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Abstract

In this paper, a new algorithm is devised for calculating the Least Trimmed of Squares (LTS) estimator. The
algorithm consists of two steps. In the first step, the non-dominated sorting algorithm is applied on the design
matrix of regression data for selecting a clean subset of observations. In the second step, C-steps are iterated
to adjust the LTS estimators. The algorithm is fast and precise for small sample sizes, however, the sorting
algorithm is computationally inefficient in large datasets. A fast update mechanism can be used in online data with
a linear increase in computation time. Some properties of the sorting algorithm are also investigated under some
transformations. Results of applying the algorithm on some well-known datasets and Monte Carlo simulations show
that the proposed algorithm is suitable to use in many cases when the computation time is the major objective and
a moderate level of precision is enough.
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1. Introduction

Outliers in regression analysis are aberrant observations that do not fit the unknown regression surface. Since the
regression coefficients are estimated using the actual data, outliers can dramatically change the partial coefficients
and the intercept. This may result a big difference between the unknown parameters and their estimated counter-
parts, that is, an outlier may be located near the regression surface whereas a clean observation may get a high
residual as it gets distant from the regression surface. The former situation is called masking which is amount or
probability of labelling a true outlier as a clean observation whereas the latter is called swamping which is amount
or probability of labelling a clean observation as an outlier [4].

Main reason underlying of an observation being an outlier is not only having considerably large or small values.
An observation may not be well fitted by unknown regression surface either in X-space or y dimension. The former
is called leverage which is a higher impact on estimated coefficients whereas the latter is called vertical or regression
outlier [26]. If an outlier is distant from the both dimensions, it may lie on the regression surface and it is generally
considered as a good observation as it reduces the standard errors of estimated coefficients.

Ordinary Least Squares (OLS) based outlier detection methods fail in most situations because of masking and
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swamping effects [15, 29, 2, 6, 8, 22]. High breakdown estimators can be used instead. Suppose the model is

y = Xβ + ϵ

where y is an n-vector of response variable, X is an n×p matrix of response variables, β is the p−vector of unknown
parameters, ϵ is an n−vector of stochastic error term with zero mean and constant variance, n is the number of
observations and p is the number of parameters. One of the high-breakdown estimators, Least Trimmed Squares
(LTS), is resistant up to n− h of n outliers where h is at least 50% of data [19]. LTS estimator is defined as

Argmin
β̂

h∑
i=1

|êi2|

where |êi2| = |{yi − Xi,β̂}2| is the ith ordered squared residual, Xi, is the ith row of matrix X, h is generally
selected as ⌊n

2 ⌋+ ⌊p+1
2 ⌋ [33] or ⌊n+p+1

2 ⌋ [24] , ⌊a⌋ is the nearest integer that is equal to or smaller than a.
[21] used an evolutionary algorithm, [3] used the forward search algorithm, [1] used a brunch and bound algo-

rithm, [14] used mathematical programming for calculating the LTS estimators. Since optimizing the goal function
requires high amount of computations when n and p are large, new algorithms are developed for calculating LTS
estimators. [25] devised an algorithm for estimating LTS for large datasets. [27] extended this algorithm using
genetic algorithms based initial subset selection.

In this paper, we devise a new algorithm for calculating the LTS estimators. A non-dominated sorting algorithm
is applied on the independent variables to obtain an initial subset. This initial subset is then used to iterate C-steps
as defined in [25]. Since the sorting algorithm is slow for large and static data, a fast update rule is developed for
online data for re-selecting a new initial subset after receiving new cases. In section 2, we redefine and investigate
some properties and usability of non-dominated sorting on initial subsets. In section 3, we introduce the proposed
algorithm. In section 4, use of proposed algorithm in online data is discussed. In section 5, results of applying the
proposed algorithm on some well-known datasets and simulated online data are presented. Finally, in section 6 we
conclude.

