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Abstract 

 

In this research paper, the estimation of the unknown parameters for the exponentiated Weibull Poisson distribution 

using the concept of generalized order statistics is investigated from Bayesian approach. The squared error, LINEX and 

general entropy loss functions are considered for Bayesian computation.  Bayes estimates based on Progressively type II 

censored and the joint density function of ordinary order statistics are considered as special cases of generalized order 

statistics. Finally simulation study is conducted for illustrative purposes. 
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1. Introduction 

Order statistics and record values play an important role in statistics and its applications in reliability theory and 

life testing. Their distributional and stochastic properties have been studied extensively in the literature. However, they 

can be considered as special cases of generalized order statistics (GOS) that have been introduced and extensively 

studied by Kamps [17]. Its enable a unified approach to several models of ordered random variables such as ordinary 

order statistics, record values, sequential order statistics, and progressively type II censored statistics.  

The random variables                                          are called GOS if their joint probability density 

function is given by 
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    ,  and             . 

 

For suitable choices of the parameters, GOS reduced to the well-known ordered random variable. If         
       and    , then (1) reduced to the joint density function of ordinary order statistics. If          
          and          , then (1) reduced to the progressive type II censored data. 

The statistical properties and the estimation problems based on generalized order statistics for some life time 

distributions are studied by several researchers. Ahsanallah [5] studied the distribution properties of GOS for a uniform 

distribution. Ahsanallah [6] studied some distributional properties of GOS for the two parameter exponential 

distribution. Habibullah and Ahsanullah [15] obtained the estimates of the parameters of Pareto type II distribution 

based on GOS. Also, estimators based on order statistics and record values are obtained as special cases. Jaheen [16] 

estimated the parameters of the Burr type XII distribution based on GOS and upper record statistics using maximum 

likelihood (ML), Bayesian and approximate Bayes due to Lindley [20] methods. Mailinowska et al. [22] derived the 

minimum variance linear unbiased estimators for Burr XII model based on  -selected GOS. 
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Aboeleneen [3] discussed Bayesian and non-Bayesian estimation methods based on GOS for Weibull 

distribution. Estimates of the unknown parameters and confidence intervals from progressively type II censoring and 

record values are obtained. Burkschat [11] derived the best linear unbiased and best equivariant estimators in location 

and scale families of GOS from generalized Pareto distribution. Abo-Elfotouh and Nassar [4] obtained the estimators of 

the unknown parameters of the Weibull extension model based on GOS using maximum likelihood and Bayesian 

methods. Abd-Ellah [2] obtained the estimators of the unknown parameters of the inverse Weibull distribution based on 

GOS using maximum likelihood and Bayesian methods. Bayes estimates under various loss functions such as the 

balance squared error and balance LINEX are examined.  

Recently, Moghadam, et al. [23] used the maximum likelihood and Bayesian methods to estimate the unknown 

parameters of the Lomax distribution based on GOS. Safi and Ahmed [24] obtained the estimators of the unknown 

parameters of the Kumaraswamy distribution based on GOS using maximum likelihood method. Ateya [7] discussed 

Bayesian and non-Bayesian estimation methods based on right censored GOS for modified Weibull distribution. Abd-

Elfattah, et al. [1] obtained maximum likelihood estimators and confidence intervals of the unknown parameters from 

exponentiated Weibull Poisson (EWP) distribution based on GOS. In addition, maximum likelihood estimators based 

on progressively type-II censored data were derived. Kim and Han [18] obtained Bayesian estimators and highest 

posterior density credible intervals for the scale parameter of Rayleigh distribution based GOS. Also, they derived the 

Bayesian predictive estimator and the highest posterior density predictive interval for independent future observations. 

Mahmoudi and Sepahdar [21] introduced a new compounding distribution with decreasing, increasing, bathtub 

shaped and unimodel failure rate called as the exponentiated Weibull Poisson distribution. This distribution contains 

several lifetime sub-models such as: generalized exponentiated Poisson, complementary Weibull Poisson, 

complementary exponential Poisson, exponential Rayleigh Poisson and Raleigh Poisson distributions.  

The probability density function (pdf) of EWP takes the following form 
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where,   and   are the scale parameters and   and   are the shape parameters of the distribution. 

The corresponding distribution function is given by 
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A wide variety of loss functions have been developed in literature to describe various types of loss structures. 

