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Abstract 
 

This paper deals with the problem of parameters estimation of the Exponential-Geometric (EG) distribution based on progressive type-II 

censored data. It turns out that the maximum likelihood estimators for the distribution parameters have no closed forms, therefore the EM 

algorithm are alternatively used. The asymptotic variance of the MLEs of the targeted parameters under progressive type-II censoring is 

computed along with the asymptotic confidence intervals. Finally, a simple numerical example is given to illustrate the obtained results. 
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1. Introduction 

With no doubt, the analysis of lifetime data has become a very 

important subject in different scientific disciplines. A numerous 

lifetime distributions have shown how they are so important to 

model perfectly practical situations. In the literature, there are a 

huge number of papers dealing with distributions that have been 

developed by compounding some other life distributions. This is 

actually necessary to fulfill the need of modeling so many compli-

cated real problems. For example, Adamidis and Loukas 1998, 

(see reference ,[1] ), introduced a two-parameter exponential-

geometric distribution with decreasing failure rate by compound-

ing an exponential with a geometric distributions. The new pro-

posed distribution, in fact, has some desirable properties and nice 

physical interpretations. Another distribution that can be consid-

ered as a counterpart of the EG distribution is established by [2], 

and is called the complementary exponential-geometric (CEG) 

distribution. 

 

In real life, especially in scientific experiments, it is desirable to 

study a censored data rather than a complete data set. Censoring is 

a common technique in survival analysis and is used effectively in 

various fields such as statistics, engineering and medical disci-

plines. It appears when exact lifetimes of entities or components 

are only partially known. There are different types of censoring 

that can be considered; type-I, type-II, progressively type-II and 

hybrid censoring schemes. The type-I and type-II censoring 

schemes are known to be the most extensively used. A short 

summary of censoring types is given here: In type-I censoring, a 

life test is implemented for a fixed-time period, while in type-II 

censoring, an experiment stops when a pre-specified number of 

units fail. It is noted that both type-I and type-II do not allow for 

removal of elements at points rather than termination point of an 

experiment. Therefore, the progressive type-II has been introduced 

to overcome the problem of units' removals. For comprehensive 

overview on this topic, reader might be referred to [3]. 

 

The parameter estimation is a challenging task especially in the 

case of compounded distributions. For this reason, computational 

methods are often sought, see for example, [3] and references 

therein for a comprehensive review of results in this direction. 

Inference procedures based on the maximum likelihood estimators 

have been considered when the underlying distribution is Gaussian, 

Gumpertz, bivariate normal, generalized logistic and the lifetime 

of a k-unit parallel system distributions, see for more details, [4], 

[5], [6], [7] and [8]. In some cases, MLEs cannot be obtained in a 

closed form; therefore, numerical methods can be employed. For 

example, [9], [10] studied parameter estimation under progressive 

type-II censored data using the Expectation-Maximization (EM) 

algorithm. It is an alternative procedure to compute MLEs in cases 

where the observed (complete) data could be incomplete. For 

more details on how to apply the EM algorithm, see [11], [12] , 

[13] ,  [14]  and [15] . 

 

In this paper, we mainly study the properties of the EG distribu-

tion and estimate the unknown parameters based on progressive 

type-II censored data. A continuous random variable 𝑋 is said to 

have EG distribution with parameters 𝛽 and  𝑝  if its probability 

density function (pdf) is given by 

 

𝑓 (𝑥; 𝜃 ) =
𝛽 (1 − 𝑝)𝑒−𝛽 𝑥

(1 − 𝑝𝑒−𝛽 𝑥) 2
;  𝑥 > 0, 𝛽 > 0, 0 < 𝑝 < 1,                 (1) 

 

where 𝜃 = (𝛽, 𝑝); such that 𝛽 and 𝑝 are scale and shape parame-

ters, respectively. The corresponding cumulative distribution func-

tion (cdf) and the survival function of EG distribution; respective-

ly, are given by 

 

𝐹(𝑥; 𝜃) =
1 − 𝑒−𝛽 𝑥

1 − 𝑝𝑒−𝛽 𝑥
;  𝑥 > 0, 𝛽 > 0, 0 < 𝑝 < 1,                         (2) 

 

