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Abstract 

 

In this paper, estimators for the parameters of the Kumaraswamy-inverse Rayleigh distribution based on record values 

are obtained. These estimators are derived using the maximum likelihood and Bayesian methods. The Bayesian 

estimators are derived under the well-known squared error (SE) loss function. Prediction of the future sth record value 

is derived using the maximum likelihood and Bayesian methods. Simulation study is conduct to illustrate the findings. 
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1. Introduction 

Record values and associated statistics are of great importance to scientists and engineers in several real life problems 

involving weather, economic, and support data. For example, predicting the flood level of a river that is greater than the 

previous ones is of importance to climatologists and hydrologists. Predicting the magnitude of an earthquake which has 

a greater magnitude than the previous ones, in a given region, is of importance to seismologists as well. Moreover, 

record values are also important to ordinary people regarding all kinds of strange and extreme phenomenon and talents. 

While a lot of work has been done on characterizations, asymptotic theory and generalizations, not much has been done 

on statistical inference based on record values. Chandler [1] introduced the theory of record values for the first time, and 

since then, many authors have studied record values and the associated statistics. Interested readers may refer to [2], [7]. 

Balakrishnan et al., [8], [10] have established some recurrence relations for the moments of record values from Gumbel, 

generalized Pareto, and exponential distributions respectively and Balakrishnan et al., [11] discussed some inferential 

methods based on record values from exponential, Gumbel, Weibull and logistic distributions respectively. 

Furthermore, several authors have studied distribution characteristics based on record value. For example, Selim, [12] 

studied Bayesian estimation of two parameter of bathtub-shape lifetime distribution based on record values and Nader 

et. al., [13] inferentially studied record values from the Kumaraswamy distribution. Moreover, Amini and Balakrishnan, 

[14] derived exact distribution-free confidence intervals for quantiles of the population of ordered records and exact 

prediction intervals for future record values. In 2014, Juhas and Skrivankova [15] made several characterizations of 

general classes of distributions using the independence of suitable transformations of records in a sequence of 

independent, identically distributed random variables with examples of Gumbel, Frechet, Weibull, exponential and 

lognormal distributions. For complete review see [2], [3], [10], and [16]. 

Let , ,...
1 2

X X  be a sequence of independent and identically distributed (i.i.d.) random variables with the common 

cumulative distribution function (cdf) ( ; )F x   and probability density function (pdf) ( ; )f x   where  is the parameter 

vector. An observation jX  is called an upper record value if it exceeds all previous observations. Thus jX  is an upper 

record value if j iX X  for all i j . 
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In this paper, we use Bayesian and non-Bayesian methods for the estimation of the unknown parameters and prediction 

of the sth future record values, when m records have been observed from the Kumaraswamy-inverse Rayleigh (Kw-IR) 

distribution [17]. The Kw-IR has the following cdf and pdf for 0X  : 
2( ) 1 [1 exp( )]F x x      ,                                                                                                                                                (1) 

and 
3 2 2 1( ) 2 exp( )[1 exp( )]f x x x x          ,                                                                                                                    (2) 

respectively, where 0   and 0   are scale and shape parameters respectively. 

The rest of the paper is organized as follows: In section 2, Maximum likelihood (ML) estimators of the parameters of 

the Kw-IR distribution based on record values and prediction of the sth future record value are derived. Section 3 is 

devoted to Bayesian methods. Results of a Monte Carlo simulation study conducted to evaluate the performance of 

these estimators compared to the ML estimators and the Bayesian estimators as well as prediction of the sth future value 

are provided in Section 4. 

2. Likelihood methods 

2.1. Maximum likelihood estimation method 
 

Consider the vector of first observed m record values 
1 2( , ,..., )mr r rr  drawn from a population with pdf. The joint pdf of 

the first m upper record values [7] is given by 
1
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and
1 2 ... mr r r      , and   is the parameter vector.  

Suppose we observed the first m upper record values 
1 1 2 2, ,..., m mR r R r R r    from the Kw-IR distribution with cdf and 

pdf given by Eqs. (1) and (2) respectively. Then the likelihood function is given by 
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where 2( ) 1 exp( ), 1,2,3,i iA r i     , and the log-likelihood function will be 
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The estimators ̂  and ̂ of the parameters   and  respectively can be then obtained as the solution of the likelihood 

equations 
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From Eq. (7), we have  

ˆ
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where ̂ is the solution of the nonlinear equation 
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Several numerical techniques can be used to solve this system of nonlinear equations. 

