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Abstract

Apart from other probability models, Dagum distribution is also an effective probability distribution that can be considered for studying the
lifetime of a product/material. Reliability test plans deal with sampling procedures in which items are put to test to decide from the life of the
items to accept or reject a submitted lot. In the present study, a reliability test plan is proposed to determine the termination time of the
experiment for a given sample size, producers risk and termination number when the quantity of interest follows Dagum distribution. In
addition to that, a comparison between the proposed and the existing reliability test plans is carried out with respect to time of the experiment.
In the end, an example illustrates the results of the proposed plan.
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1. Introduction

Dagum [1] introduced Dagum distribution as an alternative to the
Pareto and log-normal models for modeling personal income data.
This distribution has been extensively used in various fields such
as income and wealth data, meteorological data, and reliability and
survival analysis. The Dagum distribution is also known as the
inverse Burr XII distribution, especially in the actuarial literature.
An important characteristic of Dagum distribution is that its hazard
function can be monotonically decreasing, an upside-down bathtub,
or bathtub and then upside down bathtub shaped, for details see
Domma [2]. The behavior thus discussed led several authors to study
the model in different fields. Of late Dagum distribution has been
investigated from a reliability point of view and used to analyze
survival data (see Domma et al., [3], [4]). Kleiber and Kotz [5]
and Kleiber [6] provided an exhaustive review on the origin of the
Dagum model and its applications. Domma et al. [3] estimated the
parameters of Dagum distribution with censored samples. Shahzad
and Asghar [7] used TL-moments to estimate the parameters of this
distribution. Oluyede and Ye [8] presented the class of weighted
Dagum and related distributions. Domma and Condino [4] proposed
the five parameter beta-Dagum distribution.

A continuous random variable T is said to have a three-parameter
Dagum distribution, abbreviated as T ∼ Dag(β ,σ ,δ ), if its density
probability function (pdf) is given as
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where σ > 0 is the scale parameter and its two shape parameters β

and δ are both positive. The corresponding distribution function of
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Further probabilistic properties of this distribution are given, for
example, in Dagum [1].
Acceptance sampling plans based on truncated life tests for expo-
nential distribution was first discussed by Epstein [9], see also Sobel
and Tischendrof [10]. The results were extended for the Weibull dis-
tribution by Goode and Kao [11]. Gupta and Groll [12] and Gupta
[13] provided extensive tables on acceptance sampling plans for
gamma, normal and log-normal distributions. Kantam and Rosaiah
[14], Kantam et al. [15], Rosaiah and Kantam [16], Balakrishnan
et al. [17] and Aslam and Shahbaz [18] provide the time truncated
acceptance plans for half-logistics, log-logistics, Rayleigh, general-
ized Birnbaum-Saunders and generalized exponential distributions
respectively.
The primary purpose of this study is to develop reliability test plans
to decide whether to accept or reject a submitted lot of products
whose lifetime is assumed to be a Dagum distribution. Section 2
describes the use of reliability test plans and how it can be profitably
used for making decisions. An illustrative numerical example of
ordered failure times is given in section 2. We conclude in section 3.

2. Reliability test plans

Acceptance sampling, if applied to a series of lots, prescribes a pro-
cedure that will give a specified probability of accepting lots of given
quality. It is the process of inspecting a sample of product/material
drawn from the lot to accept or reject the lot as either conforming to
or not conforming to quality specifications i.e. inspection based on
qualitative measurements. Inspection for acceptance purpose is used
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at various stages in manufacturing process. There are two ways in
which inspection is carried out: (i) 100% inspection. (ii) Sampling
inspection. Sampling inspection can be defined as a technique to
determine the acceptance or rejection of a lot or population by some
defective parts found in a random sample drawn from the lot. If the
number of defective items does not exceed a predefined level, the lot
is accepted. Otherwise, it is rejected.
In acceptance sampling inspection a defective article is defined as
one that fails to conform to specifications in one or more quality
characteristics. A common procedure in acceptance sampling is to
consider each submitted lot of product separately and to base the
decision on acceptance or rejection of the lot on the evidence of one
or more samples chosen at random from the lot. If the quality of
interest under consideration is the lifetime of the product that is put
for testing, then the sample of lifetimes of the sampled products is
the output that we obtain after the completion of sampling inspection.
If good products are rejected by sample information, this error is
called type-1 error. Whereas, if the good products are not accepted
by the consumer, this error is called a type-2 error. Moreover, if a
decision to accept or reject the lot is subjected to the risks associated
with the two types of errors; this procedure is statistically termed
as ‘acceptance sampling based on life tests’ or ‘reliability test plans.
To compare the performance of various acceptance sampling plans,
their performance over a range of possible quality levels is studied.
In statistical quality control, acceptance sampling plan is concerned
with the inspection of a sample of products taken from a lot and
the decision whether to accept or not to accept the lot based on the
quality of the product. Here we discuss the reliability test plan for
accepting or rejecting a lot where the lifetime of the product follows
Dagum distribution. In a life testing experiment, the procedure is
to terminate the test by a predetermined time t and note the number
of failures. If the number of failures at the end of time t does not
exceed a given number c, called acceptance number then we accept
the lot with a given probability of at least p. But if the number of
failures exceeds c before time t then the test is terminated, and the lot
is rejected. For such truncated life test and the associated decision
rule, we are interested in obtaining the smallest sample size to arrive
at a decision.
In the sequel, we assume that the distribution parameters β and δ