The symmetric squared error (SE) loss is one of the useful symmetric loss functions and it is popular due to its 

relationship to classical least squares theory. The similarity between the two makes SE loss function seem familiar to 

statisticians.  A loss function should represent the consequences of different errors. There are situations where over and 

under estimation can lead to different consequences. For example, when estimating the average reliable working life of 

the components of a spaceship or an aircraft, over-estimation is usually more serious than under-estimation. Being 

symmetric, the SE loss equally penalize over and under estimation of the same magnitude.  

Let      be a general function of the vector of parameters                  Under the squared error loss function, 

                            , the Bayes estimates of      is given by 

 

                       𝜋                 . 

 

The integrals are taken over the  -dimensional space (see Koch [19]). The usual estimator of the parameters under the 

quadratic loss function is the posterior mean. 

Linear exponential (LINEX) loss function was introduced by Varian [26] as asymmetric loss function. This 

function rise approximately exponentially on one side of zero, and approximately linearly on the other side. Under the 

assumption that the minimal loss occurs at            , the LINEX loss function can be expressed as 

 

                            , 

 

where,                ,        is an estimate of     . The constant parameter      determines the shape of the loss 

function. If the parameter     and the error               is positive the LINEX loss function is almost exponential 

and for negative errors almost linear, in these situations over-estimations are more serious problem than under-

estimation. If     under-estimation is more important than over-estimation. For small values of    , the loss is an 

almost symmetric and behaves like the SE loss function. Under LINEX loss function, the Bayes estimats of      is 

given by 
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provided that                exists, and is finite. (see Zellner [27]). 

Despite the flexibility of the LINEX loss function for the estimation of a location parameter, it appears not to 

be suitable for the estimation of scale parameter and other quantities. For these reasons, Basu and Ibrahimi [9] proposed 

the modified LINEX loss function. Calabria and Pulcini [12] presented another alternative to the modified LINEX loss 

function named general entropy (GE) loss function when it appears to be realistic to express the loss in terms of the 

ratio between unknown parameters and it's estimators   
      

    
    and defined it as 
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whose minimum occurs at            . This loss function is a generalization of the Entropy loss, where     

according to Dey et al. [13] and Dey and Liu [14]. When    , a positive error               causes serious 

consequences than a negative error. The Bayes estimates         of      under GE loss is 

  

                        , 

 

provided that             exists and is finite, where   denotes the expected value with respect to the posterior function 

of     .  

This article is concerned with the Bayesian estimation for the four parameters           of the exponentiated 

Weibull Poisson based on GOS. This was done under assumption of symmetric (square error) and asymmetric (LINEX 

and general entropy) loss functions. Numerical study is used to compute the Bayes estimates. The results are specialized 

to progressive type II censored and the joint density function of ordinary order statistics values.   

This article can be organized as follows. Section 2 presents the Bayesian estimators of the unknown parameters for 

EWP distribution using the symmetric and asymmetric loss functions based on generalized order statistics. The Bayes 

estimates based on progressive type II censored sample and joint density function of ordinary order statistics are derived 

in Section 3. In Section 4, numerical computation is developed to illustrate theoretical results. Numerical results are 

displayed in Section 5. Finally, conclusions are presented in Section 6. Tables are displayed in the appendix.    

2. Bayesian estimators based on GOS 

Suppose that                                          are   random sample of GOS drawn from EWP 

distribution with pdf (2) and define               ; where            .  Then based on this set of GOS the 

likelihood function is  
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Following Singh, et al. [25] the non-informative type of prior (NIP) for the parameters       and   is considered as 

 

      
 

 
                ,                                             

 

 
                 , 

      
 

  
                        ,                              

 

  
                        . 

 

Consequently, the joint NIP will be as follows: 

 

        
 

        
                                      .                                                                         (5) 

 

Combining the joint prior density of                 in (5) and the likelihood function (4) to obtain the joint 

posterior density of       given the data as follows 
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where,                                    
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Therefore, based on GOS the Bayes estimates of the unknown parameters                 under squared error loss 

function, denoted by            , can be obtained as posterior mean as follows 
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Alternatively, under the LINEX loss function the Bayes estimates of     ; denoted by             ; is given by 
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Moreover, the Bayes estimates of      under general entropy; denoted by             ; can be obtained as follows  
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The integral Equations (7) to (9) are very hard to obtain, therefore a numerical procedure is applied to obtain the Bayes 

estimates of the unknown parameters. 

3. Special cases 

In this section, two special cases of GOS, progressively type II censored and the joint density function of ordinary 

order statistics will be considered. 

