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Abstract 
 

This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian 

method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the 

E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-

hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estima-

tors are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary 

loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the 

QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. 

Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation. 
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1. Introduction 

The Erlang distribution has many applications because of its rela-

tion to the exponential and gamma distributions. Historically it 

was first introduced by Erlang [1] to be the distribution of waiting 

time and message length in telephone traffic. If the durations of 

individuals calls are obey exponential distribution, then the dura-

tion of a succession of calls has an Erlang distribution. The Erlang 

distribution is the sum of exponential variates and if its shape 

parameter becomes 2, it transformed to be chi-square distribution 

with 2k degrees of freedom. Also, the Erlang distribution is a 

gamma variate with an integer shape parameter. The probability 

density function (pdf) of the Erlang distribution is  

 
x

k 1

k

x e
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(1-1) 

 

Where   and k  are the scale and shape parameter respectively. 

Several authors have studied the Erlang distribution; for examples, 

Harischandra and Rao [2] investigated the problems with classical 

inferences for the Erlangian queue. Bhattacharyya and Singh [3] 

obtained a Bayes estimator for the Erlangian queue based on two 

prior distributions. Fang [4] introduced a study of the hyper-

Erlang distribution model and its applications in wireless networks 

and mobile computing systems. Abdelkader [5] obtained the mo-

ments of order statistics from non-identically distributed Erlang 

distribution. Suri et al [6] applied the Erlang distribution to design 

a simulator for time estimation of project management process. 

Haq and Dey [7] obtained the Bayesian estimates of parameters 

for the Erlang distribution based on various independent informa-

tive priors. Bakoban [8] derived the maximum likelihood and 

bayes estimates for the scale parameter, reliability and cumulative 

hazard functions under LINEX and entropy loss functions. Khan 

and Jan [9] obtained the Bayes parameters estimation based on 

different generalized truncated prior distributions.  

The method of quasi-likelihood was first proposed by Wedderbum 

[10] for estimating the parameters in generalized linear model if 

only there exist a specified relationship between mean and vari-

ance of each observation. Wedderbum [10] defined the quasi-

likelihood function for an observation x with mean   and vari-

ance V( )  as follows: 

 

Q(x; ) x

V( )

  


 
                                                                         (1-2) 

 

Or equivalent by 

 

x
Q(x; ) d function of X

V( )



   


                                             (1-3) 

Where E(x),  v( )  var (x) . The variance assumption is gener-

alized to var (x) v( ),    where the variance function v(.) is as-

sumed to be known and the parameter   may be unknown. Wed-

derbum [10] also concluded that if the observations are distributed 

one parameter exponential, then the quasi-likelihood has the same 

properties of the log-likelihood function and so each of each of 

them has the similar asymptotic efficiency.  

The E-Bayesian estimation is a new criteria of estimation was first 

proposed by Han [11].Han [12] obtained the E-Bayes and hierar-
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chical Bayes estimates for reliability parameter of the exponential 

distribution based on type-I censored data and by considering the 

quadratic loss function. Yin and Liu [13] constructed the E-

Bayesian estimation and hierarchical Bayesian estimation tech-

niques for estimating the unknown reliability parameter of the 

geometric distribution by considering the scaled squared loss func-

tion in complete samples. The minimum risk equivariant and E-

Bayes estimates for the unknown parameter of the Burr-XII distri-

bution based on entropy loss function in complete samples were 

obtained by Wei et al [14]. Jaheen and Okasha [15] derived the 

Bayesian and E-Bayesian estimators for the parameters and relia-

bility function of the Burr-XII distribution based on type-II cen-

soring and by considering the squared error loss and LINEX loss 

functions. Cai et al [16] used the E-Bayesian estimation method 

for forecasting of security investment. Okasha [17] applied the 

maximum likelihood, Bayesian and E-Bayesian approaches for 

estimating the unknown scale parameter, reliability and hazard 

functions of the Weibull distribution based on type-ii censoring 

and by considering the squared error loss function. Wu [18] pro-

posed the Bayesian estimation and E-Bayesian estimation methods 

in a new integral interval for estimating the failure probability 

under zero-failure data and by considering the quadratic loss func-

tion. Azimi et al [19] obtained the Bayes and E-Bayes estimates 

for the parameter and reliability function of the generalized half 

Logistic distribution based on progressively type-II censored data 

and by considering the squared error loss and LINEX loss func-

tions. Javadkani et al [20] constructed the Bayes, empirical Bayes 

and E-Bayes methods for estimating the unknown shape parameter 

and the reliability function of the two parameter bathtub-shaped 

lifetime distribution based on progressively first-failure-censoring 

and by considering the minimum expected loss and LINEX loss 

functions. Liu et al [21] obtained the E-Bayes and hierarchical 

estimates for the unknown parameter of the Rayleigh distribution 

based on q-symmetric entropy loss function in complete samples. 

Okasha [22] derived the Bayesian and the E-Bayesian estimates of 

the scale parameter, reliability and hazard functions of the Lomax 

distribution under on type-ii censoring and by considering the 

balanced squared error loss function. Reyad and Othman [23] 

obtained the Bayesian and E-Bayesian estimates for the shape 

parameter of the Gumbell type-II distribution based on type-ii 

censoring and by considering squared error, LINEX, Degroot, 

quadratic and minimum expected loss functions. Reyad and Oth-

man [24] constructed the Bayes and E-Bayes approaches for esti-

mating the unknown shape parameter of the Kumaraswamy distri-

bution based on type-ii censored data and by considering squared 

error, LINEX, Degroot, quadratic. Reyad et al [25] obtained the 

Bayes, E-bayes, hierarchical Bayes and empirical Bayes estimates 

of the unknown shape parameter and hazard function of the Gom-

pertz distribution based on type-II censoring and by considering 

squared error loss, quadratic loss entropy loss and LINEX func-

tions.  

The main object of this study is to suggested a new modification 

for the E-Bayes method of estimation to yield a new technique 

namely quasi-E-Bayes method (or briefly QE-Bayes). The new 

method is compared with other three different techniques; quasi-

Bayes, quasi-hierarchical Bayes and quasi-empirical Bayes for 

estimating the scale parameter associated to the Erlang distribu-

tion. The resulting estimates are obtained based on symmetric and 

different asymmetric loss functions. The properties of the new 

method are discussed and the relations with the quasi-hierarchical 

Bayes estimates are also investigated. All outcomes obtained in 

this article showed that the proposed method is more efficient and 

easy to operate. 

The remainder of this paper is organized as follow. In Section 2, 

the quasi-Bayes estimates of the parameter   are derived under 

SELF, PLF, ELF, DLF and QLF. The QE-Bayes estimates are 

obtained of the parameter   under SELF, PLF, ELF, DLF and 

QLF in Section 3. In Section 4, 5, the quasi-hierarchical Bayes and 

quasi-empirical Bayes estimates of the parameter   are derived 

under SELF, PLF, ELF,DLF and QLF respectively. In Section 6, 

the properties of the QE-Bayes estimates are investigated and the 

relations among the QE-Bayes and quasi-hierarchical Bayes esti-

mates are derived. In Section 7, a Monte Carlo simulation is per-

formed to compare the performance of the resulting estimates. 

Some concluding remarks have been given in the last Section. 

2. The quasi-Bayesian estimation 

In this section, we will obtain the quasi-Bayes estimates of the 

scale parameter of the Erlang distribution by considering symmet-

ric loss function [squared error loss (SELF))] and four different 

asymmetric loss functions [Precautionary loss function (PLF), 

entropy loss function (ELF), Degroot loss function (DLF) and 

quadratic loss function (QLF)]. The mean and variance of the 

Erlang distribution given in (1-1) is given by 

 
2E(x) k, v(x) k v( )                                                        (2-1) 

 

Where 

 

, v( )                                                                              (2-2) 

 

Thus for a random sample of size n,  the quasi-likelihood function 

can be obtained for the Erlang distribution by using (1-2) and (1-

3) in (1-1) to be 

 
n

i
i 1

x nQ(x; )


  


 
                                                                   (2-3) 

 

Which gives 

 
n

i
i 1

Q(x; ) x ln n


                                                                     (2-4) 

 

We can obtain the quasi-likelihood function as a function in   

and k by using (2-1) in (2-4) to be 

 
n

i
i 1

x
Q(x; ,k) ln( k) n k


                                                             (2-5) 

 

The natural exponential of the quasi-likelihood function is given 

by 

 

 
n

n ki
i 1

x
exp Q(x; ,k) ( k) e 




                                                          (2-6) 

 

Assuming k is known, then the quasi-likelihood function become 

 

  w n kexp Q(x; ) e                                                                      (2-7) 

 

Where 

 
n

i
i 1

w x


                                                                                      (2-8) 

 

We can use the exponential distribution as a conjugate prior distri-

bution of   with rate parameter a  and its pdf given by  

 
ag( a) a e , 0, a 0                                        (2-9) 

In quasi-Bayesian estimation approach, the likelihood function is 

replaced by the natural exponential of the quasi-likelihood func-

tion. Combining (2-7) and (2-9), the quasi posterior distribution of 

  can be obtained as 
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That mean, the quasi posterior distribution of   obeys

(w 1,a nk).    

