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Abstract 

 

In this paper, the Bayesian estimation for the unknown parameters for the bivariate generalized exponential (BVGE) 

distribution under Bivariate censoring type-I samples with constant stress accelerated life testing (CSALT) are 

discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power 

law function of the stress level. The parameters are estimated by Bayesian approach using Markov Chain Monte Carlo 

(MCMC) method based on Gibbs sampling. Then, the numerical studies are introduced to illustrate the approach study 

using samples which have been generated from the BVGE distribution. 
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1. Introduction 

Many times the lifetime data of interest is bivariate in nature. Any study on twins or on failure data recorded twice at 

the same system naturally leads to bivariate data. Paired data can be also consisted of blindness in the left  /right eye, 

failure time of the left /right kidney or age at death of parent  /child in a genetic study. For example, Houggard et al. 

[14] studied data on life length of Danish twins and Lin et al. [23] considered data of colon cancer and the time from 

treatment to death (see Attia et al. [10]).  

The BVGE distribution provides a very good fit; Meintanis [25] analyzed one data and concluded that bivariate 

Marshall and Olkin exponential distribution provided a very good fit. Also Kundu and Gupta [19] re-analyzed the same 

data set and they are observed that the proposed BVGE distribution provides a much better fit than the Marshal and 

Olkin bivariate exponential model. 

The BVGE distribution is occurring in practice, it presents in some models as follows:  

Maintenance Model: Suppose a system has two components and it is assumed that each component has been maintained 

independently and also there is an overall maintenance. Due to component maintenance, suppose the lifetime of the 

individual is increased by 𝑈𝑖  amount and because of the overall maintenance, the lifetime of each component is 

increased by 𝑈3  amount. Therefore, the increased lifetimes of the two components are 𝑋1 = 𝑚𝑎𝑥(𝑈1 ,  𝑈3)                  

and 𝑋2 = 𝑚𝑎𝑥(𝑈2 ,  𝑈3) respectively. 

Stress Model: Suppose a system has two components. Each component is subject to individual independent stress say 

𝑈1 and 𝑈2 respectively. The system has an overall stress U3 which has been transmitted to both the components equally, 

independent of their individual stresses. Therefore, the observed stress at the two components are 𝑋1 = 𝑚𝑎𝑥(𝑈1 ,  𝑈3) 

and 𝑋2 = 𝑚𝑎𝑥(𝑈2 ,  𝑈3) respectively.  

Shock model: Suppose there are three independent sources of shocks; say 1,2 and 3. Suppose these shocks are affecting 

a system with two components, say 1 and 2. It is assumed that the shock from source 1 reaches the system and destroys 

component 1 immediately, the shock from source 2 reaches the system and destroys component 2 immediately, while if 

the shock from source 3 hits the system it destroys both components immediately. Let 𝑈𝑖 denote the inter-interval times 
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between the shocks in source 𝑖, 𝑖 = 1, 2, 3, which follow the distribution GE. If 𝑋1, 𝑋2 denote the survival times of the 

components, then (𝑋1, 𝑋2) follows the BVGE model. 

Competing risks model: Assume a system has two components, labeled 1 and 2, and the survival time of component i is 

denoted by 𝑋𝑖 , 𝑖 = 1,2. It is considered that there are three independent causes of failures, which may affect the system. 

Only component 1 can fail due to cause 1, and similarly only component 2 can fail due to cause 2, while both the 

components can fail at the same time due to cause 3. Let 𝑈𝑖 be the life time of cause 𝑖, 𝑖 = 1, 2, 3. If 𝑈1, 𝑈2and 𝑈3follow 

a GE distribution, then (𝑋1, 𝑋2) follow the BVGE model (see Marshall and Olkin [24] and Lakshmi and Durgadevi 

[22]).  

Kundu and Gupta (2009) defined a BVGE distribution and they used the method of maximum likelihood to estimate the 

four unknown parameters of the BVGE distribution from complete samples. Ashour et al. [5] provided the joint and 

marginal moments and the joint and marginal moment generating function for the BVGE distribution. Ashour et al. [6] 

estimated the unknown parameters of the BVGE distribution from censoring type-I samples with random censoring 

samples using the method of maximum likelihood. Lakshmi and Durgadevi [22] presented a study in the application 

part for the BVGE distribution. Assar and Abd El-Maseh [7] presented maximum likelihood estimation for the 

unknown parameters of the BVGE distribution under type-I censoring samples with accelerated life testing. 

Accelerated life testing (ALT) is becoming so important and widely used in many fields, such as: in manufacturing 

industries to assess or demonstrate component and subsystem reliability, in rapidly changing technologies, higher 

customer expectations for better reliability and the need for rapid device development (see Attia et al. [8]). 

There are cases where the reliability of component is high and failure data of the component when operating at normal 

conditions may not be attainable during its expected life. In such cases, accelerated life testing induces failures, and the 

failure data at accelerated conditions are used to estimate the reliability at normal operating conditions (see Elsayed 

[12]).  

The most common stress loading is constant stress, the stress is kept at a constant level of stress throughout the life of 

the test, that is, each unit is run at a constant high stress level until the occurrence of failure or the observation is 

censoring. Practically, most devices such as lamps, semiconductors, and microelectronics are run at a constant stress 

(see Nelson [27]). 