 

3.1. Bayesian estimators based on progressively type II censored data 
 

          A progressively type II censored sample is observed as follows:   units are placed on a life testing experiment 

and only      are completely observed until failure. The censoring occurs progressively in   stages. The   stages 

are failure times of   completely observed  units. At the time of the first failure (the first stage),    on       

surviving units are randomly withdrawn from the experiment,    on          surviving units are withdrawn at the 

time of the second failure (the second stage) and so on. Finally, at the time of the     failure (the     stage), all the 

remaining                     surviving units are withdrawn. In this scheme              is pre-

fixed. The resulting   order failure times, which denote by        
         

           are referred to as progressive 

type-II right censored order statistics [see Balakrishnan and Aggarwala [8]]. 

According to Burkschat et al. [10] the progressively type II censored sample       
         

         
         

, with censoring 

scheme                , and             is special case of the generalized order statistics with the 

parameter                    and          . Therefore, the likelihood function (4), is reduced to 

likelihood function of progressive type II censored data as follows 
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To obtain the joint posterior density of       combining the joint prior density (5) and the likelihood function (10) as 
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where,                                    
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Therefore, the posterior mean of the unknown parameters                  denoted by               based on 

progressive type II censored data is obtained as follows 
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Based on, the LINEX loss function the Bayesian estimators of       denoted by              ; can be obtained as 
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Furthermore, the Bayesian estimators of      under general entropy; denoted by                is given by  
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As mentioned earlier, the integrals involved in (12), (13) and (14) are not solvable analytically and, therefore, a 

numerical technique and computer facilities are needed to evaluate the Bayes estimate of the unknown parameters. 

 

3.2. Bayesian estimators based on the joint density function of ordinary order statistics 
 

The joint density function of ordinary order statistics is special case of generalized order statistics, by setting 

                and     in Equation (4), then the likelihood function of the joint density function of 

ordinary order statistics; denoted by              takes the following form 
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where,            
   
     and               

    
          

    
              

  
            

  
    . 

 

Combining the joint prior density (5) and the likelihood function (15) to obtain the joint posterior density of      as 

follows;  
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where,                                    
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Therefore, the Bayes estimates of the unknown parameters                 based on the joint density function of 

ordinary order statistics under square error loss function, LINEX and general entropy; denoted by             , 

              and                respectively; can be calculated through the following equations as follows 
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The integrals involved in (17), (18) and (19) can't be solved analytically, so it's necessary to apply a numerical 

technique and computer facilities to evaluate the Bayes estimate of unknown parameters. 

4. Numerical illustration 

 In any estimation problems, it is required to study the properties of the derived estimators. The derived 

expressions for the estimators are too complicated to study analytically. Consequently, a simulation study will be set up 

for illustrating the theoretical results via MathCAD 14. The performance of the resulting estimators of the unknown 
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parameters has been considered in terms of their mean square error (MSE), and estimated risk (ER). The simulation 

procedures will be described below:  

Step 1: Following Abo-Elfotouh and Nassar [4] 100 random samples of sizes 20, 30, 40, 100, 150 and 200 are generated 

from EWP distribution under GOS and the joint density function of ordinary order statistics. Also, 100 random samples 

of sizes 30, 50, 100, 150 and 200 are generated from EWP distribution under progressive type II censoring data.  

Step 2: Selected two set of parameters values as case I                              , case II     
                          for                  . 

Step 3: Numerical technique is applied for solving Equations (7), (8) and (9) for the unknown parameters      to 

obtain the Bayesian estimators under squared error, LINEX and general entropy loss functions based on GOS.   

Step 4: The integral Equations (12) to (14) are calculated numerically to obtain the Bayes estimates;             , 

              and              , under symmetric and asymmetric loss functions based on progressive type II censored.   

Step 5: Based on the joint density function of ordinary order statistics the Bayes estimates,             ,               

and               are calculated by numerically solving Equations (17), (18) and (19).  

Step 6: MSE and ER of all estimators are tabulated based on GOS, progressive type II censored and joint density 

function of ordinary order statistics.  

5. Simulation results 

Simulation results are summarized in Tables 1 to 6. Tables 1 and 2 give the MSE and ER of the Bayesian 

estimators based on GOS. Tables 3 and 4 give the MSE, and ER of the Bayesian estimators under joint density function 

of ordinary order statistics. Also, Tables 5 to 6 give the MSE and ER of the Bayesian estimators under progressive type 

II censored data.  Based on the three techniques of estimation, MSEs and ERs are calculated for the selected set of 

parameters and different sample sizes. 