2. Non-dominated Sorting and Its Properties

Non-dominated solutions [32], non-dominated sorting [30] and the related terms non-domination ranks and order
are subjects of multi-objective optimization. The sorting algorithm is used to determine the solutions that are
not comparable each other in the terms of superiority but superior to the remaining solutions. In a maximization
problem with two objective functions, if elements of s1 = {f(x), g(x)} are not less than corresponding elements of
s2 = {f(y), g(y)} and at least one element of s1 is bigger than the corresponding element of s2 then x dominates y,
by symbols, x ≻ y.
Definition: Suppose that x1 = (a1, a2, ..., ap) and x2 = (b1, b2, ..., bp) are points in p dimensional Cartesian space.
If each bi in x2 is not smaller than ai in x1 and at least one bi is bigger than ai for i = 1, 2, .., p then x2 ≻ x1 (x2

dominates x1).
Definition: If a point xi for i = 1, 2, ..., n dominates 0 ≤ c < n points then non-domination rank of xi is c and the
set of ordered points is O(x).

Non-domination ranks give an opportunity to sort points in higher dimensional spaces. Given the points x1 =
(0, 0), x2 = (0, 2), x3 = (2, 0) and x4 = (3, 3); x4 has the biggest values in all dimensions and it dominates the
other points. x2 and x3 dominates x1 and they share the same order. Finally, x1 is dominated by all of the other
points and the non-dominated order of these points is x4 ≻ {x2, x3} ≻ x1, or similarly, O(x) = {x1, {x2, x3}, x4}
with ranks R(x) = {0, 1, 1, 3}.

In this paper, possibility of using the sorting algorithm in selecting observations in the middle of a dataset as
a basic or elemental subset and in this section properties of the sorting algorithm are investigated. Coordinatewise
median [7, 5], comediance [28], multivariate median [9, 20], Minimum Covariance Determinant-MCD [16] and
Minimum Volume Ellipsoid-MVE [11], etc. estimators are used in robust regression literature for selecting a basic
or clean subset of observations. Some of these algorithms are invariant under some transformations. These properties
of non-dominated sorting algorithm are investigated in next subsections.

2.1. Location Invariance

Suppose that xi and xj are points in p-dimensional space for i ̸= j. Choose a vector such that k = [k1 k2 ... kp]
T

where ku ∈ R and u = 1, 2, ..., p. If xi ≻ xj then xi + k ≻ xj + k, or similarly, O(x + k) = O(x). This property
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makes non-dominated sorting location invariant or invariant under shifting.

2.2. Scale Invariance

Suppose that xi and xj are points in p-dimensional space for i ̸= j. Choose a vector such that k = [k1 k2 ... kp]
T

where each single element of k is positive. If xi ≻ xj than xi ◦k ≻ xj ◦k, or similarly, O(x◦k) = O(x) where a◦ b is
Hadamard product [18] of vectors a and b. This property makes non-dominated sorting scale invariant for positive
scalers. Note that when k1 = k2 = ... = kp, O(x ◦ k) = O(k1x) = O(x).

2.3. Rotation Invariance

Suppose that xi and xj are points in 2-dimensional space for i ̸= j. Since the rotation matrix is R =

[
cos θ − sin θ
sin θ cos θ

]
,

it can be found at least one θ that implies Rxi ≻ Rxj where xi ≺ xj due to negative scalers mentioned in Section
2.2.

Suppose that the points zi = (xi, yi) are generated using a function y = f(x) = x for i = 1, 2, ..., n. Non-
domination ranks are then O(z) = {0, 1, 2, ..., n− 1} and the data shares the same multivariate order as the order
calculated by each single dimension. After rotating the data using the angle θ = π/2, all of the pairs take the rank
of n− 1.

This property implies that the non-dominated sorting is not invariant under rotations.