The inverse power law model is often used to relate product life to pressure like stresses (e.g., voltage) and it is used in 

this paper (see Elsayed [12]). 

There are several mechanisms that can lead to censoring samples. If the test is terminated after a pre-determined time of 

censoring then it is said to be type-I censoring and if the test is terminated after a pre-determined number of failures 

then it is said to be type-II censoring. In this paper, it is used the bivariate censoring type-I samples (see Hanagal [13]). 

In Bayesian analysis, our information, our belief or our knowledge about the unknown parameters can be incorporating 

in a measurable form as a prior distribution. The density 𝜋(𝜃) is called the prior distribution of 𝛩 and the 𝑥1, ⋯ , 𝑥𝑛 be a 

random sample of size 𝑛. The conditional density of 𝛩 given 𝑋1 = 𝑥1, ⋯ , 𝑋𝑛 = 𝑥𝑛 , denoted by 𝐻(𝜃|𝑥1, ⋯ , 𝑥𝑛), is called 

the posterior distribution of 𝛩 as follows (see Mood et al. [26]): 

 

𝐻(𝜃|𝑥1, ⋯ , 𝑥𝑛) =
𝐿(𝜃)𝜋(𝜃)

∫ 𝐿(𝜃)𝜋(𝜃).𝑑𝜃𝛩

, Where 𝐿(𝜃) = ∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑖=1 . 

 

Ibrahim et al. [16] described that in most models and application, the quantity 𝑚(𝑥) = ∫ 𝐿(𝜃|𝑥1, ⋯ , 𝑥𝑛)
𝜃

𝜋(𝜃) 𝑑𝜃 does 

not have an analytic closed form, and therefore 𝐻(𝜃|𝑥1, ⋯ , 𝑥𝑛) does not have a closed form. However, there are several 

computational method for sampling from 𝐻(𝜃|𝑥1, ⋯ , 𝑥𝑛). Perhaps one of the most popular of these methods is called 

the Gibbs sampler.  

The Gibbs sampler may be one of the best known MCMC sampling algorithms in the Bayesian computational literature, 

and it is used in this paper. The Gibbs sampler is Monte Carlo based sampling methods for evaluating high-dimensional 

posterior integral, and it is very powerful simulation algorithm that allows us to sample from 𝐻(𝜃|𝑥1, ⋯ , 𝑥𝑛) without 

knowing 𝑚(𝑥). 
There are many works presented a Bayesian approach using MCMC method, for example, Aly and Bleed [4] presented 

Bayesian analysis for generalized Logistic distribution with CSALT under type-II censoring. Attia et al. [11] considered 

the Bayes estimators for Birnbaum-Saunders distribution with CSALT under type-I censoring. Zhou et al. [31] 

introduced Bayesian estimation for Log-binomial model using MCMC via slice sampling to simulate from the posterior 

distributions. There are many authors discussed Bayesian approach for bivariate distributions, such as, Kim and Park 

[17], Achcar [2], and Kundu and Gupta [20]. 

This paper is organized as follows: The general model for BVGE distribution is described in Section (2). Section (3) 

presents accelerated test model. Section (4) introduces Bayesian estimation for the unknown parameters. Section (5) 

presents a numerical example and OpenBUGS software is used for implementing MCMC simulation. Section (6) 

presents a conclusion. 
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2. The general model for BVGE distribution 

The BVGE distribution has the probability density function (pdf) with the shape parameters 𝛼1, 𝛼2, 𝛼3 > 0 and scale 

parameter 𝜆 > 0 as follows:  

 

𝑓(𝑥, 𝑦) = {

𝑓1(𝑥, 𝑦) 𝑖𝑓 0 <  𝑥 < 𝑦 < ∞,

𝑓2(𝑥, 𝑦) 𝑖𝑓 0 <  𝑦 < 𝑥 < ∞

𝑓3(𝑥) 𝑖𝑓 0 < 𝑥 = 𝑦 < ∞,

,                                                                                                                         (1) 

 

Where 

 

𝑓1(𝑥, 𝑦) =  𝑓𝐺𝐸(𝑥; 𝛼1 + 𝛼3, 𝜆)𝑓𝐺𝐸(𝑦; 𝛼2, 𝜆)  

 

               = (𝛼1 + 𝛼3)𝛼2𝜆2(1 − 𝑒−𝜆𝑥)𝛼1+𝛼3−1(1 − 𝑒−𝜆𝑦)𝛼2−1𝑒−𝜆(𝑥+𝑦), 

 

𝑓2(𝑥, 𝑦) =  𝑓𝐺𝐸(𝑥; 𝛼1, 𝜆)𝑓𝐺𝐸(𝑦; 𝛼2 + 𝛼3, 𝜆)  

 

              = (𝛼2 + 𝛼3)𝛼1𝜆2(1 − 𝑒−𝜆𝑥)𝛼1−1(1 − 𝑒−𝜆𝑦)𝛼2+𝛼3−1𝑒−𝜆(𝑥+𝑦), 

 

And 

 

𝑓3(𝑥) =
𝛼3

𝛼1+𝛼2+𝛼3
 𝑓𝐺𝐸(𝑥; 𝛼1 + 𝛼2 + 𝛼3, 𝜆)  

 

           = 𝛼3𝜆(1 − 𝑒−𝜆𝑥)𝛼1+𝛼2+𝛼3−1𝑒−𝜆𝑥.  
 

