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Abstract

The purpose of determining the relative importance of predictors is to expose the extent of the individual contribu-
tion of a predictor in the presence of other predictors within a selected model. The goal of this article is to expand
the current research practice by developing a statistical paired comparison model with Two Sided Power (TSP) link
function in the Bayesian framework to evaluate the relative importance of each predictor in a multiple regression
model. Results from simulation studies and empirical example reveal that the proposed Two Sided Power link
function provides similar conclusions as the commonly used logit link function, but has more advantages from both
practical and computational perspectives.
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1. Introduction

Finding out the relative importance of predictors in linear regressions has been a long debated issue, with literature
being developed in various subjects such as, statistics, psychology, political economy, organizational research, and
medicine [1]. The purpose of determining the predictor importance is to uncover the individual contribution of a
predictor relative to each other within a selected model. Here, the question of interest becomes understanding the
extent to which each variable drives the prediction.

Over the years, researchers have suggested various methods for measuring the relative importance of predictors;
for a comprehensive review see [1]. However, there has been a lack of agreement on the definition of the relative
importance of a predictor in the multiple regression context. Past research has documented how indices commonly
produced by multiple regression analyses fail to appropriately answer this question when predictors are correlated
[2]. Later, an alternative approaches, the Dominance Analysis [3], has been produced, which allows for more
accurate variance partitioning among correlated predictors. The Dominance Analysis approaches the problem of
relative importance by examining the change in R2 resulting from adding a predictor to all possible subset regression
models. The novelty of this approach is that predictors are compared in a pairwise fashion based on a common
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reference model across all possible subset models, and a hierarchy of levels of dominance is established, i.e., complete
dominance, conditional dominance and general dominance.

The Dominance Analysis is unique in that it measures the relative importance of predictors in a pairwise fashion
using the average increase in R2 associated with a variable across all possible subset models, and two predictors
are compared in the context of all possible models that contain the same subsets of other predictors. Nevertheless,
the general dominance weight, which is calculated as the average of conditional dominance weights over difference
sizes of subset models, introduces bias in the aggregation because the additional contribution of a predictor is
more substantial in subset models with fewer number of predictors, and as the number of predictors increases, the
additional contribution of the predictor gets less. The value of the general order dominance index is influenced to a
greater extent by the conditional dominance weights of the subset model with a smaller number of predictors, see
[4] for detailed illustration.

Moreover, the Dominance Analysis method is established based on observational statistics, and the estimated
relative importance may differ from the dominance order in the population. The reproducibility process used to
derive the probability of pairwise dominance without any particular model assumptions is based on a non-parametric
bootstrapping technique that yields similar results as the Bayesian approach only under certain conditions [5, 6].
Lahiri (2003) [5] provides a critical review of various modifications of Efrons original bootstrap to handle complex
issues in survey sampling. For example, it has been shown that Efrons basic bootstrap procedure fails when the
observed sample points are not independent [5].

Suppressor variables are well known in the context of multiple regression analysis. A suppressor variable is
a predictor that is uncorrelated with the response variable but whose presence improves prediction because of its
correlation with other predictors. Wang and Yao (2004) [4] states that, in certain circumstance, when the suppressor
is highly correlated with the other predictors, the Dominance Analysis method is not able to correctly identify the
suppressor variable as the least important variable. Johnson (2000) [7] explicitly stated that relative importance
analysis should not replace the model selection in multiple regression analysis. On the other side, researchers in the
applied area might want to retain all variables in their predictive models to study the evolutions of these parameters.
Thus, they are not seeking variable selection modelisation schemes. Furthermore, a promising measure of relative
importance should correctly identify the suppressor, if it exists, as the least important variable.

With regards to these crises, Wang et. al. (2013) [8] proposed an inferential approach to discover the relative
importance of predictors in a Bayesian statistical framework using the Bradley-Terry paired comparison model. In
most of the ordinary cases, conclusions from the Bayesian approach are consistent with those from the Dominance
Analysis methods. However, the basic Bradley-Terry model is not very effective when there exists suppressor vari-
ables. As a remedy, Wang and Yao (2014) [4] proposed a weighted Bradley-Terry model in the Bayesian framework.
Simulation results show that this weighted model is more efficient than the basic unweighted Bradley-Terry model
and the Dominance Analysis. The dominance index resulting from the Bradley-Terry models varies from −∞ to ∞.
Researchers in the applied area have a preference to an index that is on the scale of 0−1. It is more comprehensible
to practitioners when one says that the closer an index is to 1.0, the more important the predictor is.

In this paper, we propose to apply the cumulative distribution function of the two-sided power (TSP) distribution
in the paired comparison model to ensure the resulting dominance index vary between 0 and 1. In section 2, we
formulate paired comparison models applying the logit and the TSP link functions with weighted and un-weighted
likelihood functions. In section 3, we introduce the Bayesian inference and the Markov chain Monte Carlo (MCMC)
computational procedures. In section 4, we perform simulation studies to compare the outcomes of different models
using different sets population correlation matrices. In section 5, we report an empirical example of a math
proficiency research study. Finally, in section 6, we discuss potential future research avenues regarding the relative
importance of predictors.

