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Abstract 
 

This paper aims to introduce a comparative study for the E-Bayesian criteria with three various Bayesian approaches; Bayesian, hierar-

chical Bayesian and empirical Bayesian. This study is concerned to estimate the shape parameter and the hazard function of the Gom-

pertz distribution based on type-II censoring. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and 

three different asymmetric loss functions [quadratic loss function (QLF), entropy loss function (ELF) and LINEX loss function (LLF)]. 

Comparisons among all estimators are achieved in terms of mean square error (MSE) via Monte Carlo simulation. 
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1. Introduction 

The Gompertz distribution has great importance in modeling hu-

man mortality and actuarial tables. It has many applications, par-

ticularly in medical and actuarial studies. Also, it used as a surviv-

al model in reliability. Historically, the Gompertz distribution was 

first proposed by Gompertz [1]. The probability density function 

(pdf), cumulative distribution function (cdf), and hazard function 

( )h t  of the two-parameter Gompertz distribution are given, re-

spectively, by 

 

( ; , ) exp ( 1) , 0, , 0,xf x x e x           
  

      (1-1) 

 

( ; , ) 1 exp ( 1) , 0, , 0xF x e x          
  

      (1-2) 

 

And 

 

( ; , ) exp( ), 0, , 0h t t t                (1-3) 

 

Where   and   are the scale and shape parameters respectively. 

Recently, many authors have studied the Gompertz distribution; 

for example, Grag [2] discussed the properties of the Gompertz 

distribution and estimate its parameters by using the maximum 

likelihood method. Chen [3] reproduced an exact confidence in-

terval and exact joint confidence region for the parameters associ-

ated to the Gompertz distribution based on type-II censoring. Ja-

heen [4] constructed the Bayesian technique for the Gompertz 

distribution under record values. Wu et al [5] obtained the point 

and interval estimators for the unknown parameters corresponding 

to the Gompertz distribution based on progressive type-II censored 

samples. Gohary [6] introduced the bivariate Gompertz distribu-

tion and completed the analysis for the mixture of components of 

the proposed distribution. Saracoglu et al [7] compared the non-

Bayes and Bayes estimates for the unknown parameters of the 

Gompertz distribution. Ismail [8] derived point and interval esti-

mates for the Gompertz distribution based on partially accelerated 

life tests with type-II censoring. Feroze and Aslam [9] obtained 

point and interval estimates for the parameters of the two-

component mixture of the Gompertz model based on Bayes Meth-

od along with posterior predictions for the future value from mod-

el. Sarabia et al [10] exploded several properties of the Gompertz 

distribution when lifetime or other kinds of data available fully 

observed.  

The E-Bayesian estimation is a new method of estimation first 

introduced by Han [11]. Han [12] derived the E-Bayes and hierar-

chical Bayes estimates of the reliability parameter for testing data 

from products with exponential distribution under type-I censoring 

and by considering the quadratic loss function. He proved that via 

simulation, the E-Bayesian estimator is efficient and easy to oper-

ate. Han [13] obtained the E-Bayesian estimation of the failure 

probability based on type-I censored data and by using the quad-

ratic loss function. Yin and Liu [14] applied the E-Bayesian esti-

mation and hierarchical Bayesian estimation methods for estimat-

ing the unknown reliability parameter of the geometric distribution 

under scaled squared loss function in complete samples. They 

deducted that the E-Bayes criteria is more stability and convenient 

in terms of calculation complexity than the hierarchical Bayes 

method. Han [15] obtained the E-Bayes and hierarchical Bayes 

estimates of reliability for testing data from products with binomi-

al distribution under type-I censoring and by considering the quad-

ratic loss function. He showed that by using simulation the E-

Bayes technique is much simpler than the hierarchical Bayes 

method to operate. Wei et al [16] constructed the minimum risk 

equivariant estimation and E-Bayes estimation methods for esti-

mating the unknown parameter of the Burr-XII distribution based 

on entropy loss function in complete samples. They deducted that 
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E-Bayes estimates have most accuracy. Jaheen and Okasha [17] 

compared the Bayesian and E-Bayesian estimators for the parame-

ters and reliability function of the Burr Burr-XII distribution based 

on type-II censoring and by considering the squared error loss and 

LINEX loss functions. They deducted that the overall performance 

of the E-Bayes estimates are better than the similar obtained by 

using the Bayes technique. Cai et al [18] applied the E-Bayesian 

estimation method for forecasting of security investment. Okasha 

[19] constructed the maximum likelihood, Bayesian and E-

Bayesian methods for estimating the unknown scale parameter and 

reliability and hazard functions of the Weibull distribution under 

type-2 censored samples and by considering the squared error loss 

function. He concluded that the E-Bayes estimates were more 

efficient than the maximum likelihood estimates or the Bayes 

estimates. Wu [20] introduced the Bayesian estimation and E-

Bayesian estimation techniques in a new integral interval for esti-

mating the failure probability under zero-failure data and by con-

sidering the quadratic loss function. Azimi et al [21] estimated the 

parameter and reliability function of the generalized half Logistic 

distribution by using the Bayes and E-Bayes methods based on 

progressively type-II censoring and by considering the squared 

error loss and LINEX loss functions. They deducted that the E-

Bayes criteria generally is more efficient than the Bayes criteria. 

Javadkani et al [22] applied the Bayes, empirical Bayes and E-

Bayes techniques for estimating the unknown shape parameter and 

the reliability function of the two parameter bathtub-shaped life-

time distribution based on progressively first-failure-censored 

samples and by considering the minimum expected loss and 

LINEX loss functions. Liu et al [23] used the E-Bayes and hierar-

chical methods for estimating the unknown parameter of the Ray-

leigh distribution under q-symmetric entropy loss function in 

complete samples. They deducted that the two techniques were 

close to each other when the sample size is large enough and the 

E-Bayes estimation was more convenient in terms of calculation 

complexity. Okasha [24] constructed the Bayesian and the E-

Bayesian methods for estimating the scale parameter, reliability 

and hazard functions of the Lomax distribution based on type-2 

censored and by considering the balanced squared error loss func-

tion. He pointed out that the performance of the E-Bayes estimates 

is generally better than the Bayes estimates. Reyad and Othman 

[25] obtained the Bayesian and E-Bayesian estimates for the shape 

parameter of the Gumbell type-II distribution based on type-II 

censoring and by considering squared error, LINEX, Degroot, 

Quadratic and minimum expected loss functions. They deducted 

that the E-Bayes estimates were generally much better than the 

other estimates. 

The goal of this paper is to introduce a statistical comparison be-

tween the E-Bayesian criteria versus other three techniques of 

Bayesian approaches; Bayesian, hierarchical and empirical Bayes-

ian to illustrate the potential usefulness of the E-Bayesian esti-

mates which are simple in calculations and efficient. The resulting 

estimates are obtained based on symmetric and different asymmet-

ric loss functions and the all outcomes obtained in this article can 

be generalized to use in complete sample.  

