N(µk,δk) µiζ −δζ 2/2
x ∈ R
Norm. Inv. Gaussian
NIG(α,β ,δk,µk) iµζ −δ (

√
α2− (β + iζ )2−

√
α2−β 2)

x ∈ R
Inverse Gaussian
IG(αk,β ) −α(

√
−2iζ +β 2−β )

x > 0
Gamma

Γ(αk,β ) log
(

1− iζ
β

)−α

x > 0
Variance Gamma

V G(α,β ,δk,µk) µiζ +2δ log
( √

α2−β 2√
α2−(β+iζ )2

)
x ∈ R
Sym. Gamma

SΓ(αk,β ) log
(

1+ ζ 2

β 2

)−α

x ∈ R
Meixner

M(α,β ,δk,µk) iµζ +2δ log
(

cos(β/2)
cosh((αζ−iβ )/2)

)
x ∈ R

3.2. Use of weighting functions and continuous proce-
dures

The procedure (3.11) lends itself to further manipulation by consid-
ering weighting functions depending on the parameter, i.e. wθ (u) or,
more generally, in order to avoid the choice of a grid of points u j,
j = 1, . . . ,q by considering a continuous version∫
|φN(u)−φθ (u)|2d G(u) (3.14)

where G(u) is a suitable weighting function. It is clear that if G(u)
is a step function the we are actually considering again the discrete
case.
For a discussion of the choice of optimal weights, see Feuerverger
and McDunnough (1981) which show that, in the i.i.d. case, using a
weight given by the Fourier transform of the score is asymptotically
equivalent to maximum likelihood. This reasonig can be generalized
to dependent observations, however it is unfeasible to compute the
given quantities in the case of LRD Sup OU processes. Other weight-
ing schemes may be obtained by constructing linear or quadratic
forms involving weighting matrices Wθ connected to the autocovari-
ance matrix of φN(u). Again, the evaluation of the the asymptotic
autocovariance matrix of φN(u) may be problematic for LRD Sup
OU processes, as we will see in the proof of Lemma 2. In the next
sub section we will provide a delete-d jackknife estimator of the
variance of θ̂ which may be adapted for this purpose.
If we consider avoiding the choice of a grid and use a continuous ver-
sion of (3.11), the choice of a proper weighting function G(u) is im-
portant in order to have a finite integral and for computability reasons.
Knight and Yu (2002) discuss the use of and exponential weight, i.e.
dG(u) = exp{−u2}du, Epps (2005), in the context of goodness of fit
testing, suggests using dG(u) = (|φθ (u)|2/

∫
|φθ (v)|2dv)du. Both

choices have the effect of damping out the persistent oscillations of
|φN(u)−φθ (u)|, as u→ ∞ assuring the finiteness of (3.14) but may
not be optimal for efficiency considerations.
Regarding asymptotic properties of these generalizations, it is clear
that Theorem 1 and Theorem 2 can be readily adapted when consid-
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Table 2: Mean and MSE of estimates based on simulated data of independent
observations, 1000 iterations. Moment estimtion (ME) and CF estimation
(CFE).

ME CFE
n Mean MSE Mean MSE
100 α = 2 3.7316 7.9624 1.8271 0.5359

β = 1 2.2773 6.2362 0.7047 0.2870
δ = 1 1.2690 0.2710 1.0066 0.1005
µ = 1 0.6970 0.3230 1.1404 0.0641

500 α = 2 3.1783 5.0184 2.0459 0.3105
β = 1 2.0072 3.9547 1.0269 0.1655
δ = 1 1.1135 0.0829 1.0009 0.0292
µ = 1 0.7357 0.2097 1.0027 0.0250

1000 α = 2 2.7876 2.4466 2.1017 0.2314
β = 1 1.6595 1.7960 1.0744 0.1345
δ = 1 1.0927 0.0521 1.0156 0.0164
µ = 1 0.8028 0.1344 0.9781 0.0183

ering the minimization of a weighted form over a finite grid of points
with no change in the starting conditions except the one that the
weight exists over the points considered. If we consider minimizing
(3.14), then, Theorem 1 still holds under the conditions discussed for
the discrete case, see for example Knight and Yu (2002), for apply-
ing the methods of Theorem 2 we need to impose that the function
K j(Xn,θ) = K(Xn,θ ,u j), defined in the proof of Theorem 2, is such
that∫

K(Xn,θ ,u)dG(u) (3.15)

is a bounded measurable function of Xn with bounded first derivative
for all θ . We note that a similar condition is used in Knight and Yu
(2002).