2. Paired Comparison Models

Statistical methods of determining relative dominance abilities based on paired comparisons have long history
dated back to Bradley and Terry (1952) [9] in the context of chess tournaments, and have been broadly applied
in many fields such as statistics, psychometrics, marketing research, preference measurement, sports competition,
behavioural study, education, machine learning, and many others. In this paper, we propose to determine the
relative importance of predictors from a behavioural study point of view by applying the paired comparisons based
on the additional increase of R2 amongst all possible subset models.
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2.1. Likelihood Function

Suppose there are p predictors in a multiple regression model, X1, · · · , Xp. Let X∗ be a subset of (X1, · · · , Xp)
and denote R2

Y ·X∗ as the coefficient of determination of Y and X∗. Let ∆R2
Y ·Xi|X∗ = R2

Y ·(Xi,X∗) − R2
Y ·X∗ be the

increase in R2 by adding Xi to the subset model with X∗. Here, the model with X∗ is considered as the baseline
reference model. The predictor Xi is said to dominate or ”win” Xj if ∆R2

Y ·Xi|X∗ > ∆R2
Y ·Xj |X∗ because adding Xi

to the model leads to a greater increase in R2 than would be obtained by adding Xj to the model with the same
subsets of other variables. In a regression model with p predictors, Xi and Xj are compared amongst 2p−2 baseline
reference models. Let Wij be the number of times the predictor Xi dominating Xj , and θij be the probability of the
predictor Xi dominating Xj . Here, Wij has a binomial distribution with parameters (2p−2, θij) and the likelihood
function as follows.∏
i<j

C
wij

2p−2θ
wij

ij (1− θij)
2p−2−wij .

Wang and Yao (2014) [4] points out that the number of times that the predictors Xi and Xj encounter each other
depends on the size of the baseline reference model. For a regression model with p predictors, based on the baseline
reference model with k predictors, the number of times that the predictors Xi and Xj encounter is Ck

p−2. For
example, when p = 4 and k = 0, X1 and X2 only meet once, that is R2

Y ·X1
and R2

Y ·X2
; when k = 1, X1 and X2 are

compared under two baseline reference models, which are ∆R2
Y ·X1|X3

vs ∆R2
Y ·X2|X3

, and ∆R2
Y ·X1|X4

vs ∆R2
Y ·X2|X4

;
and when k = 2, X1 and X2 only meet once under the same baseline reference model with two predictors X3 and
X4. Taking this fact into consideration, a weighted Bradley-Terry model is proposed with Ck

p−2/2
p−2 as the weight.

Let wij·k be the number of times that the predictor Xi outweighs Xj when the baseline reference model has k
predictors. The likelihood function of the weighted Bradley-Terry model is

p−2∑
k=0

Ck
p−2

2p−2

∏
i<j

(
Ck

p−2

wij·k

)
θ
wij·k
ij (1− θij)

Ck
p−2−wij·k .

2.2. Link Functions

The original Bradley-Terry model assumes that θij = ξi/(ξi+ξj), where ξi represents the relative dominance ability
of predictor Xi. Let di = ln(ξi), then di can be interpreted as the relative dominance ability of predictor Xi on
the logarithm scale. Based upon this reparameterization, we have logit(θij) = di − dj , or θij = exp (di − dj)/(1 +
exp (di − dj)), which means that the dominance probability depends only on the difference of dominance indices.
Therefore, the Bradley-Terry model assumes the probability that one predictor prevails over another is a logit
function (the link function) of the difference in dominance indices between these two predictors.

A more general approach is to assume that θij = H(di−dj), where H is a link function, which maps the difference
in dominance indices to a probability that lies between 0 and 1, inclusively. Also, the link function should have
the following characteristics: (1) the larger the difference, the larger the value of θij ; that is, the more likely one
predictor will dominate the other; (2) when two dominance indices are equal, θij equals 0.5; that is, each predictor
has a 50% chance of prevailing when dominance indices of two predictors are the same.