From these tables, the following observations can be made on the performance of estimated parameters of EWP 

lifetime distribution based on GOS, the joint density function of ordinary order statistics and progressive type II 

censored samples: 

1) MSE of the Bayes estimates for the first set of parameters                              is smaller than 

MSE  of the Bayes estimates for the second set of parameters                              for all 

sample sizes under GOS. While ER of the second set of parameters is smaller than ER of the first set of 

parameters for all sample size under GOS (see Tables 1 and 2).  

2) MSE of the Bayes estimates for the first set of parameters                              for        
0 is smaller than MSE of the of the Bayes estimates for the second set of parameters based on joint density 

function of ordinary order statistics. Also, ER of the second set of parameters is smaller than ER of the first set of 

parameters based on joint density function of ordinary order statistics (see Tables 3 and 4). 

3) MSE of the Bayes estimates for the first set of parameters                              for        
0 is smaller than MSE of the of the Bayes estimates for the second set of parameters based progressive type II 

censored data. While, ER of the second set of parameters is smaller than ER of the first set of parameters based on 

progressive type II censored data (see Tables 5 and 6). 

4) MSEs of asymmetric (LINEX, general entropy) Bayes estimates are over-estimates for          , and when 

          the MSEs of Bayes estimates are under-estimates. As anticipated, the MSEs of asymmetric Bayes 

estimates are the same as the MSEs of Bayes estimates relative to SE loss function (for   close to 0, and     ). 

This is one of the useful properties of working with the asymmetric loss functions. 

5) Bayes estimates under the GE loss function have the smallest estimated MSEs as compared with the Bayes 

estimates under the LINEX and SE loss functions based on generalized order statistics, the joint density function 

of ordinary order statistics and progressive type II censoring.  

6) The MSEs of both estimated parameters    and   is smaller than the MSEs of both estimated parameters   and   

in almost all the cases. 

7) Based on progressively type II censoring, the ER for the estimates of the unknown parameters under GE loss 

function has smaller values than the corresponding ER under GE  loss function based on GOS and the joint 

density function of ordinary order statistics. 

8) When the effective sample proportion     Increases, the MSE of different Bayesian estimators is reduced, also 

the censoring scheme of the progressively type II censored data is most efficient for all choices. It usually 

provides the smallest MSE for all estimators. 

9) The MSE and ER of the Bayesian estimators are computed over different combination of the censored scheme as 

shown in Tables 5 to 6. 

10) For all methods, clearly  MSEs and ERs decrease as sample sizes increase for all estimates. 

11) For fixed values of   and   as the values of parameters   and    Increase, the MSEs for estimators increase based 

on GOS, joint density function of ordinary order statistics and progressive type II censoring. 
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6. Appendix 

Table 1: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on GOS for  

                         