𝑠(𝑥; 𝜃) =
𝑒−𝛽 𝑥(1 − 𝑝)

1 − 𝑝𝑒−𝛽 𝑥
;  𝑥 > 0, 𝛽 > 0, 0 < 𝑝 < 1,                      (3) 
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The rest of the paper is structured as follows: In Section 2, the 

maximum likelihood estimators of the EG distribution (MLEs) 

based on progressive type-II censored data will be derived, using 

the EM algorithm. In Section 3, the asymptotic variance of the 

MLE of the targeted parameter will be computed along with their 

asymptotic confidence intervals. In Section 4, a numerical exam-

ple will be introduced to illustrate the obtained results under dif-

ferent censoring schemes. Finally, a conclusion will be stated in 

Section 5. 

2. Parameters estimation  

In progressively type-II censored scheme,  𝒏 units are placed on a 

test at time zero, when 𝒎 <  𝒏 failures to be observed and the 

censoring scheme 𝑹 = 𝑹𝟏, 𝑹𝟐, … , 𝑹𝒎 are fixed before the exper-

iment with  𝑹𝒊 ≥ 𝟎  and  ∑  𝑹𝒊
𝒎 
𝒊=𝟏 = 𝒏 − 𝒎 are specified. At the 

first failure time  𝑿𝟏:𝒎:𝒏 
 , 𝑹𝟏 units, chosen at random, are removed 

from the  𝒏 − 𝟏  remaining units. At the second failure 

time  𝑿𝟐:𝒎:𝒏 
 ,  𝑹𝟐 randomly chosen units from the remaining 𝒏 −

𝟐 − 𝑹𝟏 units are removed. The experiment continues until the 𝐦𝐭𝐡 

failure time  𝑿𝒎:𝒎:𝒏
 . At this time, all remaining units are removed, 

and 𝑹𝒎 = 𝒏 − 𝒎 − ∑  𝑹𝒊
𝒎−𝟏 
𝒊=𝟏 . The maximum likelihood function 

is given in the following subsection. 

2.1. Maximum likelihood estimation 

Suppose that the failure times of 𝑛 units on experiment have a pdf 

and cdf given by (1) and (2) respectively. Then the likelihood 

function of 𝑋 = (𝑋1, … , 𝑋𝑛) under progressively type-II censored 

sample is given by 
 

𝐿(𝑋|𝜃) = 𝐶 ∏𝑓 (𝑥𝑖) 

𝑚

𝑖=1

 [1 − 𝐹 (𝑥𝑖) ]
 𝑅𝑖   

𝐿(𝑋|𝜃) = 𝐶 ∏
𝛽 (1 − 𝑝)𝑒−𝛽 𝑥𝑖

(1 − 𝑝𝑒−𝛽 𝑥𝑖)  2
 

𝑚

𝑖=1

[
 (1 − 𝑝)𝑒−𝛽 𝑥𝑖

(1 − 𝑝𝑒−𝛽 𝑥𝑖)  
]

𝑅𝑖

,                 (4)  

 

where 𝐶 = 𝑛(𝑛 − 𝑅1   − 1) ··· (𝑛 − ∑  𝑅𝑖
𝑚−1
𝑖=1  − 𝑚 + 1). The log-

likelihood function with ignoring constant can be written as fol-

lows. 

 

ℒ((𝑋|𝜽) = 𝑚 𝑙𝑛 𝛽 + ∑(1 + 𝑅𝑖) 𝑙𝑛(1 − 𝑝)

𝑚

𝑖=1

− 𝛽 ∑𝑥𝑖(𝑅𝑖 + 1)

𝑚

𝑖=1

 

𝐿((𝑋|𝜽) = −∑(𝑅𝑖 + 2)

𝑚

𝑖=1

𝑙𝑛(1 − 𝑝𝑒−𝛽𝑥𝑖)                                    (5)  

 

Consequently, the Fisher's score functions is given by  

 

𝜕𝑙𝑜𝑔ℒ

𝜕𝛽
=

𝑚 

𝛽
 −

𝑝 ∑ (𝑅𝑖 + 2)  𝑚
𝑖=1 𝑥𝑖𝑒

−𝛽𝑥𝑖    
(1 − 𝑝𝑒−𝛽𝑥𝑖)

 