The paired comparisons of predictors are based upon the additional R2, which ranges between 0 and 1. If the
returning value of di is also within 0 and 1, then, to a extend, it reflects the additional R2 associated Xi in the
presence of other predictors. In practice, a index on the 0-1 scale is more favourable by the practitioners. Recently,
vanDorp and Kotz (2002) [10] provide a four-parameter two-sided power (TSP) distribution with the cumulative
distribution function that satisfies those characters. This link function is sufficiently rich from the mathematical
perspective and also allows efficient implementations in practice. The TSP distribution is described by parameters
denoting the minimum value, a, the maximum value, b, the mode or most likely value, c, and a fourth parameter, η,
describing the curvature of the distribution. The parameter η requires expert evidence for the relative importance
of the most likely value relative to distribution bounds a and b. That is, if η = 2, c is equally important as a and
b; if η > 2, c has more weight than the bounds; if η < 2, c is given less emphasis relative to the bounds. The
probability density function of TSP (a, b, c, η) is presented in the equation (1).

f(x) =


η

b−a (
x−a
c−a )

η−1 if a < x ≤ c
η

b−a (
b−x
b−c )

η−1 if c < x ≤ b

0 otherwise

(1)
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The expected value of a TSP distribution is

E(X) =
a+ (η − 1)c+ b

η + 1

The cumulative distribution function follows the expression in the equation (2)

F (x) =

{ c−a
b−a (

x−a
c−a )

η if a < x ≤ c

1− b−c
b−a (

b−x
b−c )

η if c < x ≤ b
(2)

When values of di’s are assumed falling between 0 and 1, values of di−dj vary between −1 and +1. Therefore, it
is reasonable to choose a = −1 and b = 1. Because that we do not have any preference regrading the possible value
of di’s, we use c = (a+ b)/2 = 0 and η = 2. As a results, the probability density function of this TSP distribution
has a triangular shape with expected value of 0.

The logit and the TSP link function have very similar shapes of distribution, see Figure 1. In this paper, we focus
on comparing the performance between the logit and the TSP link functions with weighted and unweighted likelihood
functions, i.e., Model I: Logit link with unweighted likelihood; Model II: Logit link with weighted likelihood; Model
III: TSP link with unweighted likelihood; and Model IV: TSP link with weighted likelihood.

3. Bayesian Dominance Inference

Algorithms used to produce maximum likelihood estimates of dominance abilities under the Bradley-Terry model
fail to converge to finite values, and so cannot be used for many data sets with zero counts. Davidson and Solomon
(1973) [11] and Leonard (1977) [12] describe the Bayesian version of the methods of paired comparisons. The major
benefit of the Bayesian approach is that prior information can be incorporated into the analysis so that the resulting
estimates of dominance abilities are always finite[12].

3.1. Prior Distribution

The prior distribution plays a key role of the Bayesian inference. It represents the information about an uncertain
parameter, and is combined with the probability distribution of observed data to yield the posterior distribution,
which in turn is used for future inferences and decisions. In practice, often there is no or very limited prior
information about the dominance ability of predictors. Hierarchical (multilevel) and objective prior models are
central to the modern Bayesian statistics for both conceptual and practical reasons. On the theoretical side,
hierarchical models allow a more ”objective” approach rather than requiring them to be specified using subjective
information [13, 14, 15]. At a practical level, hierarchical models are flexible tools for aggregating information and
partial pooling of inferences [16, 17, 18, 19, 20].

When the parameter varies from −∞ to +∞, a normal distribution is the most commonly used prior distribution
because it corresponds to the prior belief that modest values of the parameter are nearly equally likely, and that very
large values are somewhat less probable. For the logit link, values of di’s range from −∞ to +∞. It is conventional
to assume that there is the same symmetrical prior probability distribution for each predictor’s dominance index.
Therefore, without loss of generality, we assume that di ∼ N(µi, σ

2).

The second stage of the hierarchical prior assumes that another normal distribution applies to the mean of the
prior normal distribution, i.e., µi ∼ N(ν, τ2), and an Inverse-Gamma distribution is applied to the variance of the
prior normal distribution, i.e., σ2 ∼ IG(a, a). Here, ν, τ and a are predetermined hyper-parameters, which are
chosen using vague information as follows. When di’s vary between −l and l, by applying the 3σ or empirical rule,
the expected value of the standard deviation of di’s is around l/3, namely the expected value of σ2 is about l2/9. On
the other hand, σ2 is assumed to have an IG(a, a), which has a mean value of a/(a−1). By letting a/(a−1) = l2/9
and solving for a, we can get the hyper-parameter a = l2/(l2 − 9). When values of di are in the range of (−4, 4),
values of di − dj are in the range of (−8, 8). As a result, values of θij = exp (di − dj)/(1 + exp (di − dj)) vary from
0.0003 to 0.9997, which is sufficiently wide for practical purposes. Therefore, it is adequate to presume that di’s
range between ±4. Thus, the value of a is about 2. In addition, it is also reasonable to assume the mean µi has a
standard normal distribution with ν = 0 and τ = 1.