  Parameters 
SE Loss Function 

LINEX Loss Function GE  Loss Function 

                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

20 

  0.413 0.130 0.431 0.386 0.101 0.086 0.361 0.067 0.054 0.016 

  0.151 0.034 0.531 5.575* 0.135 0.085 0.254 0.936* 0.130 0.014 

  0.145 0.065 0.438 8.040* 0.123 0.016 0.011 5.729* 0.010 4.766* 

  0.149 0.189* 0.169 7.312* 0.017 0.011 0.160 1.581* 0.016 0.097* 

30 

  0.313 0.054 0.356 0.350 0.076 0.054 0.298 0.049 0.050 9.672* 

  0.125 0.014 0.491 4.638* 0.085 9.172* 0.239 0.554* 0.073 3.568* 

  0.024 0.011 0.376 1.514* 0.005 7.086* 5.233* 2.565* 4.257* 1.733* 

  0.146 0.387* 0.154 1.262* 0.016 6.036* 0.151 0.772* 0.012 0.057* 

40 

  0.279 0.053 0.333 0.329 0.068 0.048 0.289 0.039 0.034 8.622* 

  0.119 0.011 0.465 0.895* 0.075 7.531* 0.238 0.258* 0.061 3.208* 

  0.023 0.035 0.374 1.605* 8.247* 2.820* 5.030* 2.315* 3.951* 0.464* 

  0.144 0.278* 0.154 1.248* 0.014 2.342* 0.147 0.251* 0.012 0.047* 

100 

  0.272 0.046 0.225 0.215 0.057 0.048 0.042 0.012 0.033 8.008* 

  0.106 7.549* 0.464 0.747* 0.066 2.946* 0.236 0.294* 0.045 3.033* 

  4.307* 1.548* 0.346 0.260* 6.815* 1.514* 3.756* 1.506* 0.9395* 0.326* 

  0.144 0.229* 0.152 0.261* 0.013 1.262* 0.132 0.025* 0.011 0.039* 

150 

  0.168 0.037 0.219 0.192 0.049 0.046 0.032 9.266* 0.020 4.537* 

  0.073 3.208* 0.438 0.135* 0.040 1.946* 0.215 0.106* 0.026 2.547* 

  1.266* 1.266* 0.324 0.161* 5.705* 1.042* 1.028* 0.365* 0.5134* 0.189* 

  0.138 0.041* 0.152 0.162* 0.011 1.248* 0.125 0.011* 0.009 0.001* 

200 

  0.136 9.065* 0.174 0.085 0.027 0.013 0.169 6.631* 0.016 2.160* 

  0.049 1.427* 0.361 0.069* 0.032 0.837* 0.340 0.057* 0.020 1.795* 

  0.907* 0.839* 0.303 0.095* 4.362* 0.873* 0.273 0.139* 3.692* 0.074* 

  0.079 0.009* 0.135 0.127* 0.005 0.973* 0.129 0.005* 3.941* 0.001* 
* Indicate that the value multiply      

 
Table 2: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on GOS for 

                         

  Parameters 
SE Loss Function 

LINEX Loss Function GE Loss Function 

                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

20 

  1.795 0.043 2.149 0.072 1.670 0.063 1.955 6.938* 0.843 0.021 

  1.013 0.010 1.982 0.652* 1.008 0.413* 1.177 0.805* 0.984 0.236* 

  8.395* 0.310* 0.089 0.792* 4.218* 0.185* 0.630 8.495* 4.197* 2.902* 

  2.282* 0.049* 0.516 1.373* 2.028* 1.953* 0.097 0.009* 2.015* 0.035* 

30 

  0.828 0.019 1.111 0.025 0.786 0.038 1.782 5.335* 0.236 0.015 

  0.750 3.837* 1.877 0.175* 0.705 0.132* 1.020 0.451* 0.668 0.209* 

  6.572* 0.138* 0.030 0.719* 1.697* 0.132* 0.529 3.308* 1.534* 1.484* 

  1.872* 0.030* 0.426 0.387* 1.824* 0.317* 0.095 0.004* 1.621* 0.017* 

04 

  0.798 5.234* 0.906 7.883* 0.522 0.036 1.538 5.685* 0.128 0.012 

  0.719 2.558* 1.845 0.157* 0.625 0.103* 0.918 0.263* 0.596 0.202* 

  4.699* 0.278* 0.020 0.415* 1.211* 0.124* 0.437 2.171* 1.193* 1.184* 

  1.434* 0.012* 0.420 0.317* 1.220* 0.247* 0.093 0.003* 1.219* 0.006* 

100 

  0.463 3.166* 0.676 8.961* 0.322 0.019 1.312 4.842* 0.108 0.011 

  0.623 1.804* 1.807 0.117* 0.568 0.078* 0.896 0.242* 0.516 0.186* 

  4.568* 0.124* 0.016 0.223* 0.540* 0.079* 0.352 1.569* 0.498* 0.582* 

  1.033* 0.011* 0.390 0.247* 1.015* 0.129* 0.091 0.002* 0.965* 0.006* 

150 

  0.241 1.781* 0.350 8.861* 0.091 0.017 1.158 3.124* 0.079 0.010 

  0.367 0.818* 1.783 0.075* 0.324 0.062* 0.687 0.232* 0.305 0.149* 

  2.297* 0.079* 0.012 0.134* 0.239* 0.065* 0.307 1.123* 0.230* 0.375* 

  0.642* 0.008* 0.361 0.129* 0.499* 0.099* 0.089 0.002* 0.483* 0.005* 

200 

  0.186 0.946* 0.291 6.354* 0.133 0.006 0.282 2.451* 0.119 0.007 

  0.291 0.591* 1.505 0.013* 0.167 0.024* 1.437 0.201* 0.138 0.110* 

  1.749* 0.033* 0.010 0.064* 0.765* 0.041* 5.739* 1.033* 0.439* 0.175* 

  0.602* 0.006* 0.313 0.044* 0.385* 0.079* 0.286 0.001* 0.276* 0.003* 
* Indicate that the value multiply      
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Table 3: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on joint density function of 