Where 

 

𝑓𝐺𝐸(𝑥; 𝛼, 𝜆) = 𝛼𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛼−1 is the pdf of the GE distribution and the BVGE distribution will be denoted by 

BVGE (𝛼1, 𝛼2, 𝛼3, 𝜆).  

Note that: Kundu and Gupta [19] provided a special case of the PDF for BVGE distribution with λ = 1 and denoted that 

the results are true for general λ also. 

3. Accelerated test model 

The assumptions of accelerated life test are assumed to be as follows: 

i) There are k levels of high stress 𝑉𝑗  , 𝑗 = 1, … , 𝑘 in the experiment and 𝑉𝑢  is the stress under usual conditions, 

where 𝑉𝑢 < 𝑉1 < ⋯ < 𝑉𝑘. 

ii) There are 𝑁 bivariate observations (𝑥𝑖𝑗 , 𝑦𝑖𝑗) under study and it divided into 𝑛𝑗  bivariate observations for each 

level of stress 𝑉𝑗 , where 𝑖 = 1,2, … , 𝑛𝑗 and 𝑗 = 1, 2, … , 𝑘. 

iii) Each 𝑛𝑗 bivariate observations (𝑥𝑖𝑗 , 𝑦𝑖𝑗) in the experiment is run at a pre-specified constant stress 𝑉𝑗 . 

iv) The i-th pair of the components with life-time (𝑥𝑖𝑗 , 𝑦𝑖𝑗) have a censoring time tij and the experiment is terminated 

at a pre-specified censoring time  𝑡𝑖𝑗, 𝑖 = 1,2, … , 𝑛𝑗 and 𝑗 = 1, 2, … , 𝑘.  

v) It is assumed that the stress 𝑉𝑗 , 𝑗 = 1, 2, … , 𝑘 affects only the scale parameter 𝜆𝑗 of the BVGE distribution through 

a certain acceleration function. 

vi) By using equation (1), the BVGE distribution under CSALT with scale parameter 𝜆𝑗 has the joint pdf as follows: 

 

𝑓(𝑥𝑖𝑗 , 𝑦𝑖𝑗) = {

𝑓1(𝑥𝑖𝑗 , 𝑦𝑖𝑗) 𝑖𝑓 0 < 𝑥𝑖𝑗 < 𝑦𝑖𝑗 < ∞,

𝑓2(𝑥𝑖𝑗 , 𝑦𝑖𝑗) 𝑖𝑓 0 < 𝑦𝑖𝑗 < 𝑥𝑖𝑗 < ∞,

 𝑓3(𝑥𝑖𝑗) 𝑖𝑓 0 < 𝑥𝑖𝑗 = 𝑦𝑖𝑗 < ∞,

                                                                                                             (2) 

 

Where 

 

𝑓1(𝑥𝑖𝑗 , 𝑦𝑖𝑗) =  𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1 + 𝛼3, 𝜆𝑗)𝑓𝐺𝐸(𝑦𝑖𝑗 ; 𝛼2, 𝜆𝑗)  

 

                     = (𝛼1 + 𝛼3)𝛼2𝜆𝑗
2 (1 − 𝑒−𝜆𝑗𝑥𝑖𝑗)

𝛼1+𝛼3−1
(1 − 𝑒−𝜆𝑗𝑦𝑖𝑗)

𝛼2−1
𝑒−𝜆𝑗(𝑥𝑖𝑗+𝑦𝑖𝑗),  
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𝑓2(𝑥𝑖𝑗 , 𝑦𝑖𝑗) =  𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1, 𝜆𝑗)𝑓𝐺𝐸(𝑦𝑖𝑗; 𝛼2 + 𝛼3, 𝜆𝑗)  

 

                    = (𝛼2 + 𝛼3)𝛼1𝜆𝑗
2 (1 − 𝑒−𝜆𝑗𝑥𝑖𝑗)

𝛼1−1
(1 − 𝑒−𝜆𝑗𝑦𝑖𝑗)

𝛼2+𝛼3−1
𝑒−𝜆𝑗(𝑥𝑖𝑗+𝑦𝑖𝑗),  

 

And 

 

𝑓3(𝑥𝑖𝑗) =
𝛼3

𝛼1+𝛼2+𝛼3
 𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1 + 𝛼2 + 𝛼3, 𝜆𝑗)  

 

              = 𝛼3𝜆𝑗 (1 − 𝑒−𝜆𝑗𝑥𝑖𝑗)𝛼1+𝛼2+𝛼3−1𝑒−𝜆𝑗𝑥𝑖𝑗 .  

 

vii) The scale parameter 𝜆𝑗 of the underlying life time distribution (2) have an inverse power law function on stress 

levels where 𝜆𝑗 = 𝐶𝑆𝑗
𝑃. (See Singpurwalla [28], Abdel-Ghaly et al. [1], Attia et al. [8] and Attia et al. [9]). 