The layout of the paper is as follow. In Section 2, the Bayes esti-

mates of the parameter   and the hazard function ( )h t  based on 

type-II censored sample are derived under SELF, QLF, ELF and 

LLF. The E- Bayes estimates are obtained of the parameter   and 

the hazard function ( )h t based on type-II censored sample under 

SELF, QLF, ELF and LLF in Section 3. In Sections 4, 5, the hier-

archical Bayes estimates and empirical Bayes of the parameter   

and the hazard function ( )h t  are derived based on type-II cen-

sored sample under SELF, QLF, ELF and LLF respectively. In 

Section 6, a Monte Carlo simulation is done to compare the behav-

ior of the resulting estimators. Some concluding remarks have 

been given in the last Section. 

2. Bayesian estimation 

In this section, we will obtain the Bayes estimates of the shape 

parameter   and the hazard function ( )h t of the Gompertz distri-

bution by considering symmetric loss function (SELF)) and three 

asymmetric loss functions (QLF, ELF and LLF). Based on type-II 

censored samples of size r  obtained from a life test of n  items 

from the Gompertz in (1-1) and (1-2) distribution, the likelihood 

function can be written as 

 

( ) ( )
( )

1

!
( ) exp ( 1) exp ( 1)

( )!

n r
r

i r
i

i

x xn
L x x e e

n r

 
    





    
            



 

expr Q                                                                  (2-1) 

 

Where 

 

 ( ) ( )
1

exp ( ) exp
r

i r
i

Q x n r x r 


              
                              (2-2) 

 

Assuming   is known, we can use the gamma distribution as an 

conjugate prior distribution of   with shape and scale parameter 

a  and b respectively and its pdf given by  

 

1( , ) exp , 0, , 0
( )

a
ab

g a b b a b
a

        


  (2-3) 

 

Combining (2-1) and (2-3), from Bayesian theorem the posterior 

density function of   can be obtained as 

 

0
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                       (2-4) 

 

That mean, the posterior distribution of   obeys ( , ).r a Q b     

2.1. Bayesian estimation under squared error loss func-

tion (SELF) 

A commonly used loss function is the square error loss function 

(SELF) introduced by Mood et al (26) as follows: 

 
2

1
ˆ ˆ( , ) ( ) , 0L k k                                            (2-5) 

 

Where ̂  is an estimator of   and k  is the scale of the loss func-

tion. The scale k is often taken equal to one which has no effect 

on the Bayes estimates. This loss function is symmetric in nature. 

i.e. it gives equal importance to both over and under estimation. 

The Bayes estimator of   denoted by ˆBS can be obtained as  

 

ˆ ( )BS E x                                                                             (2-6) 

 

Where E  indicated to the expectation of the posterior distribu-

tion. We can derived ˆBS by using (2-4) in (2-6) to be 

 

ˆ
BS

r a

Q b






                                                                                (2-7) 
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We can also obtain the Bayes estimator of ( )h t based on SELF 

denoted as ˆBSh by replacing ˆBS  given in (2-7) instead of   given 

in (1-3) to be 

 

ˆ t
BS

r a
h e

Q b


 

  
 

                                                                    (2-8) 

2.2. Bayesian estimation under quadratic loss function 

(QLF) 

Bhuiyan et al [27] defined the quadratic loss function (QLF) as 

follows: 

 

2

ˆ
ˆ( , )L

 
 



 
 
 
 

                                                                      (2-9) 

 

The Bayes estimator of   based on QLF denoted by ˆBQ  can be 

obtained as  

 
1

2

( )
ˆ

( )
BQ

E x

E x













                                                                      (2-10) 

 

We can derived ˆBQ by using (2-4) in (2-10) to be 

 

2ˆ
BQ

r a

Q b


 



                                                                         (2-11) 

 

We can also obtain the Bayes estimator of ( )h t based on SELF 

denoted as ˆ
BQh by replacing ˆ

BQ  given in (2-11) instead of   

given in (1-3) to be 

 

2ˆ t
BQ

r a
h e

Q b


  

  
 

                                                             (2-12) 

2.3. Bayesian estimation under entropy loss function 

(ELF) 

Day et al [28] have discussed the entropy loss function (ELF) of 

the form 

 

3

ˆ ˆ
ˆ( , ) ln 1L

 
 

 

   
     
   
   

                                                        (2-13) 

 

The Bayes estimator of   relative to ELF denoted by ˆBE  can be 

obtained as  

 
1

1ˆ ( )BE E x 


 
 

                                                                 (2-14) 

 

We can obtain ˆBE by using (2-4) in (2-14) to be 

 

1ˆ
BE

r a

Q b


 



                                                                          (2-15) 

 

The Bayes estimator of ( )h t relative to ELF denoted as ˆ
BEh by 

replacing ˆBE  given in (2-15) instead of   given in (1-3) to be 

 

1ˆ t
BE

r a
h e

Q b


  

  
 

                                                              (2-16) 

 

 

2.4. Bayesian estimation under LINEX loss function 

(LLF) 

 
Zellner [29] represent the LINEX (linear-exponential) loss func-

tion (LLF) to be  

 

 4
ˆ ˆ ˆ( , ) exp ( ) ( ) 1L m s s          

 
                                  (2-17) 

 

With two parameters 0, 0,m s   where m is the scale of the loss 

function and s  determines its shape. Without loss of generality, 

we assume 1m  . The Bayes estimator relative to LLF denoted by 

ˆ
BL can be obtained as  

 

 1ˆ ln s
BL E e x

s


          

                                                       (2-18) 

 

We can obtain ˆBL by using (2-4) in (2-18) to be 

 

ˆ ln 1BL
r a s

s Q b


  
   

   
                                                     (2-19) 

 

The Bayes estimator of ( )h t relative to LLF denoted as ˆ
BLh by 

replacing ˆBL  given in (2-19) instead of   given in (1-3) to be 

 

ˆ ln 1 t
BL

r a s
h e

s Q b


  

   
   

                                               (2-20) 

3. E-Bayesian estimation 

In this section, we will derive the E-Bayes estimates of the shape 

parameter   and the hazard function ( )h t of the Gompertz distri-

bution based on symmetric loss function (SELF)) and three 

asymmetric loss functions (QLF, ELF and LLF). Based on Han 

[30], the prior parameters a and b  must be choose to guarantee 

that ( , )g a b given in (2-3) is a decreasing function of  . The 

derivative of ( , )g a b with respect to   is 

 

2
( , )

exp ( 1)
( )

a
a

dg a b b
b a b

d a


  



            
                         (3-1) 

 

Note that 0, 0a b   and 0   leads to 0 1, 0a b    due to

( , )
0

dg a b

d




 , and therefore ( , )g a b is a decreasing function of

 . Suppose that a and b are independent with bivariate density 

function 

 

1 2( , ) ( ) ( )a b a b                                                                      (3-2) 

 

Then, the E-Bayesian estimate of   (expectation of the Bayesian 

estimate of ) can be written as 

 

ˆ ˆ( ) ( , ) ( , )EB BE x a b a b dadb   


                                          (3-3) 

 

Where ˆ ( , )B a b  is the Bayes estimate   of given by (2-7), (2-11), 

(2-15) and (2-19). For more details see Han [11, 31]. 
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3.1. E-Bayesian estimation under squared error loss 

function (SELF) 
 