2.1. The quasi-Bayesian estimation under squared error 

loss function (SELF) 

A commonly used loss function is the square error loss function 

(SELF) introduced by Mood et al (26) as follows: 

 
2

1

ˆ ˆL ( , ) r( ) , k 0                                            (2-11) 

 

Where ̂  is an estimator of   and r  is the scale of the loss func-

tion. The scale r is often taken equal to one which has no effect on 

the Bayes estimates. This loss function is symmetric in nature. i.e. 

it gives equal importance to both over and under estimation. The 

quasi-Bayes estimator of   denoted by 
QBS
̂ can be obtained as 

 

QBS

ˆ E ( x)


                                                                              (2-12) 

 

Where E

 indicated to the expectation of the quasi posterior dis-

tribution. We can derived 
QBS
̂ by using (2-10) in (2-12) to be 

 

QBS

w 1ˆ
a nk


 


                                                                             (2-13) 

2.2. The quasi-Bayesian estimation under precautionary 

loss function (PLF) 

Nostrom [27] defined the precautionary loss function (PLF) as 

follows: 

 
2

2

ˆ( )ˆL ( , )
ˆ

  
  


                                                                      (2-14) 

 

The quasi-Bayes estimator of   based on PLF denoted by 
QBP
̂  

can be obtained as 

 
1

2 2

QBP

ˆ E ( x)


                                                                            (2-15) 

 

We can derived 
QBP
̂ by using (2-10) in (2-15) to be 

 

QBP

(w 1)(w 2)ˆ
a nk

 
 


                                                               (2-16) 

2.3. The quasi-Bayesian estimation under entropy loss 

function (ELF) 

Day et al [28] have discussed the entropy loss function (ELF) of 

the form 

 

3

ˆ ˆ
ˆL ( , ) ln 1

    
              

                                                          (2-17) 

The quasi-Bayes estimator of   relative to ELF denoted by 
QBE
̂  

can be obtained as 

 
1

1

QBE

ˆ E ( x)





                                                                          (2-18) 

 

We can obtain 
QBE
̂ by using (2-10) in (2-18) to be 

 

QBE

wˆ
a nk

 


                                                                             (2-19) 

2.4. The quasi-Bayesian estimation under Degroot loss 

function (DLF) 

The Degroot loss function (DLF) is defined by Degroot [29] to be 

 

4

ˆ
ˆL ( , )

ˆ

   
     

                                                                      (2-20) 

 

The quasi-Bayes estimator relative to DLF denoted by 
QBD
̂ can be 

obtained as 

 
2

QBD

E ( x)ˆ
E ( x)






 


                                                                         (2-21) 

 

We can obtain 
QBD
̂ by using (2-10) in (2-21) to be 

 

QBD

w 2ˆ
a nk


 


                                                                             (2-22) 

2.5. The quasi-Bayesian estimation under quadratic loss 

function (QLF) 

Bhuiyan et al [30] defined the quadratic loss function (QLF) as 

follows: 

 

5

ˆ
ˆL ( , )

ˆ

   
     

                                                                      (2-23) 

 

The quasi-Bayes estimator of   based on QLF denoted by 
QBQ
̂  

can be obtained as 

 
1

QBQ 2

E ( x)ˆ
E ( x)










 


                                                                       (2-24) 

 

We can derived 
QBQ
̂ by using (2-10) in (2-24) to be 

 

QBQ

w 1ˆ
a nk


 


                                                                             (2-25) 

3. The quasi-E-Bayesian estimation 

In this section, we have derived the quasi-E-Bayes estimates for 

the scale parameter of the Erlang distribution by considering 

symmetric loss function [squared error loss (SELF))] and four 

different asymmetric loss functions [Precautionary loss function 

(PLF), entropy loss function (ELF), Degroot loss function (DLF) 

and quadratic loss function (QLF)]. Based on Han [30], the hyper 

parameter a  must be choosing to guarantee that g( a) given in 

(2-9) is a decreasing function of  . The derivative of g( a) with 

respect to   is 

 

 2
dg( a)

( a ) exp a
d


   


                                                            (3-1) 

Note that a 0  and 0   leads to for any value of 0 a ,   im-

ply to
dg( a)

0
d





, and therefore g( a) is a decreasing function of

 . Consequently, it is convention to choose the hyper parameter 

a under the restriction 0 a c,  where c is a given upper bound ( c

is a positive constant). 

 

Definition: Let ˆ(x) be continuous, if 

 
ˆ(x) (x)dx
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Then 

 

QEB QB

ˆ ˆ (a) (a)da


   
 
                                                                 (3-2) 

 

Is called the QE-Bayesian estimation (expected quasi-Bayesian 

estimation) of  , where  is the set of all possible value of a ,

QB

ˆ (a) is the quasi-Bayes estimation of   with the hyper parameter 

a and (a) is the prior distribution corresponding to the hyper 

parameter a over  . 

3.1. The QE-Bayesian estimation under squared error 

loss function (SELF) 

The QE-Bayesian estimates of   are derived depending on three 

different distributions of the hyper parameter a . These distribu-

tions are used to study the impact of the different prior distribu-

tions on the QE-Bayesian estimation of  . The following distribu-

tions of a  may be used: 

 

1

1
(a) , 0 a c

c
                               (3-3) 

 

2 2

2a
(a) , 0 a c

c
                                 (3-4) 

 

3 2

2(c a)
(a) , 0 a c

c


                                  (3-5) 

 

We can obtain the QE-Bayesian estimate of   relative to SELF 

based on 
1
(a)  which is denoted as 

QEBS1
̂  by using (2-13) and (3-3) 

in (3-2) to be 

 

c

QEBS1 0

w 1 1 w 1 cˆ da ln 1
a nk c c nk

       
                

                              (3-6) 

 

Similarly, we can derive the QE-Bayesian estimates of   relative 

to SELF based on 
2
(a) and 

3
(a)  which are denoted as 

QEBS2 QEBS3

ˆ ˆ,   by using (2-13), (3-4) in (3-2) and (2-13), (3-5) in (3-

2) respectively to be 

 

c

QEBS2 0 2

w 1 2a 2(w 1) nk cˆ da 1 ln 1
a nk c c c nk

           
              

         
        (3-7) 

 

And 

 

c

QEBS3 0 2

w 1 2(c a)ˆ da
a nk c

2(w 1) nk c
1 ln 1 1

c c nk

   
     

  

       
         
      

                                   (3-8) 

 

                                          

 

3.2. The QE-Bayesian estimation under precautionary 

loss function (PLF) 

We can obtain the QE-Bayesian estimate of   relative to PLF 

based on 
1
(a) which is denoted as 

QEBP1
̂  by using (2-16) and (3-3) 

in (3-2) to be 

 

c

QEBP1 0

(w 1)(w 2) 1ˆ da
a nk c

(w 1)(w 2) c
ln 1

c nk

    
         

    
        

                                               (3-9)                              

 

Also, we can derive the QE-Bayesian estimates of   relative to 

PLF based on 
2
(a) and 

3
(a) which are denoted as 

QEBP 2 QEBP3

ˆ ˆ,  by 

using (2-16), (3-4) in (3-2) and (2-16), (3-5) in (3-2) respectively 

to be 

 

c

QEBP 2 0 2

(w 1)(w 2) 2aˆ da
a nk c

2 (w 1)(w 2) nk c
1 ln 1

c c nk

    
         

       
               

                       (3-10)                           

 

And 

 

c

QEBP3 0 2

(w 1)(w 2) 2(c a)ˆ da
a nk c

2 (w 1)(w 2) nk c
1 ln 1 1

c c nk

    
         

       
                

                    (3-11)                            

3.3. The QE-Bayesian estimation under entropy loss 

function (ELF) 

We can get the QE-Bayesian estimate of   relative to ELF based 

on 
1
(a)  which is denoted as 

QEBE1
̂  by using (2-19) and (3-3) in 

(3-2) to be 

 

c

QEBE1 0

w 1 w cˆ da ln 1
a nk c c nk

      
                