4. Bayesian estimation 

In order to obtain the Bayesian estimators of the unknown parameters, it is necessary to obtain the likelihood function 

for the model. Considering the assumptions in section (2), the likelihood function under bivariate censoring type-I 

samples with CSALT of the sample size N bivariate observations is given by: 

 

𝐿(𝛼1, 𝛼2, 𝛼3, 𝐶, 𝑃) =  ∏ {𝑘
𝑗=1 [∏ 𝑓𝐴1

(𝑥𝑖𝑗 , 𝑦𝑖𝑗)𝐺𝐴
̅̅ ̅(𝑡𝑖𝑗)

𝑚1𝑗

𝑖=1
][∏ 𝑓𝐴2

(𝑥𝑖𝑗 , 𝑦𝑖𝑗)
𝑚2𝑗

𝑖=1
𝐺𝐴
̅̅ ̅(𝑡𝑖𝑗)] [∏ 𝑓𝐴3

(𝑥𝑖𝑗 , 𝑦𝑖𝑗)𝐺𝐴
̅̅ ̅(𝑡𝑖𝑗)

𝑚3𝑗

𝑖=1
]  

 

                                   ∙ [∏ 𝑓𝐴4
(𝑥𝑖𝑗 , 𝑡𝑖𝑗)

𝑚4𝑗

𝑖=1
𝑔𝐴(𝑡𝑖𝑗)][∏ 𝑓𝐴5

(𝑡𝑖𝑗 , 𝑦𝑖𝑗)𝑔𝐴(𝑡𝑖𝑗)
𝑚5𝑗

𝑖=1
][∏ 𝐹𝐴

̅̅ ̅(𝑡𝑖𝑗 , 𝑡𝑖𝑗)
𝑚6𝑗

𝑖=1
𝑔𝐴(𝑡𝑖𝑗)]}.                           (3)                                                         

 

Where 

 

𝑔𝐴(𝑡𝑖𝑗) =  𝐶𝑆𝑗
𝑃𝑒−𝐶𝑆𝑗

𝑃𝑡𝑖𝑗 ; 𝑡𝑖𝑗 > 0, 𝐶, 𝑃 > 0.   

 

𝐺𝐴
̅̅ ̅(𝑡𝑖𝑗) = 𝑃[𝑇𝑖𝑗 > 𝑚𝑎𝑥(𝑥𝑖𝑗 , 𝑦𝑖𝑗)]  

 

              = 𝑒𝑥𝑝[−𝐶𝑆𝑗
𝑃 𝑚𝑎𝑥(𝑥𝑖𝑗 , 𝑦𝑖𝑗)], 

 

𝑓𝐴1
(𝑥𝑖𝑗 , 𝑦𝑖𝑗) =  𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1 + 𝛼3, 𝐶, 𝑃)𝑓𝐺𝐸(𝑦𝑖𝑗 ; 𝛼2, 𝐶, 𝑃)  

 

                       =  (𝛼1 + 𝛼3)𝛼2𝐶2𝑆𝑗
2𝑃  (1 − 𝑒−𝐶𝑆𝑗

𝑃𝑥𝑖𝑗)
𝛼1+𝛼3−1

(1 − 𝑒−𝐶𝑆𝑗
𝑃𝑦𝑖𝑗)

𝛼2−1

𝑒−𝐶𝑆𝑗
𝑃(𝑥𝑖𝑗+𝑦𝑖𝑗)

, 

 

𝑓𝐴2
(𝑥𝑖𝑗 , 𝑦𝑖𝑗) =  𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1, 𝐶, 𝑃)𝑓𝐺𝐸(𝑦𝑖𝑗; 𝛼2 + 𝛼3, 𝐶, 𝑃)  

 

                       = (𝛼2 + 𝛼3)𝛼1𝐶2𝑆𝑗
2𝑃  (1 − 𝑒−𝐶𝑆𝑗

𝑃𝑥𝑖𝑗)
𝛼1−1

(1 − 𝑒−𝐶𝑆𝑗
𝑃𝑦𝑖𝑗)

𝛼2+𝛼3−1

𝑒−𝐶𝑆𝑗
𝑃(𝑥𝑖𝑗+𝑦𝑖𝑗)

, 

 

𝑓𝐴3
(𝑥𝑖𝑗) =

𝛼3

𝛼1+𝛼2+𝛼3
 𝑓𝐺𝐸(𝑥𝑖𝑗 ; 𝛼1 + 𝛼2 + 𝛼3, 𝐶, 𝑃)  

 

                = 𝛼3𝐶𝑆𝑗
𝑃 (1 − 𝑒−𝐶𝑆𝑗

𝑃𝑥𝑖𝑗)𝛼1+𝛼2+𝛼3−1 𝑒−𝐶𝑆𝑗
𝑃𝑥𝑖𝑗, 

 

𝑓𝐴4
(𝑥𝑖𝑗 , 𝑡𝑖𝑗) =  𝑙𝑖𝑚𝛿𝑥𝑖𝑗→0

𝑃(𝑥𝑖𝑗<𝑋𝑖𝑗<𝑥𝑖𝑗+𝛿𝑥𝑖𝑗|𝑌𝑖𝑗>𝑡𝑖𝑗)𝑃(𝑌𝑖𝑗>𝑡𝑖𝑗)

𝛿𝑥𝑖𝑗
  

 

                      = 𝐶𝑆𝑗
𝑃(𝛼1 + 𝛼3)𝑒−𝐶𝑆𝑗

𝑃𝑥𝑖𝑗 (1 − 𝑒−𝐶𝑆𝑗
𝑃𝑥𝑖𝑗)