E-Bayesian estimates of   are derived depending on three differ-

ent distributions of the hyper-parameters a  and b . These distribu-

tions are used to study the impact of the different prior distribu-

tions on the E-Bayesian estimation of . The following distribu-

tions of a and b  may be used:  

1 2

2( )
( , ) , 0 1, 0

c b
a b a b c

c



                       (3-4) 

 

2

1
( , ) , 0 1, 0a b a b c

c
                         (3-5) 

 

3 2

2
( , ) , 0 1, 0

b
a b a b c

c
                         (3-6) 

 

We can obtained the E-Bayesian estimate of   relative to SELF 

based on 1( , )a b  which is denoted as 1
ˆ
EBS  by using (2-7) and (3-

4) in (3-3) to be 

 

1

1 20 0

2( )ˆ c

EBS

r a c b
db da

Q b c


   
    

   
                                         

 

 2 1
1 ln 1 1

r Q c

c c Q

     
        
      

                                       (3-7) 

 

Similarly, we can derive the E-Bayesian estimates of   relative to 

SELF based on 2 ( , )a b and 3( , )a b  which are denoted as 

2 3
ˆ ˆ,EBS EBS   by using (2-7), (3-5) in (3-3) and (2-7), (3-6) in (3-3) 

respectively to be 

 

1

2 0 0

1 2 1ˆ ln 1
2

c

EBS

r a r c
db da

Q b c c Q


        
        

          
                    (3-8) 

 

And 

 

1

3 20 0

2 2 1ˆ 1 ln 1
c

EBS

r a b r Q c
db da

Q b c c Qc


        
         

          
          (3-9) 

 

The E-Bayes estimates of ( )h t relative to SELF denoted as 

ˆ ( 1, 2,3)EBSih i  can be obtained by replacing ˆ ( 1,2,3)EBSi i   given 

in (3-7), (3-8) and (3-9) instead of   given in (1-3) to be 

 

1

2 1ˆ 1 ln 1 1 ,t
EBS

r Q c
h e

c c Q


     

        
      

                            (3-10) 

 

2

2 1ˆ ln 1
2

t
EBS

r c
h e

c Q


   

    
     

                                             (3-11) 

 

And 

 

3

2 1ˆ 1 ln 1t
EBS

r Q c
h e

c c Q


   

     
     

                                    (3-12) 

 

3.2. E-Bayesian estimation under quadratic loss func-

tion (QLF) 
 

We can obtain the E-Bayesian estimate of   relative to QLF 

based on 1( , )a b which is denoted as 1
ˆ
EBQ  by using (2-11) and (3-

4) in (3-3) to be 

 

1

1 20 0

2 2( )ˆ c

EBQ

r a c b
db da

Q b c


    
    

   
                                   

 

         2 3
1 ln 1 1

r Q c

c c Q

     
        
      

                                   (3-13) 

 

Also, we can derive the E-Bayesian estimates of   relative to 

QLF based on 2 ( , )a b and 
3( , )a b which are denoted as 

2 3
ˆ ˆ,EBQ EBQ  by using (2-11), (3-5) in (3-3) and (2-11), (3-6) in (3-

3) respectively to be 

 

1

2 0 0

2 1 2 3ˆ ln 1
2

c

EBQ

r a r c
db da

Q b c c Q


         
        

          
             (3-14) 

 

And 

 

1

3 20 0

2 2ˆ c

EBQ

r a b
db da

Q b c


    
    

   
                                          

 

  2 3
1 ln 1

r Q c

c c Q

   
     
     

                               (3-15) 

 

Similarly, the E-Bayes estimates of ( )h t based on QLF denoted as 

ˆ ( 1, 2,3)EBQih i  can be obtained by replacing ˆ ( 1, 2,3)EBQi i   given 

in (3-13), (3-14) and (3-15) instead of   given in (1-3) to be 

 

1

2 3ˆ 1 ln 1 1 ,t
EBQ

r Q c
h e

c c Q


     

        
      

                           (3-16) 

 

2

2 3ˆ ln 1
2

t
EBQ

r c
h e

c Q


   

    
     

                                            (3-17) 

 

And 

 

3

2 3ˆ 1 ln 1t
EBQ

r Q c
h e

c c Q


   

     
     

                                    (3-18) 

3.3. E-Bayesian estimation under entropy loss function 

(ELF) 

We can get the E-Bayesian estimate of   relative to ELF based on 

1( , )a b  which is denoted as 1
ˆ
EBE  by using (2-15) and (3-4) in (3-

3) to be 

 

1

1 20 0

1 2( )ˆ c

EBE

r a c b
db da

Q b c


    
    

   
                                    

 

2 1
1 ln 1 1

r Q c

c c Q

     
        
      

                                   (3-19) 

Also, we can derive the E-Bayesian estimates of   relative to ELF 

based on 2 ( , )a b and 3( , )a b  which are denoted as 2 3
ˆ ˆ,EBE EBE  by 

using (2-15), (3-5) in (3-3) and (2-15), (3-6) in (3-3) respectively 

to be 

 

1

2 0 0

1 1 2 1ˆ ln 1
2

c

EBE

r a r c
db da

Q b c c Q


         
        

          
              (3-20) 

 

And 
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1

3 20 0

1 2ˆ c

EBE

r a b
db da

Q b c


    
    

   
                                           

 

2 1
1 ln 1

r Q c

c c Q

   
     
     

                                           (3-21) 

 

Also, the E-Bayes estimates of ( )h t relative to ELF denoted as 

ˆ ( 1,2,3)EBEih i  can be obtained by replacing ˆ ( 1,2,3)EBEi i   given 

in (3-19), (3-20) and (3-21) instead of   given in (1-3) to be 

 

1

2 1ˆ 1 ln 1 1 ,t
EBE

r Q c
h e

c c Q


     

        
      

                           (3-22) 

 

2

2 1ˆ ln 1
2

t
EBE

r c
h e

c Q


   

    
     

                                             (3-23) 

 

And 

 

3

2 1ˆ 1 ln 1t
EBE

r Q c
h e

c c Q


   

     
     

                                    (3-24) 

3.4. E-Bayesian estimation under LINEX Loss function 

(LLF) 

We can get the E-Bayesian estimate of   relative to LLF based on 

1( , )a b  which is denoted as 1
ˆ
EBL  by using (2-19) and (3-4) in (3-

3) to be 

 

1

1 20 0

2( )ˆ ln 1
c

EBL

r a s c b
db da

s Q b c
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Q sc s

s

s Q c
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Also, we can derive the E-Bayesian estimates of   relative to LLF 

based on 2 ( , )a b and 3( , )a b  which are denoted as 2 3
ˆ ˆ,EBL EBL  by 

using (2-19), (3-5) in (3-3) and (2-19), (3-6) in (3-3) respectively 

to be 

 

1
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1ˆ ln 1
c

EBL

r a s
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s Q b c
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                            (3-26)                                    

 

And 

 

1
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                   (3-27)                             