 

2.2. Maximum likelihood prediction method 
 

Consider that, the first m upper records, have been observed from Kw-IR distribution with parameters   and   and 

let sR , where s m  be the sth record value. To find a prediction value for sR  say
sr , Basak and Balakrishinan [18], 

proposed a joint predictive function based on the likelihood function of the form 
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In the case of the Kw-IR distribution, Eq. (11) will lead to 
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The associated log-likelihood will be given by 
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where 
1 20 ... m sr r r r     . In order to find the estimators of ,  and, we need to solve the log-likelihood equations 

with respect to ,   and. This will lead to the following system of nonlinear equations 
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From Eq. (14), we have 
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Substituting Eq. (17) into Eqs. (15) and (16), we have 
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Solving the nonlinear Eqs. (18) and (19) numerically, we will be able to estimate the predictive value of the sth record 

value based on Kw-IR distribution. 

 

3. Bayesian methods 

3.1. Bayesian estimation method 
 

Assume that the parameters   and   are random variables with a joint bivariate prior density function [18] of the form 

1 2( , ) ( ) ( )        ,                                                                                                                                                     (20) 
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where the hyper-parameters 1 2 11, 0, 0a a b     and 2 0b  . Thus, the bivariate prior density of   and   is given by 
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From Eqs. (5) And (23), the joint posterior distribution function of both   and  is given by 
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Under the well-known squared error (SE) loss function, the Bayes estimators of   and   are the expected value based 

on their marginal posterior distributions. This will lead to 
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3.2. Bayesian prediction method 
 

Consider that the first m upper records have been observed from the Kw-IR distribution. Let, where s m the sth upper 

record value be. The aim is to predict 
sR  given r . This is done using the conditional density function of 

sR given r  [5, 

19] which is given by  
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and the Bayes predictive density function  
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In the case of the Kw-IR distribution, the Bayes predictive density of 
sR given r  is 
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that can be written as, 
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where 
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and 
1( , 1)Β s m m a    is the beta function. Based on the squared error (SE) loss function the Bayesian prediction of the 

sth upper record value is given by the expected value of the Bayes predictive density function. This will lead to the 

estimator ( )s BSr  where 
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4. Numerical example 

In this section, numerical illustrations are made to assess the statistical performances of the ML and Bayes estimators of 

both shape and scale parameters and the prediction of the sth record value. Bayes estimators for the parameters α and λ 

and the predicted sth record value are obtained under the SE loss function using informative (
1 2 1 2, , , 0a a b b   for 

example,
1 2 3a a  1 2 2b b  ), and non-informative priors (

1 2 1 2 0.0001a a b b    ), see [20]. The performance 

assessment is made by comparing the biases and the mean squared errors (MSE) of the estimators of   and  and the 

future sth record value
sr . The simulations are made using MATHEMATICA v.8 for several combinations of the 

parameters n, m, s,   and  . The random samples of Kw-IR are generated using the form 
0.5

1/
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x x
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Where 0 1u   is a uniform random variable. After that, the first 12th upper record values are observed as in Table 1. 

Different simulations are based on 1000 replications. The results are shown in Tables 2-5. Tables 6 and 7 represents the 

efficiency of Bayesian estimators with respects to the ML estimators of the shape and scale parameters, where the 

efficiency of a parameter 
2  with respect to a parameter 

1  is given by 
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Table 1: Samples of upper records for different parameter values 

(α, λ) 1 2 3 4 5 6 7 8 9 10 11 12 
(0.5,0.5) 0.4214 0.4785 0.4805 0.4918 0.4957 0.5051 0.5162 0.5177 0.5219 0.5295 0.5302 0.5334 

(1,0.5) 0.4198 0.5560 0.5653 0.6254 0.6482 0.6699 0.6701 0.6804 0.6848 0.6878 0.7104 0.7331 

(2,0.5) 0.3825 0.4238 0.4252 0.4329 0.4355 0.4419 0.4493 0.4503 0.4531 0.4581 0.4585 0.4607 

(0.5,1) 0.5960 0.6768 0.6796 0.6956 0.7009 0.7143 0.7300 0.7321 0.7382 0.7489 0.7497 0.7544 

(1,1) 0.5665 0.6346 0.6369 0.6500 0.6544 0.6652 0.6779 0.6796 0.6844 0.6930 0.6937 0.6974 

(2,1) 0.5409 0.5993 0.6012 0.6123 0.6160 0.6250 0.6355 0.6369 0.6409 0.6479 0.6485 0.6515 

 
Table 2: Biases of Maximum Likelihood and Bayes estimates for α and λ and the future sth record value when =0.5 