𝛼1+𝛼3−1

[1 − (1 − 𝑒−𝐶𝑆𝑗
𝑃𝑡𝑖𝑗)

𝛼2

],            0 < 𝑥𝑖𝑗 < 𝑡𝑖𝑗 and 𝐶, 𝑃 > 0,  

 

𝑓𝐴5
(𝑡𝑖𝑗 , 𝑦𝑖𝑗) = 𝑙𝑖𝑚𝛿𝑦𝑖𝑗→0

𝑃(𝑦𝑖𝑗<𝑌𝑖𝑗<𝑦𝑖𝑗+𝛿𝑦𝑖𝑗|𝑋𝑖𝑗>𝑡𝑖𝑗)𝑃(𝑋𝑖𝑗>𝑡𝑖𝑗)

𝛿𝑦𝑖𝑗
  

 

                      = 𝐶𝑆𝑗
𝑃(𝛼2 + 𝛼3)𝑒−𝐶𝑆𝑗

𝑃𝑦𝑖𝑗 (1 − 𝑒−𝐶𝑆𝑗
𝑃𝑦𝑖𝑗)

𝛼2+𝛼3−1

[1 − (1 − 𝑒−𝐶𝑆𝑗
𝑃𝑡𝑖𝑗)

𝛼1

] ,         0 < 𝑦𝑖𝑗 < 𝑡𝑖𝑗 And 𝐶, 𝑃 > 0,  
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�̅�(𝑡𝑖𝑗 , 𝑡𝑖𝑗) = 𝑃[𝑋𝑖𝑗 > 𝑡𝑖𝑗 , 𝑌𝑖𝑗 > 𝑡𝑖𝑗]  

 

                   = 1 − (1 − 𝑒−𝐶𝑆𝑗
𝑃𝑡𝑖𝑗)

𝛼1+𝛼2+𝛼3

, 

 

And 𝑓𝐴(𝑥𝑖𝑗 , 𝑦𝑖𝑗)  and 𝑔𝐴(𝑡𝑖𝑗)  are the joint pdf with accelerated life testing of (𝑋𝑖𝑗 , 𝑌𝑖𝑗)  and 𝑇𝑖𝑗  respectively, and 

𝐹𝐴
̅̅ ̅(𝑡𝑖𝑗 , 𝑡𝑖𝑗) and 𝐺𝐴

̅̅ ̅(𝑡𝑖𝑗) are survivor function with accelerated life testing of (𝑇𝑖𝑗 , 𝑇𝑖𝑗) and 𝑇𝑖𝑗 respectively. 

Note that: Hanagal [13] presented the likelihood function for the bivariate exponential distributions based on type-I 

censoring samples. 

Assumed that 𝑃, 𝛼1, 𝛼2, 𝛼3  are unknown parameters and 𝐶  are known parameter, then the likelihood function (3) 

reduced to: 

 

𝐿(𝑥, 𝑦|𝛼1, 𝛼2, 𝛼3, 𝑃) =

𝐵𝛼1
𝜗2𝛼2

𝜗1𝛼3
𝜗3(𝛼1 + 𝛼3)𝜗3(𝛼2 + 𝛼3)𝜗4 ∙ ∏ {𝑘

𝑗=1 𝑆
𝑗

(𝑈1𝑗+𝑈2𝑗)𝑃
𝑒−𝐶𝑆𝑗

𝑃𝑈3𝑗 ∏ [𝐴(𝑥𝑖𝑗)
𝛼1+𝛼3−1

𝐴(𝑦𝑖𝑗)
𝛼2−1

]
𝑚1𝑗

𝑖=1
  

 

∙ ∏ [𝐴(𝑥𝑖𝑗)
𝛼1−1

𝐴(𝑦𝑖𝑗)
𝛼2+𝛼3−1

]
𝑚2𝑗

𝑖=1
∏ [𝐴(𝑥𝑖𝑗)

𝛼1+𝛼2+𝛼3−1
]

𝑚3𝑗

𝑖=1
∏ [𝐴(𝑥𝑖𝑗)

𝛼1+𝛼3−1
(1 − 𝐴(𝑡𝑖𝑗)

𝛼2
)]

𝑚4𝑗

𝑖=1
  

 

∙ ∏ [
𝑚5𝑗

𝑖=1
𝐴(𝑦𝑖𝑗)

𝛼2+𝛼3−1
(1 − 𝐴(𝑡𝑖𝑗)

𝛼1
)] ∏ [1 − 𝐴(𝑡𝑖𝑗)

𝛼1+𝛼2+𝛼3
]

𝑚6𝑗

𝑖=1
}.                                                                               (4) 

 

Where 𝐵 is the constant of proportionality, 

 

𝐴(𝑤) = 1 − 𝑒−𝐶𝑆𝑗
𝑃𝑧, 𝑤 = 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑡𝑖𝑗 ,  

 

𝜗𝑟 = ∑ 𝑚𝑟𝑗
𝑘
𝑗=1 , 𝑟 = 1,2,3,  

 

𝜗4 = ∑ (𝑚1𝑗 + 𝑚4𝑗)𝑘
𝑗=1 ,  

 

𝜗5 = ∑ (𝑚2𝑗 + 𝑚5𝑗)𝑘
𝑗=1 ,  

 

𝑈1𝑗 = 2(𝑚1𝑗 + 𝑚2𝑗 + 𝑚4𝑗 + 𝑚5𝑗),  

 