 

Also, the E-Bayes estimates of ( )h t relative to LLF denoted as 

ˆ ( 1,2,3)EBLih i  can be obtained by replacing ˆ ( 1,2,3)EBLi i   given 

in (3-25), (3-26) and (3-27) instead of   given in (1-3) to be 

 

2

2

2

1 2

( )
ln 1

2 1 ( )ˆ ln 1 ,
2

1 1
ln 1

EBL

Q c c

Qc s

r Q s c c
h e
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And 

 

2
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ˆ t
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Q c c
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e

Qc s
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             (3-30) 

4. Hierarchical Bayesian estimation 

In this section, we will derive the hierarchical Bayes estimates of 

the shape parameter   and the hazard function ( )h t of the Gom-

pertz distribution based on symmetric loss function (SELF)) and 

three asymmetric loss functions (QLF, ELF and LLF). According 

to Lindley and Smith [32], if a  and b  are hyper-parameters in ,

the prior density function of   is ( , )g a b given in (2-3) and the 

prior density functions of hyper-parameters ,a b are given in (3-4), 

(3-5) and (3-6), then the corresponding hierarchical prior density 

functions of   are given as the following: 

 
1

4 10 0
( ) ( , ) ( , )

c
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1 1
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a
c a bb
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And 
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1

6 30 0
( ) ( , ) ( , )

c
g a b a b dbda                                  

1
1 1
0 02

2
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From Bayesian theorem, the hierarchical posterior density func-

tions of   can be derived by combining (2-1), (4-1), (4-2) and (4-

3) to be 
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4.1. Hierarchical Bayesian estimation under squared 

error loss function (SELF) 

The hierarchical Bayes estimates of   based on SELF denoted by 

ˆ ( 1, 2,3)HBSi i   can be obtained as  

 

ˆ ( ), 1,2,3HBSi hi
E x i                                                    (4-7) 

 

Where hi
E  indicated to the expectation of the hierarchical poste-

rior distribution. We can derived ˆ ( 1, 2,3)HBSi i  by using (4-4), (4-

5) and (4-6) in (4-7) to be 
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Similarly, the hierarchical Bayes estimates of ( )h t based on SELF 

denoted as ˆ ( 1, 2,3)HBSih i  can be obtained by replacing 

ˆ ( 1, 2,3)HBSi i   given in (4-8), (4-9) and (4-10) instead of   given 

in (1-3) to be 
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4.2. Hierarchical Bayesian estimation under quadratic 

loss function (QLF) 

The hierarchical Bayes estimates of   based on QLF denoted by 

ˆ ( 1,2,3)HBQi i   can be obtained as  
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We can derived ˆ ( 1,2,3)HBQi i  by using (4-4), (4-5) and (4-6) in 

(4-14) to be 

 

( 1)1

0 0

1
( 2)1

0 0

( ) ( 1)
( )ˆ ,

( ) ( 2)
( )

a
r ac

HBQ a
r ac

b
c b r a Q b dbda

a

b
c b r a Q b dbda

a



  

  

      




      


 

 

           (4-15) 

 

( 1)1

0 0

2
( 2)1

0 0

( 1)
( )ˆ

( 2)
( )

a
r ac

HBQ a
r ac

b
r a Q b dbda

a

b
r a Q b dbda

a



  

  

     




     


 

 

                     (4-16) 

 

And 

 
1 ( 1)1

0 0

3 1
( 2)1

0 0

( 1)
( )ˆ

( 2)
( )

a r ac b

HBQ a
r ac

r a Q b dbda
a

b
r a Q b dbda

a



   


  

     




     


 

 

                       (4-17) 

 

Similarly, the hierarchical Bayes estimates of ( )h t based on QLF 

denoted as ˆ ( 1,2,3)HBQih i  can be obtained by replacing 

ˆ ( 1,2,3)HBQi i   given in (4-15), (4-16) and (4-17) instead of   

given in (1-3) to be 
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4.3. Hierarchical Bayesian estimation under entropy 

loss function (ELF) 

The hierarchical Bayes estimates of   based on ELF denoted by 

ˆ ( 1,2,3)HBEi i   can be obtained as  
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We can derived ˆ ( 1,2,3)HBEi i  by using (4-4), (4-5) and (4-6) in 

(4-21) to be 
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Similarly, the hierarchical Bayes estimates of ( )h t  based on ELF 

denoted as ˆ ( 1,2,3)HBEih i  can be obtained by replacing 

ˆ ( 1,2,3)HBEi i   given in (4-22), (4-23) and (4-24) instead of   

given in (1-3) to be 
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4.4. Hierarchical Bayesian estimation under LINEX loss 

function (LLF) 

The hierarchical Bayes estimates of   based on LLF denoted by 

ˆ ( 1,2,3)HBLi i   can be obtained as  
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We can derived ˆ ( 1,2,3)HBLi i  by using (4-4), (4-5) and (4-6) in 

(4-28) to be 
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Similarly, the hierarchical Bayes estimates of ( )h t  based on LLF 

denoted as ˆ ( 1,2,3)HBLih i  can be obtained by replacing 

ˆ ( 1,2,3)HBLi i   given in (4-29), (4-30) and (4-31) instead of   

given in (1-3) to be 
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5. Empirical Bayesian estimation  

The Bayes approach assumed that the hyper-parameters a  and b

are known. When a  and b are unknown, we may use the empiri-

cal Bayes criteria to get its estimates from likelihood function and 

probability density function of the prior distribution [33].Now, 

from (2-1) and (2-3), the marginal distribution of x given a  and 

b is obtained as: 
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                                       (5-1) 

 

By taking the natural log for (5-1), we get 

   log , log log ( ) log ( ) ( ) logf x a b a b a r a r a Q b           (5-2) 
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By taking the derivative for (5-3) and setting it equal to zero, we 

obtain 
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By solving (5-3) and (5-4) simultaneously, we can get the maxi-

mum likelihood estimators of a  and b denoted by a  and b  to be  
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5.1. Empirical Bayesian estimation under squared error 

loss function (SELF) 

The empirical Bayes estimates of   and ( )h t based on SELF de-

noted as ˆeBS and ˆeBSh respectively can be obtained by replacing 

a and b in (5-5), (5-6) instead of a  and b in (2-7), (2-8) respec-

tively to be 
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5.2. Empirical Bayesian estimation under quadratic loss 

function (QLF) 

The empirical Bayes estimates of   and ( )h t relative to on QLF 

denoted as ˆeBQ and ˆeBQh respectively can be obtained by replacing 

a and b in (5-5), (5-6) instead of a  and b in (2-11), (2-12) re-

spectively to be 
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5.3. Empirical Bayesian estimation under entropy Loss 

function (ELF) 

The empirical Bayes estimates of   and ( )h t relative to on ELF 

denoted as ˆeBE and ˆ
eBEh respectively can be obtained by replacing 

a and b in (5-5), (5-6) instead of a and b  in (2-15), (2-16) re-

spectively to be 
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5.4. Empirical Bayesian estimation under LINEX loss 

function (LLF) 