For the TSP link function, we presume that di’s range from 0 to 1, and we do not have any preference towards
any particular value. It is sufficient enough to apply the Uniform distribution on (0, 1) as the prior distribution to
each di.
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3.2. Bayesian Computation

Under the square error loss function, the posterior mean is the Bayesian estimator. However, the closed form
expressions of the posterior distribution of di’s are not easy to achieve. With the advent of Markov chain Monte
Carlo Method (MCMC), it has become possible to do the calculations on these much more complex models to obtain
numerical results. In order to implement the MCMC procedure, it is necessary to have the full conditional posterior
distributions, which are the conditional distributions of one parameter given all the other unknown parameters and
data.

let ddd = (d1, · · · , dp), ddd[−j] = (d1, · · · , dj−1, dj+1, · · · , dp), µµµ = (µ1, · · · , µp), µµµ[−j] = (µ1, · · · , µj−1, µj+1, · · · , µp),
φ(·|µ, σ2) be the probability density function of N(µ, σ2), H1(·) be the logit link function, and H2(·) be the TSP
link function. Also, let (·| ) denote the conditional distribution and [·| ] denote the conditional density function.

Proposition 1 The full conditional posterior distributions of (d1, · · · dp, µ1, · · · , µp, σ
2) given data XXX under the

Model I with unweighted likelihood and the logit link function are as follows.

• For i = 1, · · · , p,

[di | ddd[−i], µµµ, σ
2,XXX] ∝

∏
i<j

C
wij

2p−2H1(di − dj)
wij (1−H1(di − dj))

2p−2−wijφ(di|µi, σ
2)

• For i = 1, · · · , p, (µi | ddd, µµµ[−i], σ2,XXX) ∼ N
(

diτ
2+σ2ν

τ2+σ2 , σ2τ2

τ2+σ2

)
• (σ2 | ddd, µµµ,XXX) ∼ IG

(
p
2 + a,

k∑
i=1

(di−µi)
2

2 + a

)
,

Proposition 2 The full conditional posterior distributions of (d1, · · · dp, µ1, · · · , µp, σ
2) given data XXX, under the

Model II with weighted likelihood and the logit link function are as follows.

• For i = 1, · · · , p,

[di | ddd[−i], µµµ, σ
2,XXX] ∝

p−2∑
k=0

Ck
p−2

2p−2

∏
i 6=j

(
Ck

p−2

wij·k

)
H1(di − dj)

wij.k(1−H1(di − dj))
Ck

p−2−wij.kφ(di|µi, σ
2)

• For i = 1, · · · , p, (µi | ddd, µµµ[−i], σ2,XXX) ∼ N
(

diτ
2+σ2ν

τ2+σ2 , σ2τ2

τ2+σ2

)
• (σ2 | ddd, µµµ,XXX) ∼ IG

(
p
2 + a,

k∑
i=1

(di−µi)
2

2 + a

)
,

Proposition 3 The full conditional posterior distributions of (d1, · · · dp, ) given data XXX under the Model III with
unweighted likelihood and the TSP link function are as follows.

[di | ddd[−i], µµµ, σ
2,XXX] ∝

∏
i<j

C
wij

2p−2H2(di − dj)
wij (1−H2(di − dj))

2p−2−wij ,

for i = 1, · · · , p,

Proposition 4 The full conditional posterior distributions of (d1, · · · dp) given data XXX under the Model IV with
weighted likelihood and the TSP link function are as follows.

[di | ddd[−i], µµµ, σ
2,XXX] ∝

p−2∑
k=0

Ck
p−2

2p−2

∏
i6=j

(
Ck

p−2

wij·k

)
H2(di − dj)

wij.k(1−H2(di − dj))
Ck

p−2−wij.k ,

for i = 1, · · · , p,
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Comparing full conditional distributions, one can observe that full conditional distributions with the TSP link are
in a more simpler form than those with the logit link. Therefore, the TSP link function simplifies the computation
procedure. Vihola (2012) [21] introduces a new robust adaptive Metropolis algorithm estimating the shape of the
target distribution and simultaneously concerning the acceptance rate. In this paper, the R package, adapMCMC
which is based on Vihola (2012) [21], is utilised to implement the Bayesian computation.

The Bayesian dominance method provides prosperous information about the relative importance of predictors
via posterior distributions of dominance indices di’s. First of all, the posterior mean of the dominance index di can
be applied as an overall measure of relative importance of the predictor Xi. Secondly, the posterior distribution of
dominance probability θij can be obtained by applying the corresponding link function to the MCMC chain, and
the posterior mean of θij can be applied as an estimate of the dominance probability to reveal the conclusion of
paired comparisons among predictors. Moreover, the lower and upper 2.5th percentiles of the posterior distributions
of di and θij can be used to construct 95% confidence intervals of di and θij , respectively. Last but not least, the
posterior probability of one particular order of dominance can be estimated by the proportion of steps occurred in
the MCMC chain that is in the same order.

4. Simulations

To better compare the proposed Bayesian approaches in multiple regression settings, we conduct two sets of simu-
lation studies based on different population correlation matrices. One hypothetical example with four predictors,
which consists possible strong collinearity between X1 and X2 with the pairwise correlation coefficient of 0.80, and
is used by Azen and Budescu (2003) [22]; the other example includes three predictors with a suppressor variable,
X2. The population correlation matrices are listed in Table 1, and a data of 1000 observations are generated in
each set of simulations.