                                 (3-12) 

 

Also, we can derive the QE-Bayesian estimates of   relative to 

ELF based on 
2
(a) and 

3
(a)  which are denoted as 

QEBE2 QEBE3

ˆ ˆ,  by 

using (2-19), (3-4) in (3-2) and (2-19), (3-5) in (3-2) respectively 

to be 

 

c

QEBE 2 0 2

w 2aˆ da
a nk c

2w nk c
1 ln 1

c c nk

  
     

  

      
        
      

                                            (3-13)                                                    

 

And 

 

c

QEBE3 0 2

w 2(c a) 2w nk cˆ da 1 ln 1 1
a nk c c c nk

          
               

         
 (3-14)  

3.4. The QE-Bayesian estimation under Degroot loss 

function (DLF) 

We can get the QE-Bayesian estimate of   relative to DLF based 

on 
1
(a)  which is denoted as 

QEBD1
̂  by using (2-22) and (3-3) in 

(3-2) to be 

 

c

QEBE1 0

w 2 1 w 2 cˆ da ln 1
a nk c c nk

       
                

                            (3-15) 

 

Also, we can derive the QE-Bayesian estimates of   relative to 

DLF based on 
2
(a) and 

3
(a)  which are denoted as 

QEBD2 QEBD3

ˆ ˆ,  by 

using (2-22), (3-4) in (3-2) and (2-22), (3-5) in (3-2) respectively 

to be 

 

c

QEBD 2 0 2

w 2 2aˆ da
a nk c

2(w 2) nk c
1 ln 1

c c nk

  
     

  

       
        
      

                                    (3-16)                                              
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And 

 

c

QEBD3 0 2

w 2 2(c a)ˆ da
a nk c

2(w 2) nk c
1 ln 1 1

c c nk

   
     

  

       
         
      

                                (3-17)                                        

3.5. The QE-Bayesian estimation under quadratic loss 

function (QLF) 

We can get the QE-Bayesian estimate of   relative to QLF based 

on 
1
(a)  which is denoted as 

QEBQ1
̂  by using (2-25) and (3-3) in 

(3-2) to be 

 

c

QEBQ1 0

w 1 1 w 1 cˆ da ln 1
a nk c c nk

       
                

                            (3-18) 

 

Also, we can derive the QE-Bayesian estimates of   relative to 

DLF based on 
2
(a) and 

3
(a)  which are denoted as 

QEBQ2 QEBQ3

ˆ ˆ,  by 

using (2-25), (3-4) in (3-2) and (2-25), (3-5) in (3-2) respectively 

to  

 

c

QEBQ 2 0 2

w 1 2aˆ da
a nk c

2(w 1) nk c
1 ln 1

c c nk

  
     

  

       
        
      

                                     (3-19)                                             

 

And 

 

c

QEBQ3 0 2

w 2 2(c a)ˆ da
a nk c

2(w 1) nk c
1 ln 1 1

c c nk

   
     

  

       
         
      

                                (3-20)                                         

4. Quasi-hierarchical Bayesian estimation 

In this section, we have obtained the quasi-hierarchical Bayes 

estimates for the scale parameter of the Erlang distribution by 

considering symmetric loss function [squared error loss (SELF))] 

and four different asymmetric loss functions [Precautionary loss 

function (PLF), entropy loss function (ELF), Degroot loss func-

tion (DLF) and quadratic loss function (QLF)]. According to Lind-

ley and Smith [32], if a  is a hyper parameter in  , the prior den-

sity function of   is g( a) given in (2-9) and the prior density 

functions of the hyper parameter a  is given in (3-3), (3-4) and (3-

5), then the corresponding quasi hierarchical prior density func-

tions of   are given as the following: 

 

 
c ca a

4 0 0

1 1
( ) a e da a e da,

c c

      
       

   
                                         (4-1) 

 

 
c ca 2 a

5 0 02 2

2a 2
( ) a e da a e da,
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                                     (4-2) 

 

And 

 

 
c ca a

6 0 02 2

2(c a) 2
( ) a e da a(c a)e da,

c c

      
        

   
                      (4-3) 

 

The associated quasi hierarchical posterior density functions of   

can be derived by combining (2-7), (4-1), (4-2) and (4-3) to be 
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40

c w (a nk )

0

( w 1)c

0

exp Q(x; ) ( )
h ( x)
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a e da
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( w 1)
2

exp Q(x; ) ( )
h ( x)

exp Q(x; ) ( )d

a e da
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c(w 1) a a nk da0
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And 

 

 
 

 

6

4

60

c w (a nk )

0

( w 1)c

0

exp Q(x; ) ( )
h ( x)

exp Q(x; ) ( )d

a(c a) e da
,

(w 1) a(c a) a nk da



 

 

  
 

   

 

   

                                  (4-6)                                          

4.1. The quasi-hierarchical Bayesian estimation under 

squared error loss function (SELF) 

The quasi-hierarchical Bayes estimates of   based on SELF de-

noted by 
QHBSi

ˆ (i 1,2,3)   can be obtained as 

 

QHBSi hi

ˆ E ( x), i 1,2,3                                                         (4-7) 

 

Where 
hi

E  referred to the expectation of the quasi hierarchical 

posterior distribution. We can derived 
QHBSi

ˆ (i 1,2,3)  by using (4-

4), (4-5) and (4-6) in (4-7) to be 

 

 

 

( w 2)c

0

( w 1)QHBS1 c

0

(w 1) a a nk daˆ ,
a a nk da
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( w 2)c 2

0

( w 1)QHBS2 c 2

0

(w 1) a a nk daˆ ,
a a nk da

 

 

 
 


                                                (4-9) 

 

And 

 

 

 

( w 2)c

0

( w 1)QHBS3 c

0

(w 1) a(c a) a nk daˆ ,
a(c a) a nk da

 

 

  
 

 
                                      (4-10) 

 

Unfortunately, there is no closed form for 
QHBSi

ˆ (i 1,2,3)  given in 

(4-8), (4-9) and (4-10). So, numerical computations and computer 

facilities are needed for calculating 
QHBSi

ˆ (i 1,2,3)  .  

4.2. The quasi-hierarchical Bayesian estimation under 

precautionary loss function (PLF) 

The quasi-hierarchical Bayes estimates of   based on QLF denot-

ed by 
QHBPi

ˆ (i 1,2,3)   can be obtained as 

 
1

2 2

QHBPi hi

ˆ E ( x) , i (1,2,3)                                              (4-11) 

 

We can derived 
QHBPi

ˆ (i 1,2,3)  by using (4-4), (4-5) and (4-6) in (4-

11) to be 

 

 

 

( w 3)c

0

( w 1)QHBP1 c

0

(w 1)(w 2) a a nkˆ ,
a a nk

 

 

  
 


                                      (4-12) 
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( w 3)c 2

0

( w 1)QHBP 2 c 2

0

(w 1)(w 2) a a nkˆ ,
a a nk

 

 

  
 


                                     (4-13) 

 

And 

 

 

 

( w 3)c

0

( w 1)QHBP3 c

0

(w 1)(w 2) a(c a) a nkˆ ,
a(c a) a nk

 

 

   
 

 
                              (4-14) 

 

The integrals in (4-12), (4-13) and (4-14) cannot be computed 

analytically in simple closed form, it calculating numerically by 

using computer facilities.  

4.3. The quasi-hierarchical Bayesian estimation under 

entropy loss Function (ELF) 

The quasi-hierarchical Bayes estimates of   based on ELF denot-

ed by 
QHBEi

ˆ (i 1,2,3)   can be obtained as 

 
1

1

QHBEi hi

ˆ E ( x) i 1,2,3


                                                    (4-15) 

 

We can derived 
QHBEi

ˆ (i 1,2,3)  by using (4-4), (4-5) and (4-6) in 

(4-15) to be 

 

 

 

( w 1)c

0

wQHBE1 c

0

w a a nk daˆ ,
a a nk da

 




 


                                                      (4-16) 

 

 

 

( w 1)c 2

0

wQHBE 2 c 2

0

w a a nk daˆ ,
a a nk da

 




 


                                                     (4-17) 

 

And 

 

 

 

( w 1)c

0

wQHBE3 c

0

w a(c a) a nk daˆ ,
a(c a) a nk da

 



 
 

 
                                              (4-18) 

 

Also, there is no closed form for 
QHBEi

ˆ (i 1,2,3)  given in (4-16), (4-

17) and (4-18). So, numerical computations and computer facili-

ties are needed for calculating
QHBEi

ˆ (i 1,2,3)  .  