4. An example with simulated data, the NIG
case

To have an idea of the performance of the estimators proposed for
some important classes of distributions, we consider a small simu-
lation study which has the double aim of adressing practical issues
and to show what happens when we pass from a situation of inde-
pendence to one of dependence.
We generated samples of various sizes from a NIG(2,1,1,1) distribu-
tion either in a i.i.d. setting as well as for an OU process. Simulation
of OU processes can be done as described in Taufer and Leonenko
(2009b).
Table 1 gives the mean and the MSE of moment estimators (ME)
and ECF estimators (ECFE) in the i.i.d. case while Table 2 considers
the case where the data represent an OU process with λ = 1.
ME are to be found, for example in Karlis (2002) and we note that,
depending on sample realization, they may not exist. The 1000
iterations of Table 2 have been obtained for cases where the ME
exist, we discarded those replications for which they did not; this
phenomenon was, intuitively, more present in small sample sizes: for
n = 100 we had to discard more than 400 samples before reaching
the 1000 replicates.
Placing the attention on the results, we see that the bias of ME for
α and β which are connected to the third and fourth moment of
the distribution may be substantial and remains quite high even in
large sample sizes. The problem is less serious for the other two
parameters, µ and δ which are connected to location and variability.
ECFE perform much better either in terms of bias than MSE.
The situation changes quite a bit in the case of an OU process. Here
ME are highly unreliable even for sample sizes as high as 1000 and
3000 and there were several instance in which they did not exist. In
Table 3 such values are not reported and note that bias and MSE

Table 3: Mean and MSE of estimates based on simulated data from an
OU process with λ = 1, 100 iterations. Moment estimtion (ME) and CF
estimation (CFE).

ME CFE
n Mean MSE Mean MSE
1000 α= 2 - - 2.7452 0.8716

β = 1 - - 1.6776 0.6982
δ = 1 - - 1.0410 0.0186
µ = 1 - - 0.8079 0.0547

3000 α = 2 - - 2.4831 0.3622
β = 1 - - 1.4074 0.2365
δ = 1 - - 1.0309 0.0081
µ = 1 - - 0.8764 0.0226

5000 α = 2 4.9332 8.6126 2.2680 0.1514
β = 1 3.3924 5.7440 1.1745 0.0750
δ = 1 1.3252 0.1085 1.0383 0.0064
µ = 1 0.3241 0.4572 0.9463 0.0086

are quite high for n = 5000 as well. These sample sizes may not be
considered unnaturally high given the quantity of data that may be
available for financial applications. As we see, ECFE suffer much
less from this situation. Although bias and MSE are worse w.r.t. the
i.i.d. case, we see that the situation is much better. The ECFE have
been obtained for q = 80 and a a fixed step τ = ui+1−ui, i = 1 . . .q
of size 0.05. The choice of the step size maybe quite important
in order to minimize effectively the distance of the ECFE and the
fitted one. Feuerverger and McDunnough (1981) discuss optimizing
procedures in order to obtain, for given q, either a optimal fixed
step τ of optimal points u1, . . . ,uq. Knight and Yu (2002) avoid
this problem by considering continuous CF estimation. Given the
expressions for the variance of the ECFE in the case of Sup OU or
LRD Sup OU processes, the minimizing procedures to compute a
optimal step τ may be quite cumbersome. We run several simulations
for different parameter values and found very effective the heuristic
approach of plotting the ECF and choose the step τ which samples
the whole range of the ECF where is present most of its variability.
As far as the sample size q, generally, a larger value seems to increase
precision, although it seems that little is gained for q > 80. These
results are in line with those of Feurverger and McDunnough (1981).

We run other simulations for the IG(α,β ) and the V G(α,β ,δ ,µ)
obtaining similar results. The estimation of α and β in the V G case
have the same behaviour as the NIG case. For the V G case, our
procedure works well, while we must note that Madan and Seneta
(1987) reported bad behaviour of the CF estimators; note however
that in their case they were using only the real part of the CF.

5. A real data example

As an application to real data we consider the daily returns of the
Mediaset share on the Italian Stock market, from 1st Jan. 1996,
to 25 Dec. 2000, for a total of 1300 observations. Although the
returns on shares are often considered to be independent, this data
set was thoroughly investigated by De Bona (2005) which applies
several procedures to detect the presence of long memory effects
in the Italian Stock market. For this data set, all tests applied are
significant on the presence of long memory effects. Hence one may
try to fit a LRD Sup OU model with NIG marginal distribution.