4.1. Hypothetical Example With Four Predictors

In this setting of correlation, the Dominance Analysis method concludes that the dominance order is X1 > X4 >
X3 > X2. Applying the proposed Bayesian approach, a paired comparison of predictors based on the additional
increase in R2 is conducted among 24−2 = 4 possible subset regression models. Numbers of times that the variable
Xi prevails over Xj under each and all possible size of subset models are shown in Table 2. Under baseline reference
models with k = 0 and 2, each pair of predictors is only compared once; while under baseline reference models with
k = 1, each pair of variables is compared twice. The predictor X1 outweighs other predictors in all possible subset
models. The predictor X3 and X4 outweigh X2 in all possible subset models. Comparing X3 and X4, we find that
X4 outweighs X3 when k = 0 and k = 1; X3 outweighs X4 when k = 2. Altogether, X4 outweighs X3 three out of
four times. These results indicate that the order of dominance is X1 > X4 > X3 > X2.

The Bayesian point estimates and 95% confidence intervals of dominance indices di’s in all four models are listed
in Table 3. In all four models, the order of the dominance index is d1 > d4 > d3 > d2. The 95% confidence intervals
of dominance indices overlap each other, which makes it challenging to conclude a definite dominance order of the
predictors.

Estimates of dominance probabilities, θij ’s, are listed in Table 4, with i < j. For i > j, θij = 1 − θji. There
exists consistency in all four models, such that θ12, θ13 and θ14 are all greater than 0.5, which implies that X1 is
more likely to dominate the other predictors. Furthermore, the results that θ12 > θ13 > θ14 indicate that X1 has
more chance to dominate X2 than X3, and more chance to dominate X3 than X4. This finding, as well, suggests
that the dominance order between X2, X3, and X4 is X4 > X3 > X2. Likewise, the results 0.5 > θ24 > θ23 and
θ34 < 0.5 support the same order of dominance as previous.

The posterior probability of a particular order of the dominance ranking is estimated by the proportion that the
order is encountered in the MCMC steps. Altogether there are 24 possible ranking orders. The results show that,
under all four models, the ranking order of X1 > X4 > X3 > X2 receives the largest posterior probability.

As a summary, results of this simulation study show that the proposed Bayesian approach determines the
predictor with possible multicollinearity as the least important variable, and produce the same order of dominance
as the Dominance Analysis.

4.2. Example with Classical Suppressor

In this setting of correlation, the predictor X2 acts as a classical suppressor. However, the Dominance Analysis does
not categorize X2 as the least important variable, and claim that the dominance order is X1 > X2 > X3. Paired
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comparisons of predictors based on the additional increase in R2 are conducted among 23−2 = 2 possible subset
regression models. As displayed in Table 2, the predictor X1 outweighs other predictors under all possible subset
models; the predictor X3 outweighs X2 when k = 0; while X2 outweighs X3 when k = 1. The dominance order is
not easily recognizable from the paired comparison results.

The Bayesian point estimates and 95% confidence intervals of dominance indices di’s under all four models
are listed in Table 3. In all four models, the resulting order of dominance is d1 > d3 > d2. In this case, the
proposed Bayesian approach successfully identifies the suppressor as the least important variable. However, the
95% confidence intervals of dominance indices overlap each other. It is challenging to uncover which predictor
definitely dominates the other predictors.

In Table 4, estimates of dominance probabilities show that θ12 > θ13 > 0.5, which implies that X1 is more likely
to dominate the other predictors in all four models. Moreover, this result also indicates that X1 has more chance
to dominate X2 and X3. The result θ23 < 0.5 reveals that X2 is less important than X3. The posterior probability
of a particular order of the dominance ranking is estimated by the proportion that the order is encountered in the
MCMC steps. The ordering rank of X1 > X3 > X2 has the largest posterior probability in all four models.

As a summary, results of this simulation indicate that the proposed Bayesian approach has the better capability
to categorize the suppressor as the least important variable than the Dominance Analysis methods.

5. Empirical Example

Neter et.al (2004) [23] provides an interesting data set about a national study of the educational achievements of
eighth-grade students in mathematics. The response variable Y is the average math proficiency score from the 1990
National Assessment of Educational Progress for 37 states, the District of Columbia and the Virgin Islands. There
are five predictor variables: the percentage of students living with both parents (X1); percentage of students having
three or more types of reading material at home (X2); percentage of students reading more than 10 pages a day
(X3); percentage of students watching TV for six or more hours (X4); percentage of students absented three days
or more in the previous month (X5).