4.4. The quasi-hierarchical Bayesian estimation under 

Degroot  loss function (DLF) 

The quasi-hierarchical Bayes estimates of   based on DLF denot-

ed by 
QHBDi

ˆ (i 1,2,3)   can be obtained as 

 
2

hi

QHBDi

hi

E ( x)ˆ i 1,2,3
E ( x)


  


                                            (4-19) 

 

We can derived 
QHBDi

ˆ (i 1,2,3)  by using (4-4), (4-5) and (4-6) in 

(4-19) to be 

 

 

 

( w 3)c

0

( w 2)QHBD1 c

0

(w 2) a a nk daˆ ,
a a nk da

 

 

 
 


                                               (4-20) 

 

 

 

( w 3)c 2

0

( w 2)QHBD2 c 2

0

(w 2) a a nk daˆ ,
a a nk da

 

 

 
 


                                             (4-21) 

 

And 

 

 

 

( w 3)c

0

( w 2)QHBD3 c

0

(w 2) a(c a) a nk daˆ ,
a(c a) a nk da

 

 

  
 

 
                                      (4-22) 

The integrals in (4-20), (4-21) and (4-22) are very complicated 

and cannot be solved analytically in simple closed form, it calcu-

lating numerically by using computer facilities.  

4.5. The quasi-hierarchical Bayesian estimation under 

quadratic loss function (QLF) 

The quasi-hierarchical Bayes estimates of   based on QLF denot-

ed by 
QHBQi

ˆ (i 1,2,3)   can be obtained as 

 
1

hi

QHBQi 2

hi

E ( x)ˆ i 1,2,3
E ( x)






  


                                           (4-23) 

 

We can derived 
QHBQi

ˆ (i 1,2,3)  by using (4-4), (4-5) and (4-6) in 

(4-23) to be 

 

 

 

wc

0

( w 1)QHBQ1 c

0

(w 1) a a nk daˆ ,
a a nk da



 

 
 


                                                  (4-24) 

 

 

 

wc 2

0

( w 1)QHBQ 2 c 2

0

(w 1) a a nk daˆ ,
a a nk da



 

 
 


                                                 (4-25) 

 

And 

 

 

 

wc

0

( w 1)QHBQ3 c

0

(w 1) a(c a) a nk daˆ ,
a(c a) a nk da



 

  
 

 
                                         (4-26) 

 

The integrals in (4-24), (4-25) and (4-26) are very complicated 

and cannot be solved analytically in simple closed form, it calcu-

lating numerically by using computer facilities.  

5. The quasi-empirical Bayesian estimation 

In this section, we have concerned to obtain the quasi-empirical 

Bayes estimates for the scale parameter of the Erlang distribution 

by considering symmetric loss function [squared error loss 

(SELF))] and four different asymmetric loss functions [Precau-

tionary loss function (PLF), entropy loss function (ELF), Degroot 

loss function (DLF) and quadratic loss function (QLF)]. The 

Bayes approach assumed that the hyper parameter a  is known. 

When a  is unknown, we may use the empirical Bayes criteria to 

get its estimates from the likelihood function and probability den-

sity function of the prior distribution [33].Now, from (2-7) and (2-

9), the marginal distribution of x given a  is obtained as: 

 

    ( w 1)

0
f x a exp Q(x; ) g( a)d a(a nk)

                                  (5-1) 

 

By taking the natural log for (5-1), we get 

 

 log f x a log a (w 1) log (a nk)                                             (5-2) 

 

By taking the derivative for (5-2) and setting it equal to zero, we 

obtain 

 

 

a a

log f x a 1 (w 1)
0

a a a nk


 
  

 
                                                   (5-3) 

 

By solving (5-3) for a which is the quasi-maximum likelihood 

estimator of a  to be 

 

nk
a

w
                                                                                         (5-

4) 
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5.1. The quasi-empirical Bayesian estimation under 

squared error loss function (SELF) 

The quasi-empirical Bayes estimate of   based on SELF denoted 

as 
QeBS
̂  can be obtained by replacing a  in (5-4) instead of a  in (2-

13) to be 

 

QeBS

wˆ
nk

                                                                                     (5-5) 

5.2. The quasi-empirical estimation under precaution-

ary loss function (PLF) 

The quasi-empirical Bayes estimate of   based on PLF denoted as 

QeBP
̂  can be obtained by replacing a  in (5-4) instead of a  in (2-

16) to be 

 

QeBP

w w 2ˆ
nk w 1

 
   

 
                                                                    (5-6) 

5.3. The quasi-empirical estimation under entropy loss 

function (ELF) 

The quasi-empirical Bayes estimate of   based on ELF denoted 

as 
QeBE
̂  can be obtained by replacing a  in (5-4) instead of a  in (2-

19) to be 

 
2

QeBE

wˆ
nk(w 1)

 


                                                                         (5-7) 

5.4. The quasi-empirical Bayesian estimation under 

degroot loss function (DLF) 

The quasi-empirical Bayes estimate of   based on DLF denoted 

as 
QeBD
̂  can be obtained by replacing a  in (5-4) instead of a  in 

(2-22) to be 

 

QeBD

w(w 2)ˆ
nk(w 1)


 


                                                                         (5-8) 

5.5. The quasi-empirical Bayesian estimation under 

quadratic loss function (QLF) 

The quasi-empirical Bayes estimate of   based on DLF denoted 

as 
QeBQ
̂  can be obtained by replacing a  in (5-4) instead of a  in 

(2-25) to be 

 

QeBQ

w(w 1)ˆ
nk(w 1)


 


                                                                         (5-9) 

6. Properties of quasi-E-Bayesian estimation 

In this section, we discuss the relations between the QE-Bayesian 

estimators and the relation between the QE-Bayesian estimators 

and the quasi-hierarchical Bayesian estimators.  

6.1. The relations between the QE-Bayesian estimates 

In this subsection, we shall derive the relation the QE-Bayesian 

estimates.  

6.1.1. Relations among 
QEBSi

ˆ (i 1,2,3)   

Lemma 1: It follows from (3-6), (3-7) and (3-8) that 

 

i) 
QEBS2 QEBS1 QEBS3

ˆ ˆ ˆ      

 

   ii)  
QEBS1 QEBS2 QEBS3nk nk nk

ˆ ˆ ˆlim lim lim
  
    

 
 

Proof. See Appendix (1). 

6.1.2. Relations among 
QEBPi

ˆ (i 1,2,3)   

Lemma 2: It follows from (3-9), (3-10) and (3-11) that 

 

i) 
QEBP2 QEBP1 QEBP3

ˆ ˆ ˆ      

 

ii) 
QEBP1 QEBP 2 QEBP3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

Proof. See Appendix (1). 

6.1.3. Relations among 
QEBEi

ˆ (i 1,2,3)   

Lemma 3: It follows from (3-12), (3-13) and (3-14) that 

 

i) 
QEBE2 QEBE1 QEBE3

ˆ ˆ ˆ      

 

   ii)  
QEBE1 QEBE 2 QEBE3nk nk nk

ˆ ˆ ˆlim lim lim
  
    

 
 

Proof. See Appendix (1). 

6.1.4. Relations among 
QEBDi

ˆ (i 1,2,3)   

Lemma 4: It follows from (3-15), (3-16) and (3-17) that 

 

i) 
QEBD2 QEBD1 QEBD3

ˆ ˆ ˆ      

 

  ii)  
QEBD1 QEBD 2 QEBD3nk nk nk

ˆ ˆ ˆlim lim lim
  
    

 

Proof. See Appendix (1). 

6.1.5. Relations among 
QEBQi

ˆ (i 1,2,3)   

Lemma 5: It follows from (3-18), (3-19) and (3-20) that 

 

i) 
QEBQ2 QEBQ1 QEBQ3

ˆ ˆ ˆ      

 

  ii)  
QEBQ1 QEBQ 2 QEBQ3nk nk nk

ˆ ˆ ˆlim lim lim
  
    

 

Proof. See Appendix (1). 

 

6.2. The relations between the QE-Bayesian and quasi-

hierarchical Bayesian estimates 

In this subsection, we shall construct the relations between the 

QE-Bayesian and the quasi-hierarchical Bayesian estimates. 

6.2.1. Relations among 
QEBSi QHBSi

ˆ ˆ, (i 1,2,3)    

Lemma 6: It follows from (3-6), (3-7), (3-8), (4-8). (4-9) and (4-

10) that 

 

QEBSi QHBSink nk

ˆ ˆlim lim (i 1,2,3)
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Proof. See Appendix (2). 