are known, while σ is unknown. In such a case, the average lifetime
of the product depend only on σ , and can be observed that the
average lifetime is monotonically increasing in σ . Let σ0 represent
the required minimum average lifetime, then, for given values of β

and δ .
The consumer’s risk, i.e., the probability of accepting a bad lot should
not exceed 1− p∗, where p∗ is a lower bound for the probability
that a lot of true value of σ below σ0 is rejected by the sampling
plan. For a fixed p∗, sampling plan is characterized by (n,c, t/σ0).
By sufficiently large lots we can apply binomial distribution to find
acceptance probability. The problem is to determine the smallest
positive integer n, for given values of p∗, σ0 and c, such that

L(p0) =
c

∑
i=0

(
n
i

)
pi

0(1− p0)
n−i ≤ 1− p∗, (3)

where p0 = F(t;β ,δ ,σ0), obtained from equation (2), indicates
the failure probability before time t and depends only on the ratio
t/σ0. The function L(p) is the operating characteristic function
of the sampling plan, i.e. the acceptance probability of the lot as
function of the failure probability p(σ) = F(t;β ,δ ,σ). The average
lifetime of the products is increasing in σ and, therefore, the failure
probability p(σ) = F(t;β ,δ ,σ) is decreasing function in σ which
implies that the operating characteristic function is increasing in σ .
The minimum values of n satisfying the inequality (3) are ob-
tained and displayed in Table 2 for p∗ = 0.90,0.95,0.99 and t/σ0 =
0.628,0.942,1.257,1.571,2.356,3.141,3.927,4.712 for β = δ = 2.
If p = F(t;β ,δ ,σ) is small and n is large, the binomial probability

may be approximated by Poisson probability with parameter np so
that the left side of (3) can be written as

L∗(p) =
c

∑
i=0

(np)i

i!
e−np ≤ 1− p∗, (4)

The minimum values of n satisfying (4) are obtained for the same
combination of p∗ and t/σ0 values as those used for (3). The results
are given in Table 3.
Alternatively, Kantam et al. (2006) considered another approach for
a reliability test plan. We summarize this approach. Let n indicates
the number of sampled items to be determined and r stands for a
natural number, such that if r failures out of n samples are occured
before the terminated time t the lot would be rejected. In this aspect,
r is called as termination number. The sample size is depending upon
the cost consideration and the expected time to reach a decision. If
the sample size is large it may reduce the expected waiting time
but increases the cost of consideration. Let us take sample size
as a multiple of the termination number to balance between these
two aspects. As we have to come know that the probability of r
failures out of n tested items is given as nCr pr(1− p)n−r, where
p = F(t;β ,δ ,σ) as before. Thus, the probability of accepting the
lot is

L(p) =
r−1

∑
i=0

(
n
i

)
pi(1− p)n−i. (5)

If α is producer’s risk then equation (6) can be written as:

r−1

∑
i=0
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n
i

)
pi(1− p)n−i = 1−α (6)

Given the values of n = rk, r and k, equation (6) can be solved for
p using cumulative probabilities of binomial distribution. Then the
values of p can be used in equation (6) for α = 0.10,0.05,0.01 to
find the values of t/σ . These values for different values of r and n
are given in Table 1.
As an example of this approach, let us think that we have to derive a
life test sampling plan with an acceptance probability of 0.95 for lots
with an acceptable mean life of 1000 hours and 10, 5 as sample size,
termination number r respectively. From Table 1, the entry against
r = 5 under column 2r is 0.94479. This implies that the termination
time t = 944.79 hours. In this test plan, we select 10 items from the
submitted lot and put to test. We reject the lot, when the 5th failure is
occured before 944.79 hours, otherwise we accept the lot. In either
case terminating the experiment as soon as the 5th failure occurs or
the termination time 944.79 hours is reached, or whichever is earlier.