The sample correlation matrix of the variables, displayed in Table 5, shows that the average math proficiency
score is linearly correlated with all the predictors. The sample correlations of the predictors and the response
variable have the order, from largest to smallest, as X4 > X2 > X1 > X3 > X5. The Dominance Analysis also
discovers the order of dominance as X4 > X2 > X1 > X3 > X5. However, there exists possible multicollinearity
among the predictors in that the sample correlation between X1 and X4 is −0.831, and the sample correlation
between X3 and X4 is −0.79. The results with X4 being the most important predictor is somewhat questionable.
Paired comparisons of predictors based on the additional increase in R2 are conducted among 25−2 = 8 possible
subset regression models. The total numbers of times that the variable Xi prevails over Xj in all possible subset
reference models are presented in Table 6. The predictors X2 and X4 completely dominate the other predictors in
all possible subset models; and X2 outweighs X4 six out of eight times. The predictor X1 and X3 both outweigh
X5 six out eight times; the predictor X1 and X3 are even. These results suggest a different order of dominance as
X2 > X4 > X1 > X3 > X5.

The Bayesian point estimates and 95% confidence intervals of dominance indices di’s under four different models
are listed in Table 7. The resulting order rank of dominance indices from all four models provide the same dominance
order as X2 > X4 > X1 > X3 > X5. The lower and upper 2.5th percentiles of the MCMC chain are applied to
construct the 95% confidence intervals as shown in Table 7. Because the 95% confidence intervals of dominance
indices overlap each other, it is challenging to determine which predictor definitely dominates the other predictors.

Bayesian approach provides a probabilistic solution to this difficulty. By applying the link functions to the
dominance indices within the MCMC, we achieve the estimate of dominance probabilities, θij ’s, which are listed in
Table 8, with i < j. While, for i > j, θij = 1 − θji. The results also support the order of dominance in Table 7.
For example, θ23, θ25, and θ45 are very large, which implies that X2 and X4 have large chance dominating X3 and
X5. The results that θ12, θ14 and θ34 are very small also suggest that X2 and X4 have large chance dominating X3.
Furthermore, θ24 > 0.5 implies that X2 has more change to dominate X4. Comparing the probability θ13, θ15, and
θ35, we can also discover the dominance order of X1, X3 and X5 is X1 > X3 > X5.

The posterior probability of a particular order of the dominance ranking is estimated by the proportion of this
order occurring in the MCMC steps. Among the 120 possible of ranking orders, the order ranking X2 > X4 > X1 >
X3 > X5 receives the highest probability under all four models. Once again, the results support previous findings
in dominance indexes and probabilities.

As a summary, both sample correlation between the predictors and response variables and the Dominance
Analysis discover the order of dominance as X4 > X2 > X1 > X3 > X5 while the proposed Bayesian approaches
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consistently identify the dominance order as X2 > X4 > X1 > X3 > X5 under both weighted and unweighted
likelihood functions with both logit and TSP link functions. We have more confidence on the latter conclusion
because it is well supported by the sample correlation matrix, the dominance probability, and the posterior order
of dominance. Moreover, from the practice perspective, the percentage of students having three or more types of
reading material at home (X2) is more academic relates, hence, should have more influence on the math achievement
score (Y) than the percentage of students watching TV for six or more hours (X4).

6. Summary and Concluding Remarks

Relative importance analyses permit a greater understanding of the particular role played by variables in a multiple
regression equation. Crucially, these analyses can reveal the underlying impact of a particular predictor more
accurately than standardized regression coefficients or simple correlations. This paper extends the current research
practices of measuring the relative importance of predictors in linear regression models by introducing an original
method built on weighted and un-weighted paired comparison models with two different link functions in the
Bayesian framework.

The advantage of the Bayesian approach is that it allows the use of genuine prior information in addition to the
information that is available in the observed data to produce better results. In general, Bayesian methods provide
a better approximation to the level of uncertainty than other approaches which use only information provided by
the model and the observed data. In addition to providing useful statistics, such as, the mean and percentiles of the
posterior distribution of the unknown parameters, Bayesian methods give more reliable results for small samples
[24, 25, 26].

More specifically, the Bayesian approach presented in this paper offers several advantages over the current
methods in determining the relative importance of predictors in a regression model. First, the general dominance
weight of the Dominance Analysis is biased towards the results of subset models with small size. The proposed
approach resolves this problem by modelling the number of times a predictor outranking the others with the paired
comparison model. This probabilistic model based approach provides more comprehensive inference about the
population relative dominance ability of predictors. Secondly, the Bayesian approach provides more information
about the relative importance of the predictor by making straightforward statements about the dominance ability
of the predictors, the dominance probability of each possible pair of predictors, and the probability of each possible
order of dominance.