3. Proposed Algorithm

The devised algorithm consists on two stages. In the first stage a clean subset of p or p+1 observations is determined
using non-dominated sorting on the X-space. If the number of observations is odd, p+ 1 observations are selected
as basic subset whereas p observations are selected if the number of observations is even. In robust regression
literature the terms basic subset or clean subset are also called elemental subsets and they include p observations
[17] as well as p + 1 observations [31]. In the second stage, an LTS estimation is obtained using the basic subset
returned from the first stage. The estimated coefficients are then used to iterate C-steps. A C-step can be defined
as a function that takes a subset of observations as input and returns a subset of observations with size of h as
output [25]. The pseudo-code of algorithm is given in Program 1.

Program 1 Pseudo-code of proposed algorithm

select_clean_subset <- function(xmat){

calculate_non-domination_ranks(xmat)

if (n-p) is even then

return p observations in the middle of data

else

return (p+1) observations in the middle of data

end if

}

estimate_lts <- function (model, data){

select_clean_subset(xmat)

estimate_lts()

enlarge_clean_subset(h)

while(iterations < max.number.of.csteps or

a better solution is not obtained){

iterate_c_steps()

}

return(results)

}

As mentioned in subsections 2.1, 2.2 and 2.3, selected subset of observations does not change by shifting or
rescaling observations, however, rotations will change the order.
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Table 1: Quantiles of computation times of updating ranks with online data

Quantiles 0% 5% 25% 50% 75% 95% 100%
Seconds 0.003 0.005 0.005 0.006 0.006 0.007 0.008

Table 2: Non-domination ranks of independent variables of Stackloss data

Observations 1 2 3 4 5 6 7 8 9 10 11
Ranks 15 12 14 10 7 9 15 15 7 0 5

Observations 12 13 14 15 16 17 18 19 20 21
Ranks 0 1 8 1 0 0 1 2 3 10

In first C-step, h subset of observations I1 is determined using the initial p or p+ 1 subset I0. In the following
C-steps, a new set of observations Ii is generated. If subsets Ii and Ii+1 are equal sets, algorithm terminates. In
some cases, yielding a case that implies Ii = Ii+1 takes too many times so a maximum number of C-Steps can
be defined as a stopping criterion.

Since the first stage algorithm requires the ranks of observations are calculated, obtaining an initial subset may
be infeasible in large datasets. However, calculating the rank of (N + 1)th observation with updating remaining N
observations increases the computation time linearly. This property of the algorithm is discussed in next section.

4. Fast Update for Online Detection of Outliers

Online detection of outliers mainly differs from the static analysis in terms of data source and large sample size.
If the time interval of receiving Yt after Yt−1 is less than the time required for calculating some statistics such as
T̂ (Y ) then computationally more efficient algorithms are required.

It can be seen in [12] that sorting a data matrix with N rows and p columns requires N2p computations
because each single row should be compared with the other rows along the p dimensions. In the case of online
data, non-domination ranks can be updated by performing (N + 1)2p−N2p = (2N + 1)p additional computations
after appending the new observation YN+1 to dataset. Since (2N + 1)p is linear whereas (N + 1)2p is quadratic,
non-domination ranks are computationally expensive for large and static datasets and convenient to use for online
data because of its fast update availability.

Procedures for calculating and updating non-domination ranks are written in R [23] and C++ using the package
Rcpp [13]. A random data matrix is created with 100000 rows and 10 columns. After calculating the non-domination
ranks, a single random row is appended to data matrix in each iterations. Times consumed for sequential adding
and updating are recorded for 20000 times. Some quantiles of recorded times in seconds are reported in Table 1 1.

Table 1 shows that re-selecting basic subsets using non-domination ranks are not computationally expensive
once a dataset is ordered. This fast update rule makes non-dominated sorting based initial subsets convenient for
a computationally expensive robust estimator such as LTS.

5. Computational Results

5.1. Well-known Datasets

In this section OLS, Exact LTS, random LTS and non-dominated sorting based LTS (Nds-Lts) are applied on some
well-known datasets which contain outliers. Results on Stack loss data [10], Hawkins-Bradu-Kass data [17] and
Animals2 data [33] are reported in next subsections.