3. Concluding Remarks

In this paper reliability test plan under the assumption that the life
of a product follows a Dagum distribution is proposed. Values of
termination time for Dagum distribution were provided so that the
practitioners can use the suggested plan conveniently. Minimum
sample size required to accept or reject a submitted lot for a given
acceptance number with producer’s risk using Binomial and Poisson
approximation were obtained. It is safe to conclude that the proposed
plan is useful in minimizing the producer’s risk.
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Table 2: Minimum sample size required to accept/reject a submitted lot for a given acceptance number with producer’s risk p∗ using Binomial approximation

t/σ

1− p∗ r 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.90 0 28 10 5 4 2 2 2 1
1 48 17 9 7 4 3 3 3
2 65 23 13 9 6 5 4 4
3 82 29 16 12 8 6 6 5
4 98 35 20 14 9 8 7 6
5 114 40 23 16 11 9 8 8
6 130 46 26 19 12 10 9 9
7 145 51 29 21 14 12 11 10
8 160 57 32 23 15 13 12 11
9 175 62 36 26 17 14 13 12
10 190 67 39 28 19 16 14 13

0.95 0 36 12 7 5 3 2 2 2
1 58 20 11 8 5 4 3 3
2 77 27 15 11 7 5 5 4
3 95 33 19 13 8 7 6 6
4 112 39 22 16 10 8 7 7
5 129 45 26 18 12 10 9 8
6 146 51 29 21 13 11 10 9
7 162 57 32 23 15 12 11 10
8 178 62 35 25 17 14 12 12
9 193 68 39 28 18 15 14 13
10 209 74 42 30 20 16 15 14

0.99 0 56 19 10 7 4 3 3 2
1 81 28 15 10 6 5 4 4
2 102 35 19 13 8 7 6 5
3 122 42 23 16 10 8 7 6
4 142 49 27 19 12 10 8 8
5 160 56 31 22 14 11 10 9
6 178 62 35 24 15 13 11 10
7 196 68 38 27 17 14 12 12
8 213 74 42 30 19 15 14 13
9 230 80 45 32 21 17 15 14
10 247 86 49 34 22 18 16 15

Table 3: Minimum sample size required to accept/reject a submitted lot for a given acceptance number with producer’s risk p∗ using Poisson approximation

t/σ

1− p∗ r 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.90 0 29 11 7 5 4 3 3 3
1 49 18 11 8 6 5 5 5
2 67 25 15 11 8 7 7 6
3 84 31 18 14 10 9 8 8
4 100 37 22 16 12 10 10 9
5 116 42 25 19 13 12 11 11
6 132 48 29 21 15 13 12 12
7 148 54 32 24 17 15 14 13
8 163 59 35 26 19 16 15 15
9 178 65 38 29 20 18 17 16
10 193 70 42 31 22 19 18 17

0.95 0 38 14 8 6 5 4 4 4
1 60 22 13 10 7 6 6 6
2 79 29 17 13 9 8 8 7
3 97 36 21 16 11 10 9 9
4 115 42 25 19 13 12 11 10
5 132 48 29 21 15 13 12 12
6 149 54 32 24 17 15 14 13
7 165 60 36 26 19 16 15 15
8 181 66 39 29 21 18 17 16
9 197 72 42 32 22 20 18 18
10 213 77 46 34 24 21 20 19

0.99 0 58 21 13 10 7 6 6 6
1 83 31 18 14 10 9 8 8
2 106 39 23 17 12 11 10 10
3 126 46 27 20 14 13 12 11
4 146 53 31 23 17 15 14 13
5 164 60 35 26 19 16 15 15
6 183 66 39 29 21 18 17 16
7 201 73 43 32 23 20 19 18
8 218 79 47 35 25 22 20 20
9 235 85 51 38 27 23 22 21
10 252 92 54 40 29 25 23 23
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