The advantages of applying the TSP link function over the logit link function come from both practical aspect
and computational aspect. The TSP link function is more flexible in modelling the results of paired comparisons
using indices on the 0 − 1 scale. In managerial terms saying that one variable dominates another on a scale of
0 to 1 communicates more to the practitioners than those range from −∞ to +∞. From computational point of
view, the TSP link function simplifies the computational procedure with a simple uniform prior distribution. The
MCMC chain produced by the TSP link function converges faster and is less correlated than those by the logit
link function. Figure 2 and Figure 3, which present the trace plots of the MCMC chains of the four models using
data in the empirical example, show that the MCMC chains produced by the TSP link function mixed better and
converge faster than those by the logit link function. Moreover, autocorrelation functions of the four models in the
empirical example, as presenting in Figure 4 and Figure 5, show that the MCMC chains produced by the TSP link
function die down faster than those from the logit link function, which means the former ones are less correlated
and more stationary than the latter ones.

Relative importance analyses are also applicable to situations commonly confronted by organizational scholars
where the criteria may not meet the distributional assumptions of ordinary least squares (OLS) regression, such
as predicting binary criteria like turnover, promotion decisions, or training success. Although both Dominance
Analysis and Bayesian approach are developed for use with OLS regression, Azen and Traxel (2009) [27] presented
modifications of these respective analyses to handle categorical criterion variables that would typically be analysed
using logistic regression. Tonidandel and LeBreton (2010) [28] developed an application of relative weight analysis
to logistic regression. Thus, we will continue our work about questions of the relative contribution of each of the
variables in terms of predicting the categorical criterion, and how the proposed method can be examined in this
context as well.

One of the central questions in a multivariate analysis of variance (MANOVA) considers identifying the depen-
dent variables that are driving the significant multivariate F-test. Unfortunately, the correlations among the various
dependent variables often make it difficult to accurately identify the role being played by the various dependent
variables. The Bayesian approach of relative importance analyses may also be a useful supplement to analyse other
than multiple regression, such as MANOVA as well.
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Table 1: Population Correlation Matrix for Simulation

Example with Four Predictors
Y X1 X2 X3 X4

Y 1.0 0.6 0.3 0.4 0.5
X1 0.6 1.0 0.8 0.1 0.3
X2 0.3 0.8 1.0 0.1 0.1
X3 0.4 0.1 0.1 1.0 0.2
X4 0.5 0.3 0.1 0.2 1.0

Example with Classical Suppressor
Y X1 X2 X3

Y 1.0 0.3 0.0 0.25
X1 0.3 1.0 0.75 0.55
X2 0.0 0.75 1.0 0.15
X3 0.25 0.55 0.15 1.0

Table 2: Paired Comparisons of Predictors in Simulation Studies

Example With Four Predictors
Null k=0

X1 X2 X3 X4

X1 0 1 1 1
X2 0 0 0 0
X3 0 1 0 0
X4 0 1 1 0

k=1
X1 X2 X3 X4

X1 0 2 2 2
X2 0 0 0 0
X3 0 2 0 0
X4 0 2 2 0

k=2
X1 X2 X3 X4

X1 0 1 1 1
X2 0 0 0 0
X3 0 1 0 1
X4 0 1 0 0

Total
X1 X2 X3 X4

X1 0 4 4 4
X2 0 0 0 0
X3 0 4 0 1
X4 0 4 3 0

Example with Classical Suppressor
Null k=0
X1 X2 X3

X1 0 1 1
X2 0 0 0
X3 0 1 0

k=1
X1 X2 X3

X1 0 1 1
X2 0 0 1
X3 0 0 0

Total
X1 X2 X3

X1 0 2 2
X2 0 0 1
X3 0 1 0

Table 3: Summary of Posterior Statistics of Dominance Index of Predictors in Simulations

Bayesian Analysis
Logit Link TSP Link

Un-weighted Weighted Un-weighted Weighted
Model I Model II Model III Model IV

Example with Four Predictors
d1 2.8928 ( 0.7293 , 6.1262 ) 1.7645 ( -0.6591 , 5.2106 ) 0.8885 ( 0.6351 , 0.9959 ) 0.7608 ( 0.2835 , 0.9929 )
d2 -2.5517 ( -6.7476 , -0.5002 ) -1.7865 ( -5.2678 , 0.7165 ) 0.1112 ( 0.0041 , 0.3593 ) 0.2325 ( 0.0091 , 0.6967 )
d3 -0.2688 ( -2.6886 , 1.8047 ) -0.1801 ( -3.0025 , 2.6071 ) 0.4136 ( 0.0711 , 0.7944 ) 0.4838 ( 0.0335 , 0.9590 )
d4 0.5763 ( -1.5670 , 2.7098 ) 0.0534 ( -2.7240 , 2.8409 ) 0.5825 ( 0.1834 , 0.9471 ) 0.5241 ( 0.0422 , 0.9709 )

Example with Classical Suppressor
d1 1.3835 ( -0.8060 , 4.0337 ) 1.1571 ( -1.2259 , 4.0560 ) 0.7640 ( 0.3048 , 0.9911 ) 0.6924 ( 0.1271 , 0.9909 )
d2 -0.8441 ( -3.3536 , 1.4278 ) -0.5876 ( -3.1505 , 1.9929 ) 0.3192 ( 0.0157 , 0.8109 ) 0.4056 ( 0.0113 , 0.9522 )
d3 -0.8383 ( -3.2240 , 1.4271 ) -0.5417 ( -3.3472 , 2.1919 ) 0.3342 ( 0.0152 , 0.8021 ) 0.4222 ( 0.0159 , 0.9502 )
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Table 4: Summary of Posterior Statistics of Dominance Probability of Predictors in Simulation