Given our aim is not a full analysis of this data set, here we
concentrate on the marginal parameters only. Figure 1 shows
the empirical and the fitted ch.f. for the data; the ECF esti-
mation procedure applied with q = 80 and τ = 0.35 obtained a
NIG(12.60,2.52,0.08,−0.0004): as we see from Figure 2, the PP-
plot of the data shows there is nearly a perfect fit of the marginal
distribution.
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Figure 1: Empirical and fitted ch.f. of the Mediaset data
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Figure 2: PP plot of Mediaset Data fitted by the NIG distribution

6. Conclusions

We have discussed the use of ECF estimation in the context of LRD:
we have seen that this approach fits quite naturally to LRD Sup OU
processes for which other methods seem hard to adapt.
The method proposed has the advantage that the estimation proce-
dure needs not to be modified for Sup OU processes with weak
dependence or even for the i.i.d. case; moreover, fast numerical
algorithms are available.
This feature maybe quite important in practical applications. For
example the independence of returns of financial assets is often
assumed, although this may be rarely justified since it is not uncom-
mon, to observe (strongly) correlated squared or absolute returns.
Seneta (2004) noted the sensitivity of maximum likelihood estimates
to these effects, suggesting to use moment estimators which may be
more robust to departures from the independence of returns hypothe-
sis. In this sense, the use of CF estimation may be a valid alternative
which may be used safely in presence of different dependence struc-
tures.

7. Proofs

We will state a couple of preliminary results which we will put in
the for of lemmas.

Lemma 1. Let h(·) be a bounded function with bounded first deriva-
tive, and let χ(X1, . . .Xp) denote the cumulant of X1, . . .Xp. There
exists a universal constant C such that

χ(h(X1), . . . ,h(Xp))≤C|χ(X1, . . .Xp)| (7.16)

Proof. We can expand h(x) = h(0)+ xh′(ξ ), |ξ | ≤ |x|, given h and
h′ are bounded, by the multilinearity property of cumulants we can
take the estimate

χ(h(X1), . . . ,h(Xp)) = χ(h(0)+X1h′(ξ1), . . . ,h(0)+Xph′(ξp))

= [h′(ξ1) . . .h′(ξp)]χ(X1, . . . ,Xp)

≤C|χ(X1, . . .Xp)|
(7.17)

Lemma 2. Let Xn be a LRD Sup OU process with δk = ck−1−2(1−H),
c a constant such that ∑k δk = 1, λk = λ/k, H ∈ (1/2,1). De-
fine φ(u) = EeiuXn and suppose φ ′(ξ ) can be defined for ξ ∈
[min(0,u,v),max(0,u,v)]. Then, as |n−n′| → ∞,

EeiuXn+ivXn′

=

{
φ(u)φ(v)exp{uL1(|n−n′|)|n−n′|−2(1−H)} n > n′,
φ(u)φ(v)exp{vL2(|n−n′|)|n−n′|−2(1−H)} n < n′

(7.18)

where L1 and L2 are slowly varying functions at infinity.

Proof. Clearly, since Xn = ∑
∞
k=1 X (k)

n is a superposition of indepen-
dent OU processes, we have

Eexp{iuXn + ivXn′}=
∞

∏
k=1

Eexp{iuX (k)
n + ivX (k)

n′ )} (7.19)

Let us analyze in more detail the terms in the infinite product, sup-
pose n > n′, given X (k)

n is an OU (AR1) process, it holds

X (k)
n = e−λ (n−n′)/kX (k)

n′ +
n−n′−1

∑
j=0

e−λ j/k
ε
(k)
n− j (7.20)
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and hence, by independence, we can take the estimate

Eexp{iuX (k)
n + ivX (k)

n′ }

= Eexp{i(v+ue−λ (n−n′)/k)X (k)
n′ }

n−n′−1

∏
j=0

Eexp{ive−λ j/k
ε
(k)
n− j}

(7.21)