The empirical Bayes estimates of   and ( )h t relative to on LLF 

denoted as ˆeBL and ˆeBLh respectively can be obtained by replacing 

a and b in (5-5), (5-6) instead of a  and b  in (2-19), (2-20) re-

spectively to be 
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6. Monte Carlo simulation 

This section conducted a Monte Carlo simulation study to evaluate 

the performance of different estimators for the shape parameter 

and hazard function corresponding to the Gompertz distribution 

discussed in the preceding sections. The simulation structure con-

sists of five basic steps which are: 

Step (1): Set the default values (true values) of ,s and c which 

are 0.4, 2 and 3 respectively. We considered different censoring 

schemes (different values of ,n r ) to observe their effect on the 

estimates in small, moderate and large dataset which are 

 
 small samples moderate samples large samples 

n  5, 10 15, 20, 25 50, 70 
r  2, 3, 4, 5 7, 12, 13, 16, 18, 22 25, 30, 32, 35 

Step (2): For these cases, we generate ,a b from the uniform priors 

distributions (0, 1) and (0, c) respectively given in (3-4), (3-5) and 

(3-6). For given values of a and ,b  we generate   from the 

gamma prior distribution given in (2-3).  

Step (3): For known values of , type-II censored samples are 

generated from the Gompertz distribution with pdf and cdf given 

in (1-1) and (1-2) respectively through the adoption of inverse 

transformation method, by using the formula 
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Where U is a random variable distributed according to uniform 

distribution on the period (0, 1). 

Step (4): Calculate the Bayes, E-Bayes, hierarchical Bayes and 

empirical Bayes estimates of the unknown shape parameter and 

the hazard function associated to the Gompertz distribution ac-

cording to the formulas that have been obtained. 

Step (5): We repeated this process 10000 times and compute the 

Mean Square Error (MSE) for the estimates for different censoring 

schemes and given values of , ,c s   where 
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And ̂  stands for an estimator of  . The simulation results are 

displayed in Tables (1-8). 
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Table 1: Averaged Values of MSEs for Estimates of the Parameter Based on SELF 

Best estimator ˆ
eBS  ˆ

HBS  ˆ
EBS  ˆ

BS  r  n  

Hierarchical 

Bayes 
0.1081736 

0.0900734 0.0923816 
0.1154007 2 

5 

0.1034039 0.1098492 

0.1187886 0.1319542 

E-Bayes 0.2037672 
0.7028934 0.28303229 

0.1246743 3 0.6009574 0.1740581 

0.2547409 0.1115517 

Hierarchical 

Bayes 
0.1012551 

0.0949064 0.0963787 
0.1073193 4 

10 

0.1020377 0.1057411 

0.1096066 0.1169024 

Bayes 0.1113921 
0.1247767 0.1170692 

0.1102817 5 0.1290224 0.1122438 

0.1141872 0.111367 

E-Bayes 0.1340809 
0.1327131 0.1320453 

0.1343433 7 

15 

0.134495 0.1343069 

0.135698 0.1375919 

E-Bayes 0.5068884 
0.4935076 0.4895673 

0.4877208 12 0.4933152 0.4882623 

0.4916517 0.4872165 

Bayes 0.4604651 
0.4398919 0.4390487 

0.4387684 13 

20 

0.4399477 0.4388826 

0.4395233 0.4388002 

E-Bayes 0.5338379 
0.5270607 0.5270064 

0.5270217 16 0.5270596 0.5270204 

0.5270582 0.5270347 

E-Bayes 0.5331317 
0.5261638 0.5261164 

0.5261348 18 

25 

0.5261661 0.5261334 

0.5261682 0.5261509 

E-Bayes 0.5388161 
0.5385329 0.5385311 

0.5385323 22 0.5385327 0.5385319 

0.5385325 0.5385301 

E-Bayes 0.539386 
0.5324108 0.5323611 

0.5323851 25 

50 

0.5324138 0.5323835 

0.5324162 0.5324059 

E-Bayes 0.5539138 
0.553102 0.5530951 

0.5530953 30 0.5531014 0.5530952 

0.5531009 0.5530954 

E-Bayes 
 

0.5566048 

0.5536406 0.5536152 
0.5536197 32 

70 

0.5536383 0.5536186 

0.5536366 0.5536224 

E-Bayes 0.5574312 
0.5564399 0.5564315 

0.5564317 35 0.5564391 0.5564318 

0.5564385 0.556432 

 
Table 2: Averaged Values of MSEs for Estimates of the Parameter   Based on QLF 

Best estimator ˆ
eBQ  ˆ

HBQ  ˆ
EBQ  ˆ

BQ  r  n  

E-Bayes 0.4417558 

0.4633921 0.4238526 

0.42377492 2 

5 

0.4658621 0.4236345 

0.4678147 0.4456019 

Empirical 0.2200502 

0.2292603 0.2202763 

0.2398602 3 0.2350935 0.2336599 

0.2435989 0.2555785 

Hierarchical 0.2448517 

0.2367211 0.2378877 

0.2523542 4 

10 

0.2464958 0.2501698 

0.2548032 0.2630071 

Hierarchical 0.1842346 

0.1791594 0.1798498 

0.1899613 5 0.1856097 0.1884004 

0.1918728 0.1985524 

Hierarchical 0.1956803 

0.1887348 0.1895637 

0.1960455 7 

15 

0.1932251 0.1953579 

0.1973158 0.2017024 

E-Bayes 0.5118598 

0.497656 0.4951878 

0.4940261 12 0.4974899 0.4943824 
0.4962776 0.4937599 

Bayes 0.4712319 

0.4509263 0.4503912 

0.4503843 13 

20 

0.4510272 0.4504469 
0.4508205 0.4505636 

E-Bayes 0.5344438 

0.5284392 0.5283811 

0.5283964 16 0.5284373 0.5283947 
0.5284358 0.5284085 

E-Bayes 0.5337475 

0.5274779 0.5274266 

0.5274446 18 

25 

0.5274792 0.5274432 
0.5274806 0.5274598 

Bayes 

= 
E-Bayes 

0.5388208 

0.538563 0.5385601 

0.5385601 22 0.5385628 0.5385601 
0.5385627 0.5385601 
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E-Bayes 0.5405435 

0.5340734 0.5340203 

0.5340429 25 

50 

0.5340749 0.5340413 

0.5340762 0.5340623 

E-Bayes 0.5539447 

0.5531863 0.5531793 

0.5531795 30 0.5531857 0.5531794 

0.5531852 0.5531796 

E-Bayes 
0.5569455 

 