Logit Link TSP Link
Un-weighted Weighted Un-weighted Weighted

Model I Model II Model III Model IV
Example With Four Predictors

θ1,2 0.9864 0.9166 0.9670 0.8566
θ1,3 0.9271 0.7818 0.8429 0.7006
θ1,4 0.8616 0.7642 0.7398 0.6727
θ2,3 0.1457 0.2533 0.2615 0.3161
θ2,4 0.0782 0.2279 0.1597 0.2895
θ3,4 0.3291 0.4623 0.3624 0.4694

Example with Classical Suppressor
θ1,2 0.8433 0.7614 0.8158 0.7039
θ1,3 0.8409 0.7515 0.8071 0.6912
θ2,3 0.4983 0.4902 0.4873 0.4901

Table 5: Sample Correlation Matrix in Example

Y X1 X2 X3 X4 X5

Y 1.000 0.740 0.744 0.714 -0.872 -0.524
X1 0.740 1.000 0.392 0.691 -0.831 -0.599
X2 0.744 0.392 1.000 0.374 -0.592 -0.471
X3 0.714 0.691 0.374 1.000 -0.790 -0.390
X4 -0.872 -0.831 -0.592 -0.790 1.000 0.556
X5 -0.524 -0.599 -0.471 -0.390 0.556 1.000

Table 6: Total of Paired Comparisons of Predictors in Empirical Example

X1 X2 X3 X4 X5

X1 0 0 4 0 6
X2 8 0 8 6 8
X3 4 0 0 0 6
X4 8 2 8 0 8
X5 2 0 2 0 0

Table 7: Summary of Posterior Statistics of Dominance Index of Predictors in Example

Logit Link TSP Link
Un-weighted Weighted Un-weighted Weighted

Model I Model II Model III Model IV
d1 -1.2226 ( -2.8667 , 0.4566 ) -0.0075 ( -2.2691 , 2.2144 ) 0.2000 ( 0.0040 , 0.4663 ) 0.4769 ( 0.0385 , 0.9551 )
d2 2.7012 ( 0.9236 , 4.6888 ) 2.0872 ( 0.2512 , 4.5215 ) 0.9280 ( 0.7565 , 0.9984 ) 0.7482 ( 0.2388 , 0.9919 )
d3 -1.2699 ( -3.0816 , 0.2826 ) -0.5380 ( -2.4782 , 1.3904 ) 0.1915 ( 0.0055 , 0.4487 ) 0.3090 ( 0.0120 , 0.8292 )
d4 1.7785 ( 0.1793 , 3.7052 ) 1.0884 ( -0.8847 , 3.4413 ) 0.8445 ( 0.5796 , 0.9939 ) 0.7375 ( 0.2603 , 0.9952 )
d5 -2.2999 ( -4.1318 , -0.7340 ) -1.6131 ( -4.1911 , 0.5371 ) 0.0729 ( 0.0016 , 0.2443 ) 0.1959 ( 0.0065 , 0.5936 )
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Table 8: Summary of Posterior Statistics of Dominance Probability of Predictors in Example

Logit Link TSP Link
Un-weighted Weighted Un-weighted Weighted

Model I Model II Model III Model IV
θ1,2 0.0286 0.1663 0.0452 0.3028
θ1,3 0.5112 0.5985 0.5077 0.6254
θ1,4 0.0630 0.3162 0.0742 0.3095
θ1,5 0.7296 0.7663 0.6127 0.7072
θ2,3 0.9719 0.8721 0.9571 0.8067
θ2,4 0.6942 0.6817 0.5747 0.5092
θ2,5 0.9890 0.9448 0.9857 0.8686
θ3,4 0.0616 0.2233 0.0702 0.1980
θ3,5 0.7217 0.6930 0.6053 0.5878
θ4,5 0.9755 0.8835 0.9664 0.8672
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Figure 1: Logit and TSP Link Functions
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Figure 2: The Trace-Plot of Dominance Index with Logit Link Functions
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Figure 3: The Trace-Plot of Dominance Index with TSP Link Functions
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Figure 4: The Auto Correlation Functions of Dominance Index with Logit Link Functions

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 1

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 2

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 3

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 4

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 5

A
C

F

 

(a) with Unweighted Likelihood

0 10 20 30 40
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

d 1

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 2

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 3

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 4

A
C

F

 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d 5

A
C

F

 

(b) with Weighted Likelihood

Figure 5: The Auto Correlation Functions of Dominance Index with TSP Link Functions
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