Recall from Remark 1 that ε
(k)
n

D
= Z(k)(1) and hence, formal cal-

culation from (2.6) with EeiuX (k)
n = φ(u)δk = exp{δkκ(u)} ob-

tains that the characteristic function of ε
(k)
n− j evaluated at u is

exp{δk[κ(u)−κ(ue−λ/k)]}, and then

n−n′−1

∏
j=0

Eexp{iue−λ j/k
ε
(k)
n− j)}

=
n−n′−1

∏
j=0

exp{δk[κ(ue−λ j/k)−κ(ue−λ ( j+1)/k)]}

= exp{
n−n′−1

∑
j=0

δk[κ(ue−λ j/k)−κ(ue−λ ( j+1)/k)]}

= exp{δk[κ(u)−κ(ue−λ (n−n′))]}

(7.22)

Putting together the above expressions we have the estimate

Eexp{iuX (k)
n + ivX (k)

n′ }

= exp{δk[κ(v+ue−λ (n−n′)/k)+κ(u)−κ(ue−λ (n−n′)/k)]}
(7.23)

Now, by the mean value theorem, we have that,
for |ξ (k)

1 − v| ≤ |ue−λ (n−n′)/k|, κ(v + ue−λ (n−n′)/k) =

κ(v) + ue−λ (n−n′)/kκ ′(ξ
(k)
1 ) and, for |ξ (k)

2 | ≤ |ue−(n−n′)/k|,
κ(ue−λ (n−n′)/k) = κ(0)+ue−λ (n−n′)/kκ ′(ξ

(k)
2 ). Since κ(0) = 0,

Eexp{iuX (k)
n + ivX (k)

n′ }

= φ(u)φ(v)exp{δk[ue−λ (n−n′)/k[κ ′(ξ
(k)
1 )−κ

′(ξ
(k)
2 )]}

(7.24)

Going back to our original goal we have that EeiuXn+ivXn′ is given
by

φ(u)φ(v)exp{u
∞

∑
k=1

δke−λ (n−n′)/k[κ ′(ξ
(k)
1 )−κ

′(ξ
(k)
2 )]} (7.25)

We now need to evaluate further the infinite sum appearing in the
exponent. To this end note that κ ′(ξ

(k)
1 )− κ ′(ξ

(k)
2 )→ κ ′(ξ1)−

κ ′(ξ2), a constant, as k→ ∞, where |ξ1− v| ≤ |u| and |ξ2| ≤ |u|.
The terms in the sequence will be decreasing after a certain point and
then, for |n−n′| → ∞, we can approximate the sum by the integral∫

∞

1

c
y1+2(1−H)

e−λ |n−n′|/y[κ ′(ξ
(y)
1 )−κ

′(ξ
(y)
2 )]dy (7.26)

apply the transformation λ |n− n′|/y = w to obtain the following
estimate

c(λ |n−n′|)−2(1−H)
∫

λ |n−n′|

0
w2(1−H)−1e−wL(w)dw (7.27)

where L(w) = [κ ′(ξ
(w)
1 )− κ ′(ξ

(w)
2 )] with |ξ (w)

1 − v| ≤ |ue−w| and

|ξ (w)
2 | ≤ |ue−w|, note that limw→∞ L(cw)/L(w) = 1, c > 0 and hence

L is slowly varying at infinity. Hence, for |n− n′| → ∞ the above
term can be evaluated as

c(λ |n−n′|)−2(1−H)L(λ |n−n′|)
∫

λ |n−n′|

0
w2(1−H)−1e−wdw

=
L1(|n−n′|)
|n−n′|2(1−H)

.

(7.28)

We note that limw→∞ L(w) = κ ′(v)−κ ′(0) and the integral in the
expression above tends to Γ(2(1−H)) integral. The case n′ > n can
be treated in a similar way.

Proof of Theorem 1. Let Q0(θ) = ∑
q
j=1 |φθ 0(u j)− φθ (u j)|2, then,

as in Knight and Yu (2002, Theorem 2.1) we can take the estimate

|QN(θ)−Q0(θ)| ≤ 4
q

∑
j=1
|φN(u j)−φθ 0(u j)| (7.29)

Since φN(u)→ φθ (u) a.s. by the ergodic property, consistency of
the estimator follows by standard arguments under the assumptions
of the theorem.

Proof of Theorem 2. The first step of the proof will be to show that
∂QN(θ)

∂θ
properly normalized, converges to a Normal random variable.