6.2.2. Relations among 
QEBPi QHBPi

ˆ ˆ, (i 1,2,3)    

Lemma 7: It follows from (3-9), (3-10), (3-11), (4-12). (4-13) and 

(4-14) that 

 

QEBPi QHBPink nk

ˆ ˆlim lim (i 1,2,3)
 
     

Proof. See Appendix (2). 

6.2.3. Relations among 
QEBEi QHBEi

ˆ ˆ, (i 1,2,3)    

Lemma 8: It follows from (3-12), (3-13), (3-14), (4-16). (4-17) 

and (4-18) that 

 

QEBEi QHBEink nk

ˆ ˆlim lim (i 1,2,3)
 
     

Proof. See Appendix (2). 

6.2.4. Relations among 
QEBDi QHBDi

ˆ ˆ, (i 1,2,3)    

Lemma 9: It follows from (3-15), (3-16), (3-17), (4-20). (4-21) 

and (4-22) that 

 

QEBDi QHBDink nk

ˆ ˆlim lim (i 1,2,3)
 
     

Proof. See Appendix (2). 

6.2.5. Relations among 
QEBQi QHBQi

ˆ ˆ, (i 1,2,3)    

Lemma 10: It follows from (3-18), (3-19), (3-20), (4-24). (4-25) 

and (4-26) that 

 

QEBQi QHBQink nk

ˆ ˆlim lim (i 1,2,3)
 
     

Proof. See Appendix (2). 

7. Monte Carlo simulation 

This section investigated a Monte Carlo simulation study to evalu-

ate the performance of different estimators for the scale parameter 

corresponding to the Erlang distribution discussed in the preceding 

sections. The simulation structure consists of five basic steps 

which are: 

Step (1): Set the default values (true values) of k and c which are 

3 and 5 respectively. We considered different sample sizes to ob-

serve their effect on the estimates in small, moderate and large 

dataset which are 

 
 small samples moderate samples large samples 

n  5, 10 15, 20, 25 40, 50, 60, 70 

 

Step (2): For these cases, we generate a from the uniform prior 

distributions (0,c) given in (3-3), (3-4) and (3-5). For given values 

of a , we generate   from the exponential prior distribution given 

in (2-9).  

Step (3): For known values of k , samples are generated from the 

Erlang distribution given in (1-1) through the adoption of inverse 

transformation method, by solving the following equation numeri-

cally 

 
xi

i
k 1

i i
i 1

e x
1

i!







 


U  

 

Where U is a random variable distributed according to uniform 

distribution on the period (0,1). 

Step (4): Calculate the quasi-Bayes, QE-Bayes, quasi-hierarchical 

Bayes and quasi-empirical Bayes estimates of the unknown scale 

parameter associated to the Erlang distribution according to the 

formulas that have been obtained. 

Step (5): We repeated this process 1000 times and compute the 

mean square error (MSE) for the estimates for different sample 

sizes and given values of k, c  where 

 

21ˆ ˆMSE( ) ( )
1000

  
 

 

And ̂  stands for an estimator of  . The simulation results are 

displayed in Tables (1-5). 

 
Table 1: Averaged Values of MSES for Estimates of the Parameter   

Based On SELF 

QeBS
̂  

QHBS
̂  

QEBS
̂  

QBS
̂  n  

 0.0098880 
0.0077262  0.0073777 

 0.0072705 5  0.0072920 0.0069077 

 0.0083999  0.0085891 

 0.0053885 
 0.0047305  0.0046096 

 0.0045925 10  0.0045935  0.0044600 

 0.0049238  0.0049660 

0.0031496 
 0.0087886  0.0028348 

0.0028292 15  0.0028121  0.0075598 

 0.0029786 0.0030098 

 0.0024322 

 0.0022718  0.0022458 
 0.0022433 
 

20  0.0022284  0.0021943 

 0.0023334  0.0023526 

 0.0021385 

 0.0020234 0.0020058 

 0.0020043 25  0.0019890  0.0019642 

 0.0020695  0.0020832 

0.0011781 

 0.0011384  0.0011308 

 0.0011306 40  0.0011306 0.0011219 

 0.0011505  0.0011538 

0.0010281 

 0.0010002 0.0009948 

 0.0009947 50  0.0009944  0.0009882 

 0.0010086  0.0010105 

 0.0008484 

 0.0008291  0.0008254 

 0.0008254 60  0.0008248  0.0008205 

 0.0008352 0.0008367 

 0.0007628 

 0.0007474  0.0007447 

0.0007448 70  0.0007411  0.0007374 

 0.0007549  0.0007573 

 
Table 2: Averaged Values of MSES for Estimates of the Parameter   

Based On PLF 

QeBS
̂  

QHBS
̂  

QEBS
̂  

QBS
̂  n  

0.0108437 

0.0085543  0.0083826 

 0.0081230 5 0.0073084  0.0068340 

0.0101781 0.0107762 

0.0056291 

0.0049241  0.0048693 

 0.0048303 10 0.0045627  0.0044121 

0.0053834 0.0055492 

0.0032918 

0.0029962 0.0029865 

 0.0029742 15 0.0028248 0.0027628 

0.0032207 0.0033115 

0.0025197 

0.0023439 0.0023389 

 0.0023336 20 0.0022408 0.0022037 

0.0024777 0.0025316 

 0.0022016 

0.0020763 0.0020722 

0.002069 25 0.0020029 0.0019763 

0.0021691 0.0022053 

0.0011938 

0.0011501 0.0011483 

 0.0011478 40 0.0011269 0.0011178 

0.0011807 0.0011932 

0.0010381 

0.0010076 0.0010060 

 0.0010058 50 0.0009919 0.0009854 

0.0010279 0.0010358 

0.0008560 

0.0008348 0.0008338 

 0.0008337 60 0.0008236 0.0008191 
0.0008493 0.0008549 

0.0007750 

0.0007568 0.0007562 

 0.0007563 70 0.0007454 0.0007412 
0.0007711 0.0007765 
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Table 3: Averaged Values of MSES for Estimates of the Parameter   