5.1.1. Stack Loss Data

Stack Loss data [10] has 3 independent variables, 5 outliers in 21 observations. Non-domination ranks that are
calculated using the independent variables are reported in Table 2.

Observations 11, 5 and 9 are selected as clean subset which are free from the outlying observations 1, 2, 3, 4 and
21. In Table 3, results after applying the whole algorithm are given.

1Computations are performed in an Intel i8 computer with 8GBs Ram and Ubuntu Linux installed.
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Table 3: Results of estimators on Stackloss data

(Intercept) Air.Flow Water.Temp Acid.Conc. Time
OLS -39.919 0.715 1.295 -0.152 1x

Nds-LTS -35.210 0.746 0.337 -0.005 1.5x
Random-LTS -37.154 0.750 0.321 0.019 4x

Exact-LTS -35.810 0.750 0.333 0.000 8.5x

Table 4: Non-dominated ranks of independent variables of Hawkins,Bradu and Kass data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1-15 61 61 64 65 66 63 64 61 63 61 71 71 71 71 31
16-30 4 0 13 9 37 17 5 11 3 0 14 36 5 3 6
32-45 9 1 15 0 36 12 3 0 3 4 20 2 1 6 2
46-60 5 4 20 25 28 4 8 2 4 4 13 3 25 14 4
60-75 11 0 1 36 8 1 9 0 1 12 22 5 2 1 1

In Table 3 it is shown that the estimates of Exact-LTS, Random-Lts and Nds-LTS are similar, whereas, com-
putation time required for Nds-LTS is considerably small and near to time required for OLS.

5.1.2. Hawkins, Bradu and Kass Data

Hawkins-Bradu-Kass data [17] includes 3 independent variables and a linear multiple regression model fits the data.
It is known that the first 10 observations are bad leverage points whereas observations 11− 14 are good leverages.
Non-domination ranks that are calculated on the independent variables are reported in Table 4.

It is shown in Table 4 that first 10 observations take considerable large ranks which are known to be outliers.
Observations 65, 19 and 31 are selected as the clean subset as they stay in the middle of the data by means of
non-domination ranks. Table 5 summarizes the results of different algorithms.

It is shown in Table 5 that OLS estimators have different values when it is compared to LTS estimators, however,
values of LTS estimators are different in some precision. Figure 1 reveals the effects of these differences by presenting
residuals obtained by three LTS algorithms. In Figure 1 it is clear to see that the three LTS estimators yield large
residuals and remarks the outliers in positions 1− 10. By considering the computation times reported in Table 5,
it can be easily seen that, Nds-LTS has many benefits to use instead of others with losing some precision versus
gaining time.

5.1.3. Animals2 Data

Animals2 data [33] contains body and brain weights of 65 species and a log− log simple linear model fits the
data. Since the dataset contains single independent variable, ordering and visualizing the data is easy to suspect
outlyingness of observations and we show the results of this example for comparison issues only. Non-domination
ranks obtained from the design matrix results that the observations 32, 33 and 34 are selected as clean subset which
belongs to species Artic Fox, Water Opossum and Nine-banded Armadillo which are free of outliers Rhesus Monkey,
Human, Triceratops, Dipliodocus and Brachiosaurus. Results of estimators are reported in Table 6.

It is shown in Table 6 that the slope estimates are same for all LTS estimators whereas estimates of intercept
parameter differ in some precision. All of the LTS estimators reports the true outliers. It is also shown in Table
6, computation time required for Nds-LTS is relatively small and it is preferable when the time is more important
then the precision.