𝑈2𝑗 = 𝑚3𝑗 + 𝑚6𝑗 ,  

 

𝑈3𝑗 = ∑ [(𝑥𝑖𝑗 + 𝑦𝑖𝑗) + 𝑚𝑎𝑥(𝑥𝑖𝑗 , 𝑦𝑖𝑗)]
𝑚1𝑗

𝑖=1
+ ∑ [(𝑥𝑖𝑗 + 𝑦𝑖𝑗)

𝑚2𝑗

𝑖=1
+ 𝑚𝑎𝑥(𝑥𝑖𝑗 , 𝑦𝑖𝑗)] + ∑ [𝑥𝑖𝑗 + 𝑚𝑎𝑥(𝑥𝑖𝑗 , 𝑦𝑖𝑗)]

𝑚3𝑗

𝑖=1
+

∑ (𝑥𝑖𝑗 + 𝑡𝑖𝑗)
𝑚4𝑗

𝑖=1
+ ∑ (𝑦𝑖𝑗 + 𝑡𝑖𝑗)

𝑚5𝑗

𝑖=1
+ ∑ [𝑡𝑖𝑗]

𝑚6𝑗

𝑖=1
,  

 

For all 𝑖 = 1, 2, … , 𝑛𝑗  and 𝑗 = 1, 2, … , 𝑘.  

 

Now, the Bayesian estimation of the unknown parameters will be presented. Under the assumption that 𝐶 is assumed to 

be known parameter. We assume the prior distributions for 𝑃, 𝛼1, 𝛼2, 𝛼3 as gamma prior as follows (see Kundu and 

Gupta [20]): 

 

𝜋1(𝑃) ∝  𝑃𝑏−1 𝑒−𝑎𝑃, 𝑃 > 0, 

 

𝜋2(𝛼1 ) ∝  𝛼1
𝑚−1 𝑒−𝑜𝛼1 , 𝛼1 > 0, 

 

𝜋3(𝛼2 ) ∝  𝛼2
𝑘−1 𝑒−𝑙𝛼2 , 𝛼2 > 0, 

 

𝜋4(𝛼3 ) ∝  𝛼3
𝑤−1 𝑒−𝑢𝛼3 , 𝛼3 > 0. 

 

All the hyper parameters a, b, m, k, l, w, o and u are assumed to be known and non-negative. 

Suppose {(𝑥11, 𝑦11), …, (𝑥𝑁𝑘 , 𝑦𝑁𝑘)} is a random sample from BVGE (𝛼1, 𝛼2, 𝛼3, 𝐶, 𝑃) where 𝑁 is the sample size and k 

is levels of stress , then based on the likelihood function of the observed data equation (4), the joint posterior density 

function of 𝛼1, 𝛼2, 𝛼3 and 𝑃 can be written as (see Kundu and Gupta [18] and Walker [30]): 
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𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) =
𝐿(𝑋,𝑌|𝛼1,𝛼2,𝛼3,𝑃)𝜋(𝛼1,𝛼2,𝛼3,𝑃) 

∫ ∫ ∫ ∫ 𝐿(𝑋,𝑌|𝛼1,𝛼2,𝛼3,𝑃)𝜋(𝛼1,𝛼2,𝛼3,𝑃)
∞

0
∞

0
∞

0
∞

0 𝑑𝛼3𝑑𝛼2𝑑𝛼1𝑑𝑃
,                                                                     (5) 

 

The posterior in equation (5) distribution is proportional to: 

 

𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) ∝ 𝐿(𝑋, 𝑌|𝛼1, 𝛼2, 𝛼3, 𝑃)𝜋(𝛼1, 𝛼2, 𝛼3, 𝑃)   
 

𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) ∝ 𝐵𝑃𝛽1−1𝛼1
𝛽3+𝜗2−1𝛼2

𝛽5+𝜗1−1𝛼3
𝛽7+𝜗3−1(𝛼1 + 𝛼3)𝜗4(𝛼2 + 𝛼3)𝜗5𝑒−(𝛽2𝑃 + 𝛽4𝛼1 + 𝛽6𝛼2 + 𝛽8𝛼3)  

 

                                        ∙ ∏ {𝑒−𝐶𝑆𝑗
𝑃𝑈3𝑗𝑘

𝑗=1 𝑆
𝑗

(𝑈1𝑗+𝑈2𝑗)𝑃
∏ [𝐴(𝑥𝑖𝑗)

𝛼1+𝛼3−1
𝐴(𝑦𝑖𝑗)

𝛼2−1
]

𝑚1𝑗

𝑖=1
∏ [𝐴(𝑥𝑖𝑗)

𝛼1−1
𝐴(𝑦𝑖𝑗)

𝛼2+𝛼3−1
]

𝑚2𝑗

𝑖=1
  

 

                                        ∙ ∏ [𝐴(𝑥𝑖𝑗)
𝛼1+𝛼2+𝛼3−1

]
𝑚3𝑗

𝑖=1
∏ [𝐴(𝑥𝑖𝑗)

𝛼1+𝛼3−1
(1 − 𝐴(𝑡𝑖𝑗)

𝛼2
)]

𝑚4𝑗

𝑖=1
  

 

                                        ∙ ∏ [
𝑚5𝑗

𝑖=1
𝐴(𝑦𝑖𝑗)

𝛼2+𝛼3−1
(1 − 𝐴(𝑡𝑖𝑗)

𝛼1
)] ∏ [1 − 𝐴(𝑡𝑖𝑗)

𝛼1+𝛼2+𝛼3
]

𝑚6𝑗

𝑖=1
}.   