0.5541593 0.5541335 

0.5541373 32 

70 

0.5541568 0.5541362 

0.554155 0.5541394 

E-Bayes 0.5574841 

0.5565487 0.5565402 

0.5565404 35 0.5565479 0.5565404 

0.5565473 0.5565407 

 
Table 3: Averaged Values of MSEs for Estimates of the Parameter   Based on ELF 

Best estimator ˆ
eBE  ˆ

HBE  ˆ
EBE  ˆ

BE  r  n  

Hierarchical 

Bayes 
0.2393492 

0.2165015 0.2168677 

0.2447842 2 

5 

0.2338617 0.2382808 
0.2491744 0.2613634 

Bayes 0.1489339 

0.286921 0.1783073 

0.1381134 3 0.2454365 0.1505408 
0.1578187 0.1464825 

Hierarchical 

Bayes 
0.1611572 

0.1524457 0.1543769 

0.1687689 4 

10 

0.1622049 0.1666153 
0.1714139 0.1799419 

E-Bayes 0.1361098 

0.1373493 0.1355164 

0.1392281 5 0.1396337 0.1390392 
0.1414759 0.1452053 

Hierarchical 

Bayes 
0.1607174 

0.1558313 0.1561711 

0.1609936 7 

15 

0.1592189 0.1605749 
0.1622656 0.1657474 

E-Bayes 0.5093679 

0.4954227 0.4922695 

0.4907839 12 0.4952433 0.4912282 
0.4938076 0.4904062 

Bayes 0.4658121 

0.4452436 0.4445716 

0.4444365 13 

20 

0.4453234 0.4445235 

0.4450136 0.4445488 

E-Bayes 0.5341407 

0.5277477 0.5276915 

0.5277067 16 0.5277462 0.5277054 
0.5277448 0.5277195 

E-Bayes 0.5334395 

0.5268187 0.5267692 

0.5267877 18 

25 

0.5268205 0.5267862 
0.5268223 0.5268034 

E-Bayes 0.5388185 

0.5385482 0.5385450 

0.5385451 22 0.5385477 0.5385451 
0.5385476 0.5385451 

E-Bayes 0.5399644 

0.5332406 0.5331892 

0.5332126 25 

50 

0.5332428 0.5332109 
0.5332447 0.5332327 

Empirical 

Bayes 
0.5339292 

0.5531442 0.5531372 

0.5531374 30 0.5531435 0.5531373 
0.5531431 0.5531375 

E-Bayes 0.5567751 
0.5538998 0.5538742 

0.5538784 32 

70 

0.5538974 0.5538773 

0.5538956 0.5538805 

E-Bayes 0.5574577 
0.5564943 0.5564859 

0.556486 35 0.5564935 0.5564861 

0.5564929 0.5564863 

 

 
Table 4: Averaged Values of MSEs for Estimates of the Parameter   Based on LLF 

Best estimator ˆ
eBL  ˆ

HBL  ˆ
EBL  ˆ

BL  r  n  

Hierarchical 

Bayes 
0.1468433 

0.1274319 0.1300703 
0.1534217 2 

5 

0.1423646 0.1486116 

0.1570616 0.1693468 

Bayes 0.1077884 
0.1409541 0.1164396 

0.0999737 3 0.1277961 0.1047927 

0.1085985 0.1047618 

Hierarchical 

Bayes 
0.1218346 

0.1143817 0.1162738 
0.1283687 4 

10 

0.1226245 0.1267342 

0.1307677 0.1383037 

E-Bayes 0.1121342 
0.1128788 0.1115827 

0.1145334 5 0.114787 0.1144052 

0.1163856 0.1193545 

Hierarchical 

Bayes 
0.2108287 

0.2019998 0.2035517 
0.2109233 7 

15 
0.2071128 0.2101355 

0.2122008 0.4591252 

E-Bayes 1.4051697 1.3660657 1.3655501 1.3658455 12 
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1.3662818 1.3658569 

1.3663222 1.4517256 

Hierarchical 
Bayes 

= 

E-Bayes 

0.8112455 

0.7808361 0.7808361 

0.7815429 13 

20 

0.7815032 0.7815032 

0.7817255 0.8878425 

E-Bayes 1.4939107 

1.482692 1.4825934 

1.4826256 16 1.4826932 1.4826228 

1.4826956 1.5017362 

E-Bayes 1.1345492 

1.1256476 1.1255801 

1.1256065 18 

25 

1.1256518 1.1256044 

1.125656 1.1415574 

E-Bayes 2.196718 

2.1960631 3.4861319 

2.1960561 22 2.1960626 2.1960560 

2.1960622 3.7932213 

E-Bayes 0.539399 

0.5324556 0.5324057 

0.5324297 25 

50 

0.5324584 0.5324283 

0.5324607 0.5324504 
Bayes 

= 

E-Bayes 

0.5539138 

0.5531023 0.5584083 

0.5530956 30 0.5531017 0.5530956 

0.5531012 0.5565524 

E-Bayes 0.5566063 

0.5536474 0.5536209 

0.5536264 32 

70 

0.5536451 0.5536253 

0.5536434 0.5536319 

Bayes 0.5574313 

0.5564404 0.5661383 

0.5564322 35 0.5564396 0.5564323 

0.556439 0.5653351 

 

Table 5: Averaged Values of MSEs for Estimates of the Parameter ( )h t  Based on SELF 

Best estimator ˆ
eBSh  ˆ

HBSh  ˆ
EBSh  ˆ

BSh  r  n  

Hierarchical 
Bayes 

0.1412723 

0.1227171 0.1258195 

0.1476429 2 

5 

0.1363939 0.1426235 

0.1502469 0.1606808 

Empirical 
Bayes 

0.1178139 

0.1692736 0.120067 

0.1413497 3 0.172298 0.1343846 

0.1511548 0.1613064 

Hierarchical 
Bayes 

0.1371602 

0.1290326 0.1313219 

0.1434964 4 

10 

0.1372499 0.141665 

0.1455241 0.1525482 

Hierarchical 
Bayes 

0.1633304 

0.1537777 0.1565579 

0.1701982 5 0.1621621 0.1679724 

0.1717051 0.1806547 

Hierarchical 
Bayes 

0.1974171 

0.1879971 0.1896829 

0.1974726 7 

15 

0.1932869 0.1965934 

0.198737 0.2038466 

Bayes 1.4049949 

1.3668662 1.3653674 

1.3652581 12 1.3670484 1.3653868 

1.3667106 1.3655327 

E-Bayes 0.8106249 

0.7796862 0.7795411 

0.7802063 13 

20 

0.7801322 0.7801771 

0.7804643 0.7808441 

E-Bayes 1.4939071 

1.4826317 1.4825332 

1.4825668 16 1.4826333 1.4825633 

1.4826361 1.4825935 

E-Bayes 1.1345459 

1.1255963 1.1255281 

1.1255559 18 

25 

1.1256008 1.1255537 
1.1256054 1.255794 

E-Bayes 2.196718 

2.196063 2.1960558 

2.1960559 22 2.1960624 2.1960559 
2.1960621 2.1960559 

E-Bayes 0.5770019 

0.5720236 0.5719854 

0.572003 25 

50 

0.5720256 0.5720018 
0.5720272 0.5720182 

E-Bayes 0.7815812 

0.7808513 0.7808447 

0.7808449 30 0.7808507 0.7808449 
0.7808503 0.780845 

E-Bayes 0.5192111 

0.5173478 0.5173308 

0.5173336 32 

70 

0.5173462 0.5173329 
0.517345 0.5173351 

E-Bayes 0.5875585 

0.586873 0.5868669 

0.5868674 35 0.5868724 0.586867 
0.5868719 0.5868672 
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Table 6: Averaged Values of MSEs for Estimates of the Parameter ( )h t  Based on QLF 