Table 5: Results of estimators on Hawkins-Bradu-Kass data

(Intercept) X1 X2 X3 Time
OLS -0.388 0.239 -0.335 0.383 1x

Nds-LTS -0.614 0.245 0.106 -0.136 3x
Random-Lts -0.657 0.243 0.122 -0.138 17x
Exact-LTS -0.556 0.244 0.043 -0.100 40x
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Figure 1: Residuals of estimators on Hawkins, Bradu and Kass Data

Table 6: Nds-LTS and Exact-LTS result on Animals data

(Intercept) log(Body) Time
OLS 2.172 0.592 1x

Nds-LTS 2.015 0.771 2x
Random-Lts 1.952 0.771 22x
Exact-LTS 1.952 0.771 25x
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Table 7: n=1000 + 1000, p=4, X-Space outliers

Contamination: 15%

β̂0 β̂1 β̂2 β̂3

bias -0.120 0.003 0.000 0.000
variance 0.010 0.000 0.000 0.000

mse 0.024 0.000 0.000 0.000
median 4.872 5.003 5.000 5.000

mad 0.092 0.001 0.002 0.001
Contamination: 25%

β̂0 β̂1 β̂2 β̂3

bias 1.362 -0.009 -0.011 -0.007
variance 901.127 0.055 0.053 0.022

mse 902.982 0.055 0.053 0.022
median 5.019 5.002 4.999 5.000

mad 0.043 0.001 0.001 0.001
Contamination: 35%

β̂0 β̂1 β̂2 β̂3

bias 51.155 -0.408 -0.338 -0.323
variance 31222.410 2.008 1.361 1.221

mse 33839.261 2.174 1.476 1.325
median 4.854 5.004 5.001 4.998

mad 0.078 0.001 0.001 0.001

5.2. Monte Carlo Simulations

In previous subsection, several algorithms are applied on some datasets which are static in terms of constant sample
size. In order to reveal properties of the fast update availability, we perform some Monte Carlo simulations. Data is
generated using two multiple linear regression models with 4 and 10 parameters including an intercept. Independent
variables are generated using a Uniform Distribution with parameters 0 and 100. Stochastic error term is generated
using a standard Normal Distribution. Regression parameters are selected as β = [5 5 ... 5]T . Sample size is
initially determined as 1000. The dataset generated in this step is free of any outliers. After generating the initial
data, a new observation is generated and appended to the initial data. The new case is an outlier with probability
Pcx = {0.15, 0.25, 0.35} and Pcy = {0.25, 0.35, 0.45} for X-space and y-space outliers, respectively. When a newly
received case is a y-space outlier, non-domination ordering has no effect and C-steps play the important role. That
is why a higher set of contamination levels is selected for y-space outliers.

Independent variables of a contaminated observation are generated using the formula xi,N+1 = Uniform(0, 100)+
Uniform(max(xi),max(xi)+3σ̂xi) where σ̂xi is sample standard deviation of xi. A contaminated y value is gener-
ated using the formula yN+1 = Xβ+ϵ+Uniform(max(y),max(y)+3σ̂y), where σ̂y is sample standard deviation of
y. In simulations, after receiving a new case, non-domination ranks are updated and a new basic subset is selected
for calculating next step estimations. The process of appending new observations is repeated 1000 times for each
single scenario. Tables 7 - 11 summarize the results.

In Table 7, it is shown that bias and variance of estimators increase when the contamination level increases. As
a result of this, higher MSE values are obtained. It is also shown that the intercept estimator has higher bias and
variance. This result is an indication of reduced robustness of the Nds-LTS estimator. Since medians and mads of
estimators are almost equal to 5 and 0, respectively; higher bias and variance values indicate existence of extremely
large values. In Table 8, some quantiles of intercept estimator is reported. It is shown in Table 8 that, 99.8% and
91.5% of intercepts are estimated correctly by means of bias and variance for contamination levels 25% and 35%,
respectively.

In Table 9, simulation results for y-space outliers in 4 parameters model are reported. As it is mentioned before,
non-domination ranks have no effect on detecting this kind of outliers because the sorting algorithm is only applied
on the X-space. Results reported in Table 9 indicate that C-steps based LTS algorithm yields considerable small
bias and variance of estimators that are free of outliers as clearly seen in median and mad values.