To this end note that

∂QN(θ)

∂θ
=− 2

N

N

∑
n=1

q

∑
j=1

K j(Xn,θ) (7.30)

where

K j(Xn,θ) =
[
cos(u jXn) −Reφθ (u j)

∂Reφθ (u j)

∂θ
+

+
[
sin(u jXn)− Imφθ (u j)

] ∂ Imφθ (u j)

∂θ

(7.31)

which is a vector of bounded functions of Xn with bounded first
derivatives, hence, asymptotic normality of ∂QN(θ)

∂θ
will follow by

combining Lemma 2 and Proposition 1 if we show that

lim
N→∞

E

[
N

∑
n=1

N

∑
n′=1

K(Xn,θ)K(Xn′ ,θ)
′
]

(7.32)

is O(N) if Xn, n = 1, . . . ,N is a Sup OU process, while it is
O
(
N2HL(N)

)
if Xn, n = 1, . . . ,N is a LRD Sup OU process. Here

K(Xn,θ) = ∑
q
j=1 K j(Xn,θ). In fact, asymptotic Normality of SN ,

implied by Proposition 1, assures that the cumulants of SN of order
higher than 2 vanish asymptotically and these, by Lemma 2, domi-
nate those of ∂QN(θ)

∂θ
. The result follows if the normalizing terms of

SN keep in focus the variance of the estimators QN(θ).
In order to evaluate (7.32), note that, from (7.31), apart from con-
stant terms, we need to evaluate terms like Cov(cos(uXn),cos(vXn′)),
Cov(cos(uXn),sin(vXn′)), Cov(sin(uXn),sin(vXn′)).
The above covariances may be conveniently tackled by consider-
ing well known trigonometric identities. By defining ψn,n′(u,v) =
E(eiuXn+isXn′ ) we may estimate

Cov(cos(uXn),cos(vXn′)) =

1
4
[
ψn,n′(u,v)+ψn,n′(u,−v)+ψn,n′(−u,v)+ψn,n′(−u,−v)

]
− 1

4
[φ(u)+φ(−u)] [φ(v)+φ(−v)] (7.33)

The above expression may be evaluated with the help of Lemma 2.
We distinguish the two cases of Xn being Sup OU or LRD Sup OU.
If Xn, n = 1, . . . ,N is an LRD Sup OU process, from (7.18),
for n > n′, the above expression, if we set exp{uL1[|n− n′|]|n−
n′|−2(1−H)}= en,n′(u), after some algebra can be evaluated as

1
4
[(φ(u)φ(v)+φ(u)φ(−v))(en,n′(u)−1)+(φ(−u)φ(v)+

+φ(−u)φ(−v))(en,n′(−u)−1)]
(7.34)
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Next note that en,n′(u)− 1 ∼ |n− n′|−2(1−H) as |n− n′| → ∞. It is
clear that all other terms appearing in (7.32) can be treated anal-
ogously and are of the same order, hence, using standard calcula-
tions we have that the variance of ∂QN(θ)

∂θ
is O(N2HL(N)) when Xn,

n = 1, . . .N is a LRD Sup OU process.
If Xn, n = 1, . . . ,N is a Sup OU process, we may resort to expression
(7.25) with a finite M instead of ∞ in the sum. The convergence to 0
in such a case is much quicker, assuring that the variance of ∂QN(θ)

∂θ

is O(N) when Xn, n = 1, . . .N is a LRD Sup OU process.

The second step of the proof is to show that the matrix ∂ 2QN(θ)
∂θ∂θ

′

converges to a fixed quantity for θ in a neighborhood of θ 0. For
|θ 0− θ̃ N | ≤ |θ 0− θ̂ N |, we have

∂ 2QN(θ̃ N)

∂θ∂θ
′ =−2

q

∑
j=1

∂ φ
θ̃
(u j)

∂θ

∂ φ
θ̃
(u j)

∂θ
′ +

+2
q

∑
j=1

[ReφN(u j)−Reφ
θ̃
(u j)]

∂ 2Reφ
θ̃
(u j)

∂θ∂θ
′ +

+2
q

∑
j=1

[ImφN(u j)− Imφ
θ̃
(u j)]

∂ 2Imφ
θ̃
(u j)

∂θ∂θ
′

(7.35)

Again, by assumptions of Theorem 1 and standard arguments we
have that the r.h.s. of the above expression converges to −2B(θ 0) in
probability.
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Uhlenbeck processes with given marginal distribution. Computational
Statistics and Data Analysis, 53, 2427-2437.

[33] Woerner, J.H.C. (2004) Estimating the skewness in discretely observed
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