Based On ELF 

QeBS
̂  

QHBS
̂  

QEBS
̂  

QBS
̂  n  

0.0127161 
0.0111718 0.1027392 

0.104182 5 0.0119868 0.0115754 

0.0102227 0.0095218 

0.0063097 
0.0057961 0.0055100 

0.0055325 10 0.0060511 0.0059153 

0.0054976 0.0052810 

0.0035243 
0.0033184 0.0031945 

0.0032013 15 0.0034427 0.0033861 

0.0031809 0.0030891 

0.0026386 
0.0025146 0.0024427 

0.0024455 20 0.0025839 0.0025500 

0.0024382 0.0023864 

0.0022607 
0.0021695 0.0021221 

0.0021319 25 0.0022091 0.0021849 

0.0021251 0.0020927 

0.0012463 
0.0012156 0.0011957 

0.0011960 40 0.0012375 0.0012289 

0.0011914 0.0011761 

0.0010723 
0.0010503 0.0010369 

0.0010371 50 0.0010637 0.0010576 

0.0010351 0.0010250 

0.0008781 
0.0149875 0.0008536 

0.0008537 60 0.0008721 0.0008678 

0.0008525 0.0008456 

0.0007715 
0.0007609 0.0007548 

0.0007548 70 0.0007657 0.0007626 

0.0007560 0.0007523 

 
Table 4: Averaged Values of MSES for Estimates of the Parameter   

Based On DLF 

QeBS
̂  

QHBS
̂  

QEBS
̂  

QBS
̂  n  

0.0134368 
0.0111747 0.0111023 

0.0106578) 5 0.0089068 0.0082421 

0.0139237 0.0149265 

0.0063425 
0.0056088 0.0056102 

0.0055466 10 0.0049916 0.0048092 

0.0063605 0.0066509 

0.0036571 

0.0033416 0.0033633 

0.0033437 15 0.0030557 0.0029831 

0.0036993 0.0038501 

0.0027361 

0.0025472 0.0025615 

0.0025532 20 0.0023796 0.0023375 

0.0027564 0.0028452 

0.0023484 

0.0022139 0.0022227 

0.0022184 25 0.0020991 0.0020696 

0.0023552 0.0024141 

0.0012429 

0.0011953 0.0011992 

0.0011984 40 0.0015622 0.0011464 

0.0012450 0.0012667 

0.0010697 

0.0010367 0.0010387 

0.0010384 50 0.0010107 0.0010039 

0.0010691 0.0010830 

0.0008786 

0.0008556 0.0008572 

0.0008571 60 0.0008374 0.0008326 

0.0008786 0.0008884 

0.0007984 

0.0007778 0.0007788 

0.0007790 70 0.0007607 0.0007561 

0.0007986 0.0008070 

 
Table 5: Averaged Values of MSES for Estimates of the Parameter   

Based On QLF 

QeBS
̂  

QHBS
̂  

QEBS
̂  

QBS
̂  n  

0.0219209 

0.0212963 0.0197914 

0.0201012 5 0.0228377 0.0222451 

0.0192307 0.0177246 

0.0091064 

0.0087877 0.0083114 

0.0083667 10 0.0093507 0.0091753 

0.0080694 0.0075586 

0.0047814 

0.0046563 0.0044421 

0.0044600 15 0.0049444 0.0048733 

0.0043037 0.0040879 

0.0033555 

0.0032753 0.0031522 

0.0031597 20 0.0034448 0.0034047 

0.0030700 0.0029464 

0.0027152 

0.0026516 0.0025715 

0.0025751 25 0.0027588 0.0027317 

0.0025216 0.0024427 

0.0014477 

0.0014269 0.0013939 

0.0013978 40 0.0014768 0.0014673 

0.0013675 0.0013334 

0.0012025 

0.0011867 0.0011650 

0.0011654 50 0.0012186 0.0012121 

0.0011486 0.0011265 

0.0009678 

0.0009569 0.0009419 

0.0009421 60 0.0009791 0.0009747 

0.0009304 0.0009151 

0.0008245 

0.0008191 0.0008093 

0.0008091 70 0.0008345 0.0008317 

0.0008017 0.0007919 

8. Conclusion remarks 

 Among four estimates of   based on different loss func-

tions shown in Tables (1-5), we can deducted that the QE-

Bayes estimates are the best whereas the quasi-empirical es-

timators are the worst. Generally, the overall performance 

of the four techniques for estimating   can be ordered due 

to number of having smaller MSE as follows: 

 

QEBS QHBS QBS QeBS

ˆ ˆ ˆ ˆ        

 

 In addition, if we comparing the different QE-Bayes esti-

mates in terms of MSE, we can concluded that the QE-

Bayes estimates based on PLF are the most efficient in 

small and large sample sizes, the QE-Bayes estimates based 

on SELF are the most efficient in moderate sample sizes 

while the QE-Bayes estimates based on QLF least efficient 

in all sample sizes.  

 Finally, the results obtained from the numerical results 

showed that the proposed criteria have more efficient esti-

mators against the other three methods and it easy to oper-

ate. The authors want to point out one restriction in applying 

the suggested method which it can be used only for distribu-

tions have an explicit relationship between their mean and 

variance due to it depends on the quasi-likelihood function. 

Appendix (1) 

Proof of Lemma 1 

 

i) From (3-6), (3-7) and (3-8), we get 

 

QEBS1 QEBS2 QEBS3 QEBS1

w 1 2nk cˆ ˆ ˆ ˆ 1 ln 1 2
c c nk

       
                

      
      (A.1) 

 

For 1 x 1,    we have: 
2 3 k

k 1

k 1

4x x x x
ln(1 x) x ... ( 1) .

2 3 4 k






         

Assuming 
c

x
nk

  when
c

0 c nk, 0 1,
nk

     we get 

 

2 3

2 2 3 3

4 5 6

4 4 5 5 5 5

2nk c
1 ln 1 2

c nk

c 1 c 1 c

nk 2 n k 3 n k2nk
1 2

c 1 c 1 c 1 c
...

4 n k 5 n k 6 n k

   
      

   

    
      

        
        

        
      

 

 
2 3 4 5

2 2 3 3 4 4

c 1 c 1 c 1 c 1 c
... 2

5 5nk 2 n k 3 n k 4 n k 5 n k
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2 3 4 5

2 2 4 4 5 5
3

c 2 c 2 c 2 c 2 c
2 ...

3nk 3 n k 4 5 n k 6 n kn k

       
                      

 

 
2 3 4 5

2 2 3 3 4 4 5 5

1 c 1 c 1 c 1 c
...

2 n k 3 n k 4 n k 5 n k

       
            

       
 

 
2 3 4 5

2 2 3 3 4 4 5 5

2 c 2 c 2 c 2 c
..

3 n k 4 n k 5 n k 6 n k

       
           

       
 

 

3

3 3

4 5

4 4 5 5

22 1 c 2 1 c

2 23 2 4 3 n kn k

2 1 c 2 1 c
...

5 4 n k 6 5 n k

                    

     
        

     
 

 
2 3 4 5

2 2 3 3 4 4 5 5

1 c 1 c 3 c 2 c
...

6 n k 6 n k 20 n k 15 n k

       
           

       
 

 
2 4

2 2 4 4

c c c 3 2c
1 ...

6n k nk n k 20 15nk

  
      

   
 

 
2 4

2 2 4 4

c c c 8c
1 9 ... 0

6 n k nk 60 n k nk

    
         

    
                             (A.2) 

 

According to (A.1) and (A.2), we have  

 

QEBS1 QEBS2 QEBS3 QEBS1

ˆ ˆ ˆ ˆ 0     
 

 

That is 
QEBS2 QEBS1 QEBS3

ˆ ˆ ˆ      

 

ii) From (A.1) and (A.2), we get 

 

   QEBS1 QEBS2 QEBS3 QEBS1nk nk

2 4

2 2 4 4nk

ˆ ˆ ˆ ˆlim lim

w 1 c c c 8c
lim 1 9 ... 0

c 6n k nk 60n k nk

 



      

      
           
      

            (A.3)             

 

That is 
QEBS1 QEBS2 QEBS3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

 

Thus, the proof  is complete. 

 

Proof of Lemma 2 

i) From (3-9), (3-10) and (3-11), we get 

QEBP1 QEBP 2 QEBP3 QEBP1

ˆ ˆ ˆ ˆ

(w 1)(w 2) 2nk c
1 ln 1 2

c c nk

      

       
                

           (A.4)           

 

According to (A.2) and (A.4), we have  

 

QEBP1 QEBP2 QEBP3 QEBP1

ˆ ˆ ˆ ˆ 0       

 

That is 
QEBP2 QEBP1 QEBP3

ˆ ˆ ˆ      

 

ii) From (A.3) and (A.4), we get 

 

   QEBP1 QEBP 2 QEBP3 QEBP1nk nk

ˆ ˆ ˆ ˆlim lim
 

      

 

2

2 2

4nk

4

c c
1

6n k nk(w 1)(w 2)
lim 0

c 8cc
9 ...

4 nk60n k



  
   

                 
   

                    (A.5) 

 

That is 
QEBP1 QEBP 2 QEBP3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

 

Thus, the proof  is complete. 

 

Proof of Lemma 3 

i) From (3-12), (3-13) and (3-14), we obtain  

 

QEBE1 QEBE 2 QEBE3 QEBE1

w 2nk cˆ ˆ ˆ ˆ 1 ln 1 2
c c nk

      
                

      
          (A.6) 

 

According to (A.2) and (A.6), we have  

 

QEBE1 QEBE2 QEBE3 QEBE1

ˆ ˆ ˆ ˆ 0       

 

That is 
QEBE2 QEBE1 QEBE3

ˆ ˆ ˆ      

 

ii) From (A.3) and (A.6), we get 

 

   QEBP1 QEBP 2 QEBP3 QEBP1nk nk

ˆ ˆ ˆ ˆlim lim
 

      

 
2 4

2 2 4 4nk

w c c c 8c
lim 1 9 ... 0

c 6n k nk 60n k nk

      
           
      

                 

(A.7) 

 

That is 
QEBE1 QEBE 2 QEBE3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

 

Thus, the proof  is complete. 

Proof of Lemma 4 

 

i) From (3-15), (3-16) and (3-17) that 

 

QEBD1 QEBD2 QEBD3 QEBD1

ˆ ˆ ˆ ˆ

2(w 2) 2nk c
1 ln 1 2

c c nk

      

       
         
      

                      (A.8) 

 

According to (A.2) and (A.8), we have 

 

QEBD1 QEBD2 QEBD3 QEBD1

ˆ ˆ ˆ ˆ 0       

 

That is 
QEBD2 QEBD1 QEBD3

ˆ ˆ ˆ      

 

ii) From (A.3) and (A.8), we get 

 

   QEBD1 QEBD2 QEBD3 QEBD1nk nk

ˆ ˆ ˆ ˆlim lim
 

      

 
2 4

2 2 4 4nk

2(w 2) c c c 8c
lim 1 9 ... 0

c 6n k nk 60n k nk

      
           
      

       (A.9) 

 

That is 
QEBD1 QEBD 2 QEBD3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

Thus, the proof is complete. 