 

The Bayesian estimators of 𝛼1, 𝛼2, 𝛼3 and P parameters can be obtained as follows (see Mood et al. [26]): 

 

�̃�1 = 𝐸(𝛼1|𝑋, 𝑌),  
 

�̃�2 = 𝐸(𝛼2|𝑋, 𝑌),  
 

�̃�3 = 𝐸(𝛼3|𝑋, 𝑌),  
 

And 

 

�̃� = 𝐸(𝑃|𝑋, 𝑌).  
 

The Bayesian estimators of the parameters 𝛼1, 𝛼2, 𝛼3 and P is proportional to (see Mood et al. [26]): 

 

�̃�1 ∝ ∫ 𝛼1 𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) 𝑑𝛼1
∞

0
,  

 

�̃�2 ∝ ∫ 𝛼2 𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) 𝑑𝛼2,
∞

0
  

 

�̃�3 ∝ ∫ 𝛼3 𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) 𝑑𝛼3
∞

0
,  

 

And 

 

�̃� ∝ ∫ 𝑃 𝐻(𝛼1, 𝛼2, 𝛼3, 𝑃|𝑋, 𝑌) 𝑑𝑃
∞

0
.  

 

It is not possible to compute analytically the solution for these equations. So that Markov Chain Monte Carlo approach 

used to approximate these equations. In most models and application the posterior predictive distribution does not have 

an analytic closed form and therefore the posterior distribution does not have a closed form. The Gibbs sampler may be 

one of the best known MCMC sampling algorithms in the Bayesian computational literature, and it is used in this thesis. 

The Gibbs sampler is Monte Carlo based sampling methods for evaluating high-dimensional posterior integral, and it is 

very powerful simulation algorithm that allows us to sample from the posterior distribution without knowing the 

posterior predictive distribution (see Ibrahim et al. [16]). In this paper, we use OpenBUGS software, a specialized 

software package for implementing MCMC simulation and Gibbs sampling. 

5. Simulation study 

To illustrate the theoretical results, a numerical example will be given to obtain the Bayesian estimation of unknown 

parameters 𝛼1, 𝛼2, 𝛼3 and 𝑃 using OpenBUGS software. The simulation procedures are described through the follows 

steps: 

i) Consider three accelerated stress levels 𝑉1= 0.75, 𝑉2= 1.5, 𝑉3= 2.25 and assume that usual stress is 𝑉𝑢= 0.5. 

ii) Assume that the experiment is terminated at a pre-specified censoring time 𝑡𝑖𝑗, 𝑖 = 1, 2... 𝑛𝑗 and j = 1, 2, 3. 

iii) Generating random samples under usual stress of size 𝑁=30, 60, 90 from the BVGE distribution with parameters 

𝜆 = 0.6, 𝛼1 = 2, 𝛼2 = 1.5 and 𝛼3 = 1 as follows: 

 Generate 𝑁 from uniform (0, 1). 
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 Generate {𝑣11,... , 𝑣1𝑁 } from GE(𝛼1, 𝜆), similarly, {𝑣21,..., 𝑣2𝑁 } from GE(𝛼2, 𝜆), {𝑣31,... , 𝑣3𝑁 } from GE(𝛼3, 𝜆). 

 Obtain 𝑥𝑖1= max {𝑣1𝑖, 𝑣3𝑖} and 𝑦𝑖1= max {𝑣2𝑖, 𝑣3𝑖}, for 𝑖 = 1, 2, 𝑛𝑗 and j = 1, 2, 3. 

Thus, generated random samples of size 𝑁=30, 60, 90 from a BVGE distribution are presented with 𝜆 = 0.6,𝛼1 = 2 

𝛼2 =1.5 and 𝛼3 =1 (see kundu and Gupta [21]). 

iv) The Kolmogorov-Smirnov (K-S) test is used for assessing that the data set follows the BVGE distribution (see Al-

Mutrairi et al. [3]). 

v) For 𝛼1, 𝛼2, 𝛼3 and P unknown parameters, the value of the parameter C is assumed to be known, and applied 

Bayesian method to determine the posterior density function of the unknown parameters. 
vi) Set (C = 0.5) and the prior of the parameter P is the gamma (𝛽1, 𝛽2) distribution with parameters 𝛽1 = 0.1 and     

𝛽2 = 0.1, and the prior of the parameter 𝛼1 is gamma (𝛽3, 𝛽4) with parameters 𝛽3 = 0.1 and 𝛽4 = 0.1, and the prior 

of the parameter 𝛼2 is gamma (𝛽5, 𝛽6) with parameters 𝛽5 = 0.1 and 𝛽6 = 0.1, and the prior of the parameter 𝛼3 is 

gamma (𝛽7, 𝛽8) with parameters 𝛽7 = 0.1 and 𝛽8 = 0.1.  

vii) Three chains with different initials [(𝛼1 = 2, 𝛼2 = 1.5, 𝛼3 = 1, P = 0.25), (𝛼1 = 2.5, 𝛼2 = 2, 𝛼3 = 1.5, P = 0.5),     

(𝛼1 = 3, 𝛼2 = 2.5, 𝛼3 = 2, P = 0.75)] are run simultaneously in one simulation. Each chain continues for 10000 

iterations. 

viii) The Bayesian estimation will be obtained by using MCMC procedure using OpenBUGS Software (see 

Spiegelhalter [29]). 