α (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes 

      sr  ˆ̂  ˆ̂
  ( )s BSr  ˆ̂  ˆ̂

  ( )s BSr  

0.5 (5, 7) 0.4848 0.2548 0.2880 0.2676 0.1757 0.2327 0.1336 0.1320 0.1420 

 (7, 9) 0.3336 0.1838 0.2143 0.1279 0.1462 0.1518 0.1198 0.1006 0.1101 

 (10,12) 0.1108 0.1229 0.1774 0.1005 0.1138 0.1096 0.0938 0.0787 0.0688 

1 (5, 7) 0.5097 0.2679 0.3028 0.2813 0.1847 0.2446 0.1584 0.1388 0.1493 

 (7, 9) 0.3507 0.1932 0.2253 0.1345 0.1537 0.1596 0.1254 0.1058 0.1157 

 (10,12) 0.1165 0.1292 0.1865 0.1057 0.1196 0.1152 0.1186 0.0827 0.0723 

2 (5, 7) 0.5922 0.3113 0.3518 0.3268 0.2146 0.2842 0.1743 0.1613 0.1735 

 (7, 9) 0.4075 0.2245 0.2618 0.1563 0.1786 0.1854 0.1446 0.1229 0.1344 

 (10,12) 0.1354 0.1501 0.2167 0.1228 0.1390 0.1338 0.1295 0.0961 0.0840 

5. Results and discussion 

From tables 2-5, one can see that the biases and MSEs of both Bayes estimators of the shape and scale parameters and 

the predicted values of the future sth record value are smaller than the corresponding ML estimators and predicted 

values of the future sth record value. Moreover, for fixed shape and scale parameter values, the biases and MSEs of the 
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estimators and the predicted values of the future sth record value based on all methods decreases as the size of the 

record samples increases. On the other hand, for fixed value of the scale parameter, the biases and MSEs of the 

estimators of both the shape and scale parameters and the future sth record value based on all methods increases as the 

value of the shape parameter   increases. In addition, when   increases, improved estimates and predicted sth value 

are obtained for all methods. Altogether, Tables 6 and 7 emphasize that results based on informative and non-

informative Bayesian estimation methods are superior to that of the ML estimation method through the efficiency of 

Bayes estimators with respect to ML estimators and by looking deeply, Bayes estimators and future sth prediction value 

based on informative priors are more efficient than the non-informative ones. In conclusion, Bayesian estimation 

method based on informative priors are recommended for estimation and prediction of future record values for the 

Kumaraswamy inverse Rayleigh distribution 
 

Table 3: Biases of Maximum Likelihood and Bayes estimates for α and λ and the future sth record value when =1 

α (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes 

      sr  ˆ̂  ˆ̂
  ( )s BSr  ˆ̂  ˆ̂

  ( )s BSr  

0.5 (5, 7) 0.4173 0.2193 0.2479 0.2191 0.1439 0.1905 0.1290 0.1275 0.1371 

 (7, 9) 0.2871 0.1582 0.1844 0.1047 0.1197 0.1243 0.1157 0.0971 0.1063 

 (10,12) 0.0954 0.1058 0.1527 0.0823 0.0932 0.0897 0.0906 0.0760 0.0664 

1 (5, 7) 0.4387 0.2306 0.2606 0.2303 0.1512 0.2003 0.1530 0.1340 0.1442 

 (7, 9) 0.3019 0.1663 0.1939 0.1101 0.1258 0.1307 0.1211 0.1022 0.1117 

 (10,12) 0.1003 0.1112 0.1605 0.0865 0.0979 0.0943 0.1145 0.0799 0.0698 

2 (5, 7) 0.5097 0.2679 0.3028 0.2676 0.1757 0.2327 0.1683 0.1558 0.1675 

 (7, 9) 0.3507 0.1932 0.2253 0.1280 0.1462 0.1518 0.1396 0.1187 0.1298 

 (10,12) 0.1165 0.1292 0.1865 0.1005 0.1138 0.1095 0.1250 0.0928 0.0811 
 

Table 4: MSEs of Maximum Likelihood and Bayes estimates for α and λ and the future sth record value when =0.5 