Best estimator ˆ
eBQh  ˆ

HBQh  ˆ
EBQh  ˆ

BQh  r  n  

E-Bayes 0.3482932 

0.360396 0.3389923 

0.3459976 2 

5 

0.3614346 0.344487 
0.3622528 0.3500319 

Hierarchical 0.3586745 

0.3483162 0.3497848 

0.3857052 3 0.3682359 0.3750094 
0.3885239 0.4025491 

Hierarchical 0.2463663 

0.2410258 0.2417891 

0.2512266 4 

10 

0.2474453 0.2498273 
0.2527922 0.2580322 

Hierarchical 0.2752486 

0.2663228 0.2684134 

0.2822113 5 0.2753904 0.2798524 
0.2840613 0.2918048 

Hierarchical 0.2663315 
0.2578511 0.2591428 

0.2666107 8 

15 

0.2630432 0.2657306 

0.2678566 0.2725026 

Empirical 1.14138456 

1.3802569 1.3792834 

1.3793881 12 1.3804155 1.3794473 

1.380229 1.3796988 

E-Bayes 0.8232002 
0.7956202 0.7954954 

0.7961594 13 

20 

0.7960272 0.7961197 

0.7963558 0.7967664 

E-Bayes 1.4950112 
1.4850816 1.4849752 

1.4850051 16 1.4850805 1.4850023 

1.485081 1.4850295 

E-Bayes 1.1354064 
1.1274009 1.1273277 

1.1273531 18 

25 

1.1274034 1.1273514 

1.1274061 1.1273744 

E-Bayes 2.1967308 
2.1961347 2.1961274 

2.1961275 22 2.1961342 2.1961274 

2.1961338 2.1961275 

E-Bayes 0.5778575 
0.5732553 0.5732148 

0.5732312 25 

50 

0.5732562 0.5732345 

0.573257 0.5732453 

E-Bayes 0.7816112 

0.7809296 0.7809229 

0.7809230 30 0.7809293 0.7809230 

0.7809285 0.7809231 

E-Bayes 0.5194343 
0.5176846 0.5176671 

0.5176698 32 

70 

0.5176829 0.5176691 

0.5176817 0.5176711 

E-Bayes 0.5875973 
0.5869507 0.5869444 

0.5869445 35 0.5869501 0.5869446 

0.5869496 0.5869447 

 
Table 7: Averaged Values of MSEs for Estimates of the Parameter ( )h t  Based on ELF 

Best estimator ˆ
eBEh  ˆ

HBEh  ˆ
EBEh  ˆ

BEh  r  n  

Hierarchical 

Bayes 
0.2331493 

0.2189966 0.2191796 
0.2363194 2 

5 

0.229798 0.2324628 

0.2389718 0.2461973 

E-Bayes 0.2129794 
0.2117466 0.2070463 

0.2446143 3 0.2281944 0.2331799 

0.2453087 0.2657445 

Hierarchical 

Bayes 
0.1875475 

0.1804084 0.1820682 
0.1934148 4 

10 

0.1882323 0.1917172 

0.195379 0.201693 

Hierarchical 

Bayes 
0.2144449 

0.2044472 0.2072122 
0.2216547 5 0.2137031 0.2192354 

0.2234342 0.2321073 

Hierarchical 

Bayes 
0.2301584 

0.2209862 0.222526 
0.2303126 7 

15 

0.2263544 0.2294133 

0.231613 0.236558 

E-Bayes 1.4094141 
1.3734691 1.3722569 

1.3722642 12 1.3736401 1.372356 

1.3733802 1.3725596 

E-Bayes 0.8168902 
0.7875702 0.7874409 

0.7881094 13 

20 

0.7879983 0.7880746 

0.7883314 0.7887349 

E-Bayes 1.494459 

1.4838549 1.4837526 

1.4837841 16 1.4838552 1.4837812 

1.4838568 1.4838109 

E-Bayes 1.1349761 
1.1264973 1.1264267 

1.1264533 18 

25 

1.1265008 1.1264512 

1.1265045 1.1264757 

E-Bayes 2.1967244 
2.1960988 2.1960916 

2.1960917 22 2.1960983 2.1960917 

2.1960979 2.1960917 
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E-Bayes 0.5774295 

0.5726388 0.5725995 

0.5726165 25 

50 

0.5726403 0.5726153 

0.5726415 0.5726312 

E-Bayes 0.7815962 

0.7808904 0.7808838 

0.7808846 30 0.7808899 0.7808839 

0.7808894 0.7808841 

E-Bayes 0.5193227 

0.5175161 0.5174989 

0.5175017 32 

70 

0.5175145 0.517501 

0.5175133 0.517503 

E-Bayes 0.5875779 

0.5869118 0.5869056 

0.5869058 35 0.5869112 0.5869058 

0.5869108 0.586906 

 

Table 8: Averaged Values of MSEs for Estimates of the Parameter ( )h t  Based on LLF 

Best estimator ˆ
eBLh  ˆ

HBLh  ˆ
EBLh  ˆ

BLh  r  n  

Hierarchical 0.1716604 

0.1571097 0.1592111 

0.1763238 2 

5 

0.1683651 0.1729069 

0.1788406 0.2923221 

Hierarchical 0.1628875 

0.1523755 0.1585437 

0.1897742 3 0.1690574 0.1820938 

0.1903974 0.4584379 

Hierarchical 0.1570101 

0.1500465 0.1519278 

0.1626394 4 

10 

0.1577888 0.161177 

0.1645925 0.3430544 

Hierarchical 0.1864011 

0.1771111 0.1799092 

0.1929771 5 0.1856013 0.1910202 

0.1946963 0.4555219 

Hierarchical 0.2108287 

0.2019998 0.2035517 

0.2109233 7 

15 

0.2071128 0.2101355 

0.2122008 0.4591252 

E-Bayes 1.4051697 

1.3660657 1.3655501 

1.3658455 12 1.3662818 1.3658569 

1.3663222 1.4517256 
Hierarchical 

= 

E-Bayes 

0.8112455 

0.7808360 0.7808360 

0.7815429 13 

20 

0.7815032 0.7815032 

0.7817255 0.8878343 

E-Bayes 1.4939107 

1.482692 1.4825934 

1.4826256 16 1.4826932 1.4826228 

1.4826956 1.5017362 

E-Bayes 1.1345492 

1.1256476 1.1255801 

1.1256065 18 

25 

1.1256518 1.1256044 

1.125656 1.1415574 

E-Bayes 2.196718 

2.1960631 3.4861319 

2.1960561 22 2.1960626 2.1960560 

2.1960622 3.7932213 

E-Bayes 0.5770112 

0.5720563 0.5720181 

0.5720357 25 

50 

0.5720583 0.5720345 

0.5720598 0.5773542 
Bayes 

= 

E-Bayes 

0.7815812 

0.7808516 0.7873262 

0.7808452 30 0.7808513 0.7808452 

0.7808506 0.7861364 

E-Bayes 0.5192121 

0.517352 0.5173338 

0.5173379 32 

70 

0.5173504 0.5173372 

0.5173493 0.5226816 

Bayes 

= 
E-Bayes 

0.5875585 

0.5868733 0.5954512 

0.5868673 35 0.5868727 0.5868673 
0.5868723 0.5961556 

 