The sampling results assuming the unknown parameters P, 𝛼1,  𝛼2 and 𝛼3 are displayed in Table(1). Table (1) shows 

that the MC error for each node is less than 5% of the sample standard deviation (see Aly and Bleed [4]). 

 
Table 1: Estimates of P, 𝛼1,  𝛼2 and 𝛼3. 

 

The convergence and auto-correlation for 𝛼1, 𝛼2, 𝛼3 and 𝑃 Parameters will be show in some graphs for one samples 

size, for example the third sample where 𝑁 = 90 as follows: 

 

   
Fig. 1: Dynamic Trace for (𝛼1, 𝛼2, 𝛼3) Parameters. 

 

The dynamic trace for parameter 𝛼1, 𝛼2, 𝛼3 respectively in Figure (1) shows that the plots looks like a horizontal band, 

with no long upward or downward trends and the three chains are well-mixed so this is indicative of convergence. 

 

   
Fig. 2: Gelman-Rubin Convergence For (𝛼1, 𝛼2, 𝛼3) Parameters. 

N Parameter Posterior Mean S.D MC error 2.5% 97.5% 

30 

P 0.014140 0.040380 0.000910 8.587e−17 0.139700 

𝛼1 1.730000 0.342900 0.002422 1.124000 2.467000 

𝛼2 0.805700 0.153600 0.001060 0.537000 1.133000 

𝛼3 0.460500 0.089030 0.000620 0.303500 0.649800 

60 

P 0.008574 0.029590 0.000680 1.389e−17 0.098340 

𝛼1 1.117000 0.150900 0.000990 0.842100 1.434000 

𝛼2 1.324000 0.183100 0.001228 0.987500 1.706000 

𝛼3 0.850100 0.113100 0.006910 0.643000 1.084000 

90 

P 0.005930 0.020790 0.000520 9.265e−17 0.067390 

𝛼1 1.456000 0.164400 0.001138 1.150000 1.796000 

𝛼2 0.746900 0.086040 0.000630 0.587900 0.924800 

𝛼3 0.688800 0.075100 0.000450 0.548800 0.844400 
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In Figure (2) the plots for parameter 𝛼1, 𝛼2, 𝛼3 respectively shows that all chains have approximately the same average 

width of the 80% intervals within the individual runs and these approximately equal to the width of the central 80% 

interval of the pooled runs. The ratio for the width of the central 80% interval of the pooled runs and the average width 

of the 80% intervals within the individual runs (R = pooled / within) is Gelman-Rubin convergence which is normalized 

to equal one and the Gelman-Rubin convergence is equal to one so this is indicative of convergence.  

 

   
Fig. 3: Auto-Correlation for (𝛼1, 𝛼2, 𝛼3)  Parameters. 

 

The auto-correlation for Parameter 𝛼1, 𝛼2, 𝛼3 respectively in Figure (3) shows that the correlation is almost negligible 

that means that the samples are independent. 

 

 
  

Fig. 4: Dynamic Trace for Parameter (𝑃) Fig. 5: Gelman-Rubin Convergence for Parameter (𝑃) Fig. 6: Auto-Correlation for Parameter (𝑃) 

 

Also for parameter 𝑃 the dynamic trace in Figure (4) shows that the plot has long upward trends and the three chains are 

poorly-mixed so this is indicative of failure to convergence. In Figure (5) the plot for parameter 𝑃 shows that all chains 

have approximately the same average width of the 80% intervals within the individual runs and these different of the 

width of the central 80% interval of the pooled runs. The ratio for Gelman-Rubin convergence is normalized to equal 

one and the Gelman-Rubin convergence is not equal one so this is indicative of failure to convergence. The auto-

correlation for parameter 𝑃 in Figure (6) shows that the chains are hardly auto correlated at all. That is means that the 

samples are approximately dependent. 

6. Conclusion 

This paper presented Bayesian estimation for the unknown parameters 𝛼1, 𝛼2, 𝛼3 and P for BVGE lifetime distribution 

and inverse power law acceleration model under bivariate censoring type-I samples with CSALT. 

Bayesian estimates are calculated numerically for the unknown parameters. Bayesian analysis was conducted to 

estimate posterior mean, standard deviation, MC error, 95% asymptotic confidence intervals, dynamic trace, Gelman-

rubin convergence and Auto-correlation for unknown Parameters (𝛼1, 𝛼2, 𝛼3, 𝑃). 

Finally, for different samples the OpenBUGS technique is used to obtain the numerical results for the proposed model. 

Then, we conclude that for the unknown parameters 𝛼1, 𝛼2, 𝛼3  and P the MC error is less than 5% of the sample 

standard deviation and the initial values and the point estimation exist in the confidence intervals. Also For the 

parameters 𝛼1, 𝛼2 and 𝛼3 there are convergence and the samples are independent. For the parameter 𝑃 there is failure to 

convergence and the samples are approximately dependent. 
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