Proof of Lemma 5 

i) From (3-18), (3-19) and (3-20) that 

 

QEBQ1 QEBQ 2 QEBQ3 QEBQ1

ˆ ˆ ˆ ˆ

2(w 1) 2nk c
1 ln 1 2

c c nk

      

       
         
      

                    (A.10)                                   
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According to (A.2) and (A.10), we have  

QEBQ1 QEBQ2 QEBQ3 QEBQ1

ˆ ˆ ˆ ˆ 0       

 

That is 
QEBQ2 QEBQ1 QEBQ3

ˆ ˆ ˆ      

 

ii) From (A.3) and (A.10), we get 

 

   QEBQ1 QEBQ2 QEBQ3 QEBQ1nk nk

ˆ ˆ ˆ ˆlim lim
 

      

 
2 4

2 2 4 4nk

2(w 1) c c c 8c
lim 1 9 ... 0

c 6n k nk 60n k nk

      
           
      

      (A.11) 

 

That is 
QEBQ1 QEBQ 2 QEBQ3nk nk nk

ˆ ˆ ˆlim lim lim
  
      

 

Thus, the proof is complete. 

Appendix (2) 

Proof of Lemma 6 

Since 
w 2

1
a,

(a nk) 
 are continuous on (0,c),  according to the ex-

tended case of mean value theorem for definite integrals (when

0 a c  ), there is as least one number 
1

a (0,c)  such that 

 
2

c c

0 0w 2 w 2 w 2

1 1

a da 1 c
ada

(a nk) (a nk) 2(a nk)  
  

  
                           (A.12) 

 

Similarly, there is as least one number 
2

a (0,c)  such that 

 
2

c c

0 0w 1 w 1 w 1

2 2

a da 1 c
ada

(a nk) (a nk) 2(a nk)  
  

  
                            (A.13) 

 

By substitution from (A.12) and (A.13) in (4-8), we get 

 
w 1

2

QHBS1

1 1

w 1 a nkˆ
a nk a nk



    
     

      
 

w 1

2

QHBS1nk nk

1 1

w 1 a nkˆlim lim
a nk a nk



 

    
      

      
 

w 1

2

nk

1 1

1 a nk
(w 1) lim 0

a nk a nk





     
      

      

                                   

(A.14) 

 

According to (A.3) and (A.14), we can deduct that 

 

QEBS1 QHBS1

ˆ ˆ  
 

 

Also 
2

w 2

1
a ,

(a nk) 
 are continuous on (0,c) , according to the ex-

tended case of mean value theorem for definite integrals (when

0 a c  ), there is as least one number 
1

a (0,c)  such that 

 
2 2

c c 2

0 0w 2 w 2 w 2

1 1

a da 1 3c
a da

(a nk) (a nk) 3(a nk)  
  

  
                          (A.15) 

 

Similarly, there is as least one number 
2

a (0,c)  such that 

 
2 2

c c 2

0 0w 1 w 1 w 1

2 2

a da 1 c
a da

(a nk) (a nk) 3(a nk)  
  

  
                           (A.16) 

 

By substitution from (A.15) and (A.16) in (4-9), we get 

 
w 1

2

QHBS2

1 1

w 1 a nkˆ
a nk a nk



    
     

    
 

 

From (A.14) 

 

QHBS2nk

ˆlim 0


                                                                           (A.17) 

 

According to (A.3) and (A.17), we can deduct that 

 

QEBS2 QHBS2

ˆ ˆ    

 

Furthermore, 
w 2

1
a(c a),

(a nk) 



 are continuous on (0,c) , accord-

ing to the extended case of mean value theorem for definite inte-

grals [when 0 a c,a(c a) 0    ], there is as least one number 

1
a (0,c)  such that 

 
3

c c

0 0w 2 w 2 w 2

1

a(c a)da 1 c
a(c a)da

(a nk) (a nk) 6(a nk)1
  


   

  
                  (A.18) 

 

Similarly, there is as least one number 
2

a (0,c)  such that 

 
3

c c

0 0w 1 w 1 w 1

2 2

a(c a)da 1 c
a(c a)da

(a nk) (a nk) 6(a nk)  


   

  
                  (A.19) 

 

By substitution from (A.18) and (A.19) in (4-10), we get 

 
w 1

2

QHBS3

1 1

w 1 a nkˆ
a nk a nk



    
     

    
 

 

From (A.14) 

 

QHBS3nk

ˆlim 0


                                                                           (A.20) 

 

According to (A.3) and (A.20), we can deduct that 

 

QEBS3 QHBS3

ˆ ˆ    

 

Thus, the proof  is complete 

 

Proof of Lemma 7 

By using similar steps in lemma (6), we can get 

 
2

c c

0 0w 3 w 3 w 3

1

a da 1 c
ada

(a nk) (a nk) 2(a nk)1
  
  

  
                           (A.21) 

 

By substitution from (A.13) and (A.21) in (4-12), we get 

 
w 1

2

QHBP1 2

1 1

(w 1)(w 2) a nkˆ
(a nk) a nk



     
     

    
 

 
w 1

2

QHBP1 2nk nk

1 1

(w 1)(w 2) a nkˆlim lim
(a nk) a nk



 

     
      

    
 

2 w 1

2

nk

1 1

1 a nk
(w 1)(w 2) lim 0

a nk a nk





   
      

    
                     (A.22) 

 

According to (A.3) and (A.22), we can deduct that 

 

QEBP1 QHBP1

ˆ ˆ    

 

Similarly, we can obtain 
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QEBPi QHBPi

ˆ ˆ (i 2,3)     

 

Thus, the proof  is complete. 

 

Proof of Lemma 8 

By using similar steps in lemma (6), we can get 

 
2

c c

0 0w 1 w 1 w 1

1 1

a da 1 c
ada ,

(a nk) (a nk) 2(a nk)  
  

  
                           (A.23) 

 
2

c c

0 0w w w

1 1

a da 1 c
ada

(a nk) (a nk) 2(a nk)
  

  
                                (A.24) 

 

By substitution from (A.23) and (A.24) in (4-16), we get 

 
w 1

2

QHBE1

1 1

w a nkˆ
a nk a nk



   
     

                                                          

 

 
w 1

2

QHBE1nk nk

1 1

w 1

2

nk

1 1

w a nkˆlim lim
a nk a nk

1 a nk
w lim 0

a nk a nk



 





   
      

    

     
     

      
                             

(A.25) 
 

According to (A.3) and (A.25), we can deduct that 

 

QEBE1 QHBE1

ˆ ˆ    

 

Similarly, we can obtain 

 

QEBEi QHBEi

ˆ ˆ (i 2,3)     

 

Thus, the proof is complete 

Proof of Lemma 9 

By using similar steps in lemma (6), we can get 

 
2

c c

0 0w 3 w 3 w 3

1 1

a da 1 c
ada

(a nk) (a nk) 2(a nk)  
  

  
                            (A.26) 

 

By substitution from (A.12) and (A.26) in (4-20), we get 

 
w 1

2

QHBD1

1 1

w 2 a nkˆ
a nk a nk



    
     

      
 

w 1

2

QHBD1nk nk

1 1

w 2 a nkˆlim lim
a nk a nk



 

    
      

    
                                     

 

 
w 1

2

nk

1 1

1 a nk
(w 2) lim 0

a nk a nk





     
      

      

                                  (A.27) 

 

According to (A.3) and (A.27), we can deduct that 

 

QEBD1 QHBD1

ˆ ˆ    

 

Similarly, we can obtain 

QEBDi QHBDi

ˆ ˆ (i 2,3)     

 

Thus, the proof is complete. 

 

Proof of Lemma 10 

By using similar steps in lemma (6), we can get 

 

2

c c

0 0w 1 w 1 w 1

1 1

a da 1 c
ada

(a nk) (a nk) 2(a nk)  
  

  
                            (A.28) 

 

By substitution from (A.24) and (A.27) in (4-24), we get 

 
w 1

2

QHBQ1

1 1

w 1 a nkˆ
a nk a nk



    
     

      
 

w 1

2

QHBQ1nk

1 1

w 1 a nkˆlim lim
a nk a nknk





    
      

      

 
w 1

2

nk

1 1

1 a nk
(w 1) lim 0

a nk a nk





     
      

      

                                   

(A.29) 

 

According to (A.3) and (A.28), we can deduct that 

 

QEBQ1 QHBQ1

ˆ ˆ    

 

Similarly, we can obtain 

 

QEBQi QHBQi

ˆ ˆ (i 2,3)     

 

Thus, the proof  is complete. 