7. Conclusion remarks 

 Among four estimates of   based on SELF shown in Table 

1, we can deducted that hierarchical Bayes estimates are the 

best estimators in most cases of small samples sizes [5], [2], 

[10], [4], while the E-Bayes are the best estimators in [5], 

[3] and the Bayes estimators are the best in [10], [5].Also, 

the E-Bayes estimates have smallest MSE in nearly all cases 

of moderate and large sample sizes except for [20], [13] 

where the Bayes estimates are the best. Generally, the over-

all performance of the four techniques for estimating   can 

be ordered due to number of having smaller MSE as fol-

lows: 

 
ˆ ˆ ˆ ˆ
EBS BS HBS eBS     

 
 

 Among four estimates of   based on QLF shown in Table 

2, we can deducted that hierarchical Bayes estimates are the 

best estimators in most cases of small samples sizes [10], 

[4], [10], [5], while the E-Bayes are the best estimators in 

[5], [2] and the empirical Bayes estimators are the best in 

[5], [3]. In addition, the E-Bayes estimates have smallest 

MSE in most cases of moderate sample sizes except for 

[15], [7] where the hierarchical Bayes estimates are the best, 

[20], [13] where the Bayes estimates are the best and [25], 

[22] where the Bayes and E-Bayes estimates are equivalent. 

In large samples, the E-Bayes estimates are the best in all 

cases. Generally, the overall performance of the four meth-

ods for estimating   can be ordered due to number of hav-

ing smaller MSE as follows: 

 

ˆ ˆ ˆ ˆ
EBQ HBQ BQ eBQ     
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 Among four estimates of   based on ELF shown in Table 

3, we can deducted that hierarchical Bayes estimates have 

smallest MSE in most cases of small samples sizes [5], [2], 

[10], [4], while the Bayes are the best estimators in [5], [3] 

and the E-Bayes estimators are the best in [10], [5]. Fur-

thermore, the E-Bayes estimates are the best in most cases 

of moderate sample sizes except for [15], [7] where the hi-

erarchical Bayes estimates are the best and [20], [13] where 

the Bayes estimates are the best. In large samples, the E-

Bayes have smallest MSE in nearly all cases except for [50], 

[30] where the empirical Bayes estimates are the best. Gen-

erally, the overall performance of the four methods for es-

timating   can be ordered due to number of having smaller 

MSE as follows: 

 

ˆ ˆ ˆ ˆ
EBE HBE BE eBE     

 
 

 Among four estimates of   based on LLF shown in Table 

4, we can deducted that hierarchical Bayes estimates have 

smallest MSE in most cases of small samples sizes [5], [2], 

[10], [4], while the Bayes estimates have smallest MSE in 

[5], [3] and the E-Bayes estimators are the best in [10], [5]. 

Also, the E-Bayes estimates are the best in most cases of 

moderate sample sizes except for [15], [7] where the hierar-

chical Bayes estimates are the best and [20], [13] where the 

E-Bayes estimates and hierarchical Bayes estimates are 

equivalent. In large samples, the E-Bayes have smallest 

MSE in nearly all cases except for [50], [30] where the E-

Bayes and Bayes estimates are equivalent. Generally, the 

overall performance of the four methods for estimating   

can be ordered due to number of having smaller MSE as fol-

lows: 

 

ˆ ˆ ˆ ˆ
EBL HBL BL eBL     

 
 

 In comparing the various techniques relative to the different 

loss functions in estimating ,  we can ordered them due to 

having smallest MSE to be 

 

ˆ ˆ ˆ ˆ
SELF LLF ELF QLF     

 
 

 Among four estimates of ( )h t  based on SELF shown in Ta-

ble 5, we can deducted that hierarchical Bayes estimates 

have smallest MSE in nearly all cases of small samples siz-

es except for [5], [3], while the empirical Bayes estimates 

are the best. In addition, the E-Bayes estimates are the best 

in most cases of moderate sample sizes except for [15], [7] 

where the hierarchical Bayes estimates are the best and [15], 

[12] where the Bayes estimates are the best. In large sam-

ples, the E-Bayes have smallest MSE in all cases. General-

ly, the overall performance of the four methods for estimat-

ing ( )h t  can be ordered due to number of having smaller 

MSE as follows: 

 
ˆ ˆ ˆ ˆ
EBS HBS BS eBSh h h h  

 
 

 Among four estimates of ( )h t  based on QLF shown in Ta-

ble 6, we can deducted that hierarchical Bayes estimates 

have smallest MSE in nearly all cases of small samples siz-

es except for [5], [2] where the E-Bayes estimates are the 

best. Also, the E-Bayes estimates are the best in most cases 

of moderate sample sizes except for [15], [7] where the hi-

erarchical Bayes estimates are the best and [15], [12] where 

the empirical Bayes estimates are the best. In large samples, 

the E-Bayes have smallest MSE in all cases. Generally, the 

overall performance of the four methods for estimating ( )h t  

can be ordered due to number of having smaller MSE as fol-

lows: 

 
ˆ ˆ ˆ ˆ
EBQ HBQ eBQ BQh h h h  

 
 

 Among four estimates of ( )h t  based on ELF shown in Ta-

ble 7, we can deducted that hierarchical Bayes estimates are 

the best in nearly all cases of small samples sizes except for 

[5], [3] where the E-Bayes estimates are the best. Further-

more, the E-Bayes estimates are the best in nearly all cases 

of moderate and large sample sizes except for [15], [7] 

where the hierarchical Bayes estimates are the best. Gener-

ally, the overall performance of the four methods for esti-

mating ( )h t  can be ordered due to number of having small-

er MSE as follows: 

 
ˆ ˆ ˆ ˆ
EBE HBE BE eBEh h h h  

 
 

 Among four estimates of ( )h t  based on LLF shown in Ta-

ble 8, we can deducted that hierarchical Bayes estimates are 

the best in all cases of small samples sizes. Also, the E-

Bayes estimates are the best in nearly all cases of moderate 

samples sizes except for [15], [7] where the hierarchical 

Bayes estimates are the best and [20], [13] where the E-

Bayes and hierarchical Bayes estimates are equivalent. In 

the end, The E-Bayes estimates have smallest MSE in most 

cases except for [50], [30], [70], [35] where the Bayes and 

E-Bayes and Bayes estimates are equivalent. Generally, the 

overall performance of the four methods for estimating ( )h t  

can be ordered due to number of having smaller MSE as fol-

lows: 

 
ˆ ˆ ˆ ˆ
EBL HBL BL eBLh h h h    

 

 In comparing the different approaches within the various 

loss function, we can ordered them due to having smallest 

MSE to be  

 
ˆ ˆ ˆ ˆ
SELF LLF ELF QLFh h h h    
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