ordinary order statistics for                          

  parameters 
SE Loss Function 

LINEX Loss Function GE Loss Function 

                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

20 

  0.371 0.116 0.604 0.360 0.185 0.080 0.587 0.078 0.147 0.014 

  0.172 0.034 0.390 3.740* 0.156 0.885* 0.353 2.248* 0.145 5.863* 

  0.117 0.059 0.431 6.326* 0.101 7.073* 0.392 0.095 0.044 4.839* 

  0.148 0.399* 0.265 5.818* 0.119 0.011 0.232 1.553* 0.071 0.099* 

30 

  0.300 0.077 0.458 0.316 0.074 0.066 0.428 0.069 0.036 8.201* 

  0.120 0.013 0.351 2.105* 0.105 0.209* 0.249 0.565* 0.100 3.527* 

  0.042 0.024 0.384 2.913* 0.025 5.687* 0.256 9.931* 6.684* 3.636* 

  0.147 0.366* 0.247 2.744* 0.015 5.818* 0.207 0.849* 9.012* 0.046* 

04 

  0.295 0.067 0.416 0.266 0.074 0.060 0.381 0.053 0.030 7.618* 

  0.120 7.054* 0.356 1.405* 0.102 0.138* 0.247 0.511* 0.070 2.617* 

  0.019 9.768* 0.365 1.341* 0.014 3.212* 0.243 8.693* 3.232* 1.529* 

  0.146 0.208* 0.210 1.141* 0.013 3.237* 0.194 0.754* 0.011 0.035* 

100 

  0.256 0.065 0.390 0.240 0.064 0.058 0.372 0.040 0.025 7.406* 

  0.109 5.327* 0.342 1.351* 0.100 0.132* 0.244 0.369* 0.073 1.429* 

  0.012 6.848* 0.355 1.062* 8.225* 0.012 0.230 7.559* 7.326* 1.283* 

  0.150 0.159* 0.187 0.848* 0.013 2.744* 0.179 0.561* 9.715* 0.023* 

150 

  0.109 0.053 0.299 0.168 0.030 0.035 0.134 0.027 0.020 6.409* 

  0.104 4.562* 0.330 0.886* 0.055 0.132* 0.240 0.275* 9.093* 1.328* 

  7.709* 5.347* 0.343 0.892* 6.218* 6.705* 0.177 6.185* 5.586* 1.115* 

  0.142 0.139* 0.181 0.684* 0.011 2.322* 0.175 0.474* 8.594* 0.019* 

200 

  0.076 0.014 0.252 0.112 0.060 0.028 0.127 0.013 7.233* 3.450* 

  0.058 3.288* 0.291 0.643* 0.042 0.111* 0.201 0.135* 6.093* 0.557* 

  7.132* 5.015* 0.301 0.743* 5.874* 1.341* 0.170 4.811* 4.551* 0.683* 

  0.096 0.104* 0.087 0.438* 8.632* 1.141* 0.137 0.386* 6.565* 0.007* 
* Indicate that the value multiply      

 
Table 4: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on joint density function of 

ordinary order statistics for                          

  Parameters 
SE Loss Function 

LINEX Loss Function GE Loss Function 

                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

20 

  1.763 0.072 2.287 0.043 1.633 0.028 2.323 0.029 1.154 0.015 

  1.626 0.535* 1.956 0.354* 1.208 0.016 1.951 1.314* 1.207 0.805* 

  0.022 0.020 0.417 1.641* 0.134 3.194* 0.054 0.842* 4.218* 0.502* 

  2.414* 0.009* 0.426 0.387* 0.158 0.625* 0.203 0.035* 0.048 0.009* 

30 

  0.988 0.014 1.795 0.019 0.931 0.017 1.216 0.010 0.894 0.011 

  1.564 0.322* 1.795 0.251* 1.013 1.804* 1.696 0.186* 1.003 0.203* 

  0.016 0.012 0.365 0.872* 0.098 1.699* 0.027 0.569* 2.197* 0.278* 

  2.047* 0.004* 0.390 0.247* 0.130 0.513* 0.195 0.006* 0.048 0.008* 

04 

  0.822 0.013 1.607 0.017 0.714 0.016 1.120 8.910* 0.697 8.177* 

  1.558 0.217* 1.736 0.175* 0.896 0.818* 1.657 0.181* 0.863 0.186* 

  0.012 6.721* 0.315 0.721* 0.096 1.484* 0.025 0.520* 1.697* 0.138* 

  2.024* 0.003* 0.361 0.202* 0.117 0.387* 0.191 0.006* 0.046 0.005* 

100 

  0.536 9.486* 1.199 0.016 0.519 0.014 0.943 8.038* 0.466 7.981* 

  1.419 0.132* 1.593 0.144* 0.750 0.745* 1.475 0.149* 0.690 0.167* 

  0.009 6.571* 0.286 0.682* 0.049 1.389* 0.024 0.417* 1.184* 0.134* 

  1.434* 0.002* 0.343 0.190* 0.094 0.317* 0.187 0.006* 0.045 0.003* 

150 

  0.412 5.336* 0.828 0.014 0.224 6.969* 0.706 5.685* 0.222 4.412* 

  1.368 0.122* 1.483 0.133* 0.719 0.681* 1.440 0.113* 0.587 0.072* 

  0.008 5.350* 0.259 0.471* 0.027 1.184* 0.017 0.302* 0.672* 0.079* 

  0.672* 0.001* 0.324 0.129* 0.065 0.247* 0.180 0.005* 0.044 0.001* 

200 

  0.309 7.651* 0.561 7.897* 0.174 4.459* 0.555 2.845* 0.150 3.758* 

  0.976 0.059* 1.267 0.065* 0.536 0.304* 1.235 0.057* 0.466 0.048* 

  0.005 4.837* 0.188 0.285* 0.009 0.480* 9.035* 0.148* 0.509* 0.059* 

  0.459* 0.001* 0.175 0.056* 0.020 0.175* 0.166 0.002* 0.005 0.001* 
* Indicate that the value multiply      
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Table 5: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on progressive II censoring for 

                         

    

Censored Schemes 

parameters 

SE Loss 

Function 

LINEX Loss Function GE Loss Function 

                 
                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

30 3 
           

   . 

  0.414 5.842* 0.845 6.451* 0.411 0.566* 0.615 0.976* 0.117 0.535* 

  0.432 9.453* 1.369 6.772* 0.272 0.519* 0.909 0.879* 0.249 0.053* 

  0.167 4.395* 0.452 7.224* 7.104* 0.047* 0.502 0.352* 3.154* 0.087* 

  0.543 8.273* 0.733 6.811* 0.240 0.094* 0.681 0.774* 4.095* 0.035* 

50 3 
           

   . 

  0.392 2.119* 0.685 5.669* 0.262 0.433* 0.562 0.537* 5.349* 0.501* 

  0.375 8.327* 1.214 6.534* 0.251 0.428* 0.801 0.658* 0.250 0.046* 

  0.139 4.230* 0.409 5.149* 6.871* 0.043* 0.367 0.264* 1.943* 0.078* 

  0.439 4.544* 0.631 5.245* 0.217 0.061* 0.586 0.242* 3.554* 0.025* 

100 4 
         

       . 

  0.319 2.008* 0.630 5.244* 0.234 0.264* 0.543 0.484* 4.749* 0.444* 

  0.233 3.336* 1.043 5.819* 0.118 0.221* 0.780 0.623* 0.123 0.038* 

  0.124 3.927* 0.355 3.311* 5.258* 0.039* 0.334 0.159* 0.627* 0.074* 

  0.338 3.717* 0.422 2.917* 0.161 0.043* 0.425 0.207* 2.067* 0.021* 

150 4 
         ,  

        . 

  0.284 1.867* 0.564 4.345* 0.155 0.185* 0.344 0.242* 4.115* 0.386* 

  0.147 3.131* 0.931 5.181* 0.060 0.164* 0.705 0.409* 0.020 0.021* 

  0.061 3.379* 0.243 2.921* 3.022* 0.24* 0.240 0.135* 0.421* 0.265* 

  0.215 2.784* 0.346 2.863* 0.130 0.034* 0.244 0.181* 0.604* 0.018* 

200 5 
         
         . 

  0.042 1.077* 0.232 1.057* 0.075 0.159* 0.211 0.165* 2.038* 0.154* 

  0.039 1.445* 0.827 3.814* 0.042 0.144* 0.646 0.237* 7.472* 0.015* 

  7.715* 1.962* 0.168 1.843* 2.603* 0.013* 0.197 0.129* 2.311* 0.015* 

  0.091 2.432* 0.282 2.431* 0.072 0.011* 0.148 0.107* 0.111* 0.010* 
* Indicate that the value multiply      

 
Table 6: Mean square error and estimated risk of the Bayes estimates under SE, LINEX  and GE loss functions based on progressive II censoring for 

Censoring for                          

    

Censored Schemes 

parameters 

SE Loss 

Function 

LINEX Loss Function GE Loss Function 

                 
                  

MSE ER MSE ER MSE ER MSE ER MSE ER 

30 3 
           

   . 

  0.449 4.203* 0.972 4.528* 0.420 4.589* 0.746 6.552* 0.127 5.549* 

  0.481 3.545* 1.589 7.803* 0.381 4.101* 1.107 9.384* 0.262 9.656* 

  0.173 6.471* 0.539 7.288* 7.249* 7.187* 0.530 7.670* 3.685* 1.075* 

  0.572 2.994* 0.751 3.525* 0.240 0.127* 0.702 0.342* 4.136* 0.244* 

50 3 
           

   . 

  0.436 3.289* 0.734 4.065* 0.296 2.542* 0.652 3.076* 5.677* 5.057* 

  0.405 2.563* 1.463 6.484* 0.271 2.132* 0.994 3.579* 0.169 6.583* 

  0.154 5.622* 0.500 4.727* 7.054* 5.401* 0.481 3.637* 2.027* 0.889* 

  0.468 2.106* 0.700 1.132* 0.228 0.082* 0.596 0.311* 4.371* 0.078* 

100 4 
         

       . 

  0.362 2.868* 0.682 3.941* 0.259 1.989* 0.565 2.900* 5.097* 4.068* 

  0.283 2.182* 1.409 5.321* 0.129 1.320* 0.867 2.757* 0.109 2.491* 

  0.129 5.558* 0.429 3.154* 5.804* 3.008* 0.380 2.558* 0.609* 0.531* 

  0.445 1.353* 0.538 7.642* 0.195 0.048* 0.462 0.288* 3.440* 0.064* 

150 4 
         ,  

        . 

  0.336 2.489* 0.610 1.379* 0.181 1.157* 0.412 2.675* 4.256* 3.013* 

  0.200 2.101* 1.254 4.477* 0.026 0.977* 0.840 1.592* 0.020 1.614* 

  0.085 4.639* 0.313 3.023* 4.471* 2.841* 0.354 1.866* 0.512* 0.373* 

  0.238 0.984* 0.516 5.488* 0.169 0.046* 0.259 0.220* 0.623* 0.038* 

200 5 
         
         . 

  0.074 1.868* 0.270 1.126* 0.084 1.144* 0.282 1.008* 2.573* 1.790* 

  0.064 1.556* 1.152 1.510* 0.023 0.754* 0.682 1.302* 7.762* 1.345* 

  7.851* 2.748* 0.228 2.656* 3.692* 1.662* 0.237 1.207* 0.309* 0.129* 

  0.159 0.453* 0.510 3.525* 0.101 0.028* 0.172 0.159* 0.145* 0.025* 

* Indicate that the value multiply      

7. Conclusions 

This study deals with the Bayesian estimation problem based on GOS from EWP distribution. For Bayesian 

estimates, the performance depends on the form of the prior distribution, and the loss function assumed. Most authors 

used squared error as symmetric loss function. However, in practice, the real loss function is often not symmetric. 

Therefore, the Bayesian estimators of unknown parameters of EWP distribution are obtained under symmetric (squared 

error) and asymmetric (LINEX and general entropy) loss functions. Additionally, the Bayes estimates based on 

progressive type II censored samples and joint density function of ordinary order statistics are derived as special cases. 

Performances of the estimator are evaluated through their MSE and ER.  

Simulation study revealed that the MSE of the Bayes estimates for the first set of parameters is smaller than the 

MSE of the Bayes estimates of the second set of parameters for all sample sizes under GOS, joint density function of 
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ordinary order statistics and progressive type II censored . While, ER of the second set of parameters is smaller than ER 

of the first set of parameters for all sample sizes under GOS, joint density function of ordinary order statistics and 

progressive type II censored data. The ER and MSE of all different estimators decrease as sample sizes increase. Under 

GE loss function, MSE of Bayes estimates has the smallest values as compared with the corresponding Bayes estimates 

under LINEX and SE loss functions. MSE of the Bayes estimates under GE loss function with parameter     based 

on progressively type II censored is smaller than MSE of Bayes estimates under GOS and the joint density function of 

ordinary order statistics. In most cases, Bayesian estimator under general entropy based on progressive type II censored  

has the smallest mean squared error based on GOS and the joint density function of ordinary order statistics. 
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