References 

[1] A. K. Erlang, The theory of probabilities and telephone conversa-

tions. Nyt Tidsskrift for Matematik B 20, 6 (1909)87-98.  

[2] K. Harischandra, S. S. Rao, A note on statistical inference about the 
traffic intensity parameter in M/Ek/1 queue. Sankhya B, 50, 

(1988)144-148. 

[3] S. K. Bhattacharyya, N. K. Singh, Intensity in M/Ek/1 queue. Far. 
East, Journal of Math and Science.2, 57 (1994) 57-62. 

[4] Y. Fang, Hyper-Erlang distribution model and its application in 

wireless mobile networks. Wireless Networks, 7(2001)211-219. 
http://dx.doi.org/10.1023/A:1016617904269. 

[5] Y. H. AbdelKader, Computing the moments of order statistics from 

nonidentically distributed Erlang variables. Statistical Papers, 
45(2003)563-570. http://dx.doi.org/10.1007/BF02760568. 

[6] P. k. Suri, B. Bhushan, A. Jolly, Time estimation for project man-

agement life cycles: A simulation approach, International Journal of 
Computer Science and Network Security, 9, 5(2009)211-215. 

[7] A. Haq, S. dey, Bayesian estimation of Erlang distribution under 
different prior distributions, Journal of Reliability and Statistical 

Studies, 4, 1 (2011)1-30. 

[8] R. A. Bakoban, Bayesian and non-Bayesian estimation of Erlang 
distribution under progressive censoring, IJRRAS, 11, 3 (2012)524-

535. 

[9] A. H. Khan, T. R. Jan, Bayesian Estimation of Erlang Distribution 
under Different Generalized Truncated Distributions as Priors, 

Journal of Modern Applied Statistical Methods, 11, 2 (2012)416-

442. 
[10] R. W. M. Wedderbuem, Quasi-Likelihood Functions, Generalized 

Models and the Gauss-Newton Method, Biometrika, 61, 3 (1974) 

439-443. 
[11] M. Han, Expected Bayesian Method for Forecast of Security In-

vestment, Journal of Operations Research and Management Science 

14, 5 (2005) 89-102. 
[12] M. Han, E-Bayesian Method to Estimate Failure Rate, The Sixth 

International Symposium on Operations Research and Its Applica-

tions (ISOR06) Xinjiang (2006)299-311. 
[13] Q. Yin, H. Liu, Bayesian estimation of geometric distribution pa-

rameter under scaled squared error loss function, Conference on 

Environmental Science and Information Application Technology 
(2010)650-653. 

[14] J. Wei, B. Song, W. Yan, Z. Mao, Reliability Estimations of Burr-

XII Distribution under Entropy Loss Function, IEEE (2011) 244-
247. http://dx.doi.org/10.1109/icrms.2011.5979276. 

[15] Z. F. Jaheen, H. M. Okasha, E-Bayesian Estimation for the Burr 

type XII model based on type-2 censoring, Applied Mathematical 

http://dx.doi.org/10.1023/A:1016617904269
http://dx.doi.org/10.1007/BF02760568
http://dx.doi.org/10.1109/icrms.2011.5979276


74 International Journal of Advanced Statistics and Probability 

 
Modelling 35 (2011) 4730 - 4737. 

http://dx.doi.org/10.1016/j.apm.2011.03.055. 

[16] G. Cai, W. Xu, W. Zhang, P. Wang, Application of E-Bayes meth-
od in stock forecast, Fourth International Conference on Infor-

mation and Computing (2011)504-506. 

http://dx.doi.org/10.1109/icic.2011.40. 
[17] H. M. Okasha, E-Bayesian estimation of system reliability with 

Weibull distribution of components based on type-2 censoring, 

Journal of Advanced Research in Scientific Computing 4, 4 
(2012)34-45. 

[18] X. Wu, E-Bayesian Estimation of Failure Probability under Zero-
failure Data with Double Hyper Parameters, Journal of Applied 

Mechanics and Materials 190-191 (2012) 977-981. 

http://dx.doi.org/10.4028/www.scientific.net/AMM.190-191.977. 
[19] R. Azimi, F, Yaghamei, B. Fasihi, E-Bayesian estimation based on 

generalized half Logistic progressive type-II censored data, Interna-

tional Journal of Advanced Mathematical Science 1, 2 (2013) 56-63. 
[20] N. Javadkani, P. Azhdari, R. Azimi, On Bayesian estimation from 

two parameter Bathtub-shaped lifetime distribution based on pro-

gressive first-failure-censored sampling, International Journal of 
Scientific World 2, 1 (2014) 31-41. 

http://dx.doi.org/10.14419/ijsw.v2i1.2513. 

[21] H. Liu, T. Yin, C. Wang, E-Bayes Estimation of Rayleigh Distribu-
tion Parameter, Journal of Applied Mechanics and Materials 596 

(2014) 305-308. 

http://dx.doi.org/10.4028/www.scientific.net/AMM.596.305. 
[22] H. M. Okasha, E-Bayesian Estimation for the Lomax distribution 

based on type-II censored data, Journal of the Egyptian Mathemati-

cal Society 22, 3 (2014) 489-495. 
http://dx.doi.org/10.1016/j.joems.2013.12.009. 

[23] H. M. Reyad, S. O. Ahmed, E-Bayesian analysis of the Gumbel 

type-ii distribution under type-ii censored scheme, International 
Journal of Advanced Mathematical Sciences 3, 2 (2015) 108-120. 

http://dx.doi.org/10.14419/ijams.v3i2.5093. 

[24] H. M. Reyad, S. O. Ahmed, Bayesian and E-Bayesian estimation for the 

Kumaraswamy distribution based on type-ii censoring. International 

Journal of Advanced Mathematical Sciences, 4, 1 (2016):10-17. 

http://dx.doi.org/10.14419/ijams.v4i1.5750. 
[25] Reyad, H. M, Younis, A, M,. Alkhedir, A. A.(2016). Comparison of Es-

timates using Censored Samples from Gompertz Model: Bayesian, E-

Bayesian, Hierarchical Bayesian and Empirical Bayesian Schemes. In-
ternational Journal of Advanced Statistics and Probability 4, 1(2016):47-

61 http://dx.doi.org/10.14419/ijasp.v4i1.5914. 

[26] A. Mood, F. A. Graybill, D. Boes, Introduction to the Theory of 
Statistics. McGraw-Hill Series in Probability and Statistics, 1974. 

[27] J. G. Nostrom, The use of precautionary loss function in risk analy-

sis, IEEE Transaction on Reliability, 45, 3(1996)400-403. 
[28] D. K. Dey, M. Gosh, C. Srinivasan, Simultaneous estimation of pa-

rameter under entropy loss, Journal of Statistical Planning and In-

ference (1987) 347-363.  
[29] M. h. Degroot, Optimal Statistical Decision, McGraw-Hill Inc. 

(1970). 

[30] M. K. Bhuiyan, M. K. Roy, M. F. Iman, Minimax estimation of the 
parameter of Rayleigh distribution, (2007) 207-212. 

[31] M. Han, The structure of hierarchical prior distribution and its ap-

plications, Chinese Operations Research and Management Science 
6, 3 (1997) 31-40. 

[32] D. V. Lindley, A. F. Smith, Bayes estimation for the linear model, 

Journal of Royal Statistical Society B, 34 (1972)1-41. 
[33] O. Shojaee, R. Azimi, M. Babanezhad, Empirical Bayes Estimators 

of Parameter and Reliability Function for Compound Rayleigh Dis-

tribution under Record Data, American Journal of Theoretical and 
Applied Statistics, 1, (2012) 12-15. 

http://dx.doi.org/10.11648/j.ajtas.20120101.12. 

http://dx.doi.org/10.1016/j.apm.2011.03.055
http://dx.doi.org/10.1109/icic.2011.40
http://dx.doi.org/10.4028/www.scientific.net/AMM.190-191.977
http://dx.doi.org/10.14419/ijsw.v2i1.2513
http://dx.doi.org/10.4028/www.scientific.net/AMM.596.305
http://dx.doi.org/10.1016/j.joems.2013.12.009
http://dx.doi.org/10.14419/ijams.v3i2.5093
http://dx.doi.org/10.14419/ijams.v4i1.5750
http://dx.doi.org/10.14419/ijasp.v4i1.5914
http://dx.doi.org/10.11648/j.ajtas.20120101.12