α (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes 

      sr  ˆ̂  ˆ̂
  ( )s BSr  ˆ̂  ˆ̂

  ( )s BSr  

0.5 (5, 7) 0.3829 0.3259 0.3003 0.3053 0.2668 0.2491 0.25 0.2185 0.2039 

 (7, 9) 0.3255 0.2905 0.2658 0.2542 0.2297 0.2144 0.2081 0.188 0.1755 

 (10,12) 0.2796 0.2652 0.2364 0.2035 0.1977 0.1845 0.1666 0.1618 0.1511 

1 (5, 7) 0.4155 0.3721 0.3295 0.3374 0.31 0.2753 0.2763 0.2538 0.2254 

 (7, 9) 0.3532 0.3298 0.2894 0.281 0.2668 0.2369 0.23 0.2185 0.194 

 (10,12) 0.2985 0.3052 0.2589 0.2249 0.2297 0.2039 0.1842 0.188 0.1669 

2 (5, 7) 0.4739 0.4085 0.3706 0.392 0.3426 0.3198 0.321 0.2805 0.2618 

 (7, 9) 0.4027 0.3625 0.3262 0.3264 0.2949 0.2753 0.2672 0.2414 0.2254 

 (10,12) 0.3428 0.3289 0.2858 0.2613 0.2538 0.2369 0.214 0.2078 0.194 

 
Table 5: MSEs of Maximum Likelihood and Bayes estimates for α and λ and the future sth record value when =1 

α (m, s) Maximum Likelihood Non-informative Bayes Informative Bayes 

      sr  ˆ̂  ˆ̂
  ( )s BSr  ˆ̂  ˆ̂

  ( )s BSr  

0.5 (5, 7) 0.3459 0.2857 0.2595 0.2602 0.2274 0.2122 0.213 0.1862 0.1738 

 (7, 9) 0.2946 0.2579 0.2286 0.2166 0.1957 0.1827 0.1774 0.1602 0.1496 

 (10,12) 0.2518 0.2267 0.2057 0.1734 0.1684 0.1572 0.142 0.1379 0.1287 

1 (5, 7) 0.3712 0.3259 0.2819 0.2875 0.2642 0.2346 0.2354 0.2163 0.192 

 (7, 9) 0.3198 0.2895 0.2496 0.2394 0.2274 0.2019 0.196 0.1862 0.1653 

 (10,12) 0.2625 0.2585 0.2258 0.1917 0.1957 0.1738 0.1569 0.1602 0.1423 

2 (5, 7) 0.4218 0.3556 0.3257 0.3341 0.292 0.2725 0.2735 0.239 0.2231 

 (7, 9) 0.3635 0.3101 0.2865 0.2782 0.2513 0.2346 0.2277 0.2057 0.192 

 (10,12) 0.2989 0.2748 0.2549 0.2227 0.2163 0.2019 0.1823 0.1771 0.1653 

 
Table 6: Efficiencies of Bayes estimates for α and λ and the future sth record value with respect to Maximum Likelihood estimates when =0.5 

α (m, s) Non-informative Bayes Informative Bayes 

  ˆ̂( )eff   ˆ̂
( )eff   ( )( )s BSeff r  ˆ̂( )eff   ˆ̂

( )eff   ( )( )s BSeff r  

0.5 (5, 7) 1.2542 1.2215 1.2055 1.5316 1.4915 1.4728 

 (7, 9) 1.2805 1.2647 1.2397 1.5642 1.5452 1.5145 

 (10,12) 1.3740 1.3414 1.2813 1.6783 1.6391 1.5645 

1 (5, 7) 1.2315 1.2003 1.1969 1.5038 1.4661 1.4618 

 (7, 9) 1.2569 1.2361 1.2216 1.5357 1.5094 1.4918 

 (10,12) 1.3273 1.3287 1.2697 1.6205 1.6234 1.5512 

2 (5, 7) 1.2089 1.1924 1.1588 1.4763 1.4563 1.4156 

 (7, 9) 1.2338 1.2292 1.1849 1.5071 1.5017 1.4472 

 (10,12) 1.3119 1.2959 1.2064 1.6019 1.5828 1.4732 
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Table 7: Efficiencies of Bayes estimates for α and λ and the future sth record value with respect to Maximum Likelihood estimates when =0.5 

α (m, s) Non-informative Bayes Informative Bayes 

  ˆ̂( )eff   ˆ̂
( )eff   ( )( )s BSeff r  ˆ̂( )eff   ˆ̂

( )eff   ( )( )s BSeff r  

0.5 (5, 7) 1.3294 1.2564 1.2229 1.6239 1.5344 1.4931 

 (7, 9) 1.3601 1.3178 1.2512 1.6607 1.6099 1.5281 

 (10,12) 1.4521 1.3462 1.3085 1.7732 1.6439 1.5983 

1 (5, 7) 1.2911 1.2335 1.2016 1.5769 1.5067 1.4682 

 (7, 9) 1.3358 1.2731 1.2363 1.6316 1.5548 1.5100 

 (10,12) 1.3693 1.3209 1.2992 1.6730 1.6136 1.5868 

2 (5, 7) 1.2625 1.2178 1.1952 1.5422 1.4879 1.4599 

 (7, 9) 1.3066 1.2340 1.2212 1.5964 1.5075 1.4922 

 (10,12) 1.3422 1.2705 1.2625 1.6396 1.5517 1.5420 
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