Table 10 and Table 11 show results of the simulations performed on 10 variables model for X-space and y-space
outliers, respectively. Results are surprisingly different when they are compared to the results of 4-variables model.
MSE s of slope estimators as well as the intercept are reduced as a result of lower values of bias and variance.
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Table 8: n=1000 + 1000, p=4, X-Space outliers, Some Quantiles for intercept

25% Contamination
Quantiles 90% 91% 92% 93% 94% 99.8% 99.9%

β̂0 5.09 5.10 5.10 5.10 5.10 5.15 676.11
35% Contamination

Quantiles 75% 85% 90% 91% 91.5% 92% 95%

β̂0 5.17 5.22 5.23 5.24 5.25 616.21 659.65

Table 9: n=1000 + 1000, p=4, Y-Space outliers

Contamination: 25%

β̂0 β̂1 β̂2 β̂3

bias -0.076 0.001 -0.001 0.002
variance 0.007 0.000 0.000 0.000

mse 0.012 0.000 0.000 0.000
median 4.933 5.000 4.998 5.002

mad 0.088 0.001 0.002 0.001
Contamination: 35%

β̂0 β̂1 β̂2 β̂3

bias -0.267 0.004 0.002 0.001
variance 0.019 0.000 0.000 0.000

mse 0.090 0.000 0.000 0.000
median 4.699 5.004 5.002 5.001

mad 0.050 0.002 0.002 0.002
Contamination: 45%

β̂0 β̂1 β̂2 β̂3

bias -0.109 -0.000 0.001 0.001
variance 0.044 0.000 0.000 0.000

mse 0.056 0.000 0.000 0.000
median 4.851 5.000 5.002 5.001

mad 0.224 0.001 0.001 0.001

Table 10: n=1000 + 1000, p=10, X-Space outliers

Contamination: 15%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias -0.24 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00
var 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 4.75 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
mad 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contamination: 25%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias 0.06 0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00
var 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 5.10 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
mad 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contamination: 35%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias -0.79 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00
var 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 4.11 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.01
mad 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 11: n=1000 + 1000, p=10, y-Space outliers

Contamination: 25%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias 0.04 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00
var 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 5.02 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
mad 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contamination: 35%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias 0.01 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00
var 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 4.98 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
mad 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Contamination: 45%

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

bias 0.15 0.00 -0.00 -0.01 -0.00 0.00 -0.00 0.00 0.00 -0.00
var 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mse 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
med 5.10 5.00 5.00 4.99 5.00 5.00 5.00 5.00 5.00 5.00
mad 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Addition to this, when the contamination level increases; bias and variance do not systematically change. These
results imply that Nds-LTS does not lose its robustness property when the model contains more variables. Note
that bias and variance values of intercept estimator in clean data are 0.025 and 0.180, respectively.

6. Conclusion

Many algorithms in robust regression literature are based on selecting a small subset of observations which are free
of outliers. The selecting procedure itself is generally important by means of determining masking and swamping
ratios, properties under some transformations and the computation time of algorithms. Trying all possible subsets
results gaining the most precise estimates in return of maximum computation time. In this paper, a two-step
algorithm is devised to calculate LTS estimators. In the first step, the non-dominated sorting algorithm is applied
on the design matrix of regression data for determining a small subset of observations in the middle of the dataset.
The non-dominated sorting algorithm is used to determine solutions on the pareto frontier in the optimization
theory. Its use in statistics literature is new. It is also shown in this paper that the non-dominated ordering of
observations is invariant under shifting in R and scaling in R+. By a mandatory result of second property, it is
not invariant under rotations. In the second step, C-steps are iterated to adjust LTS estimators. Since the process
of calculating non-domination ranks is computationally expensive, it is shown that a fast update rule is available
to apply this algorithm in data streams or online data with a linear order of magnitude. Algorithm is applied on
some well-known datasets and the results show that the algorithm yields considerable precise estimates in a small
time interval. Simulation results also show that the algorithm yields estimates with low bias and variance when
new cases are appended to datasets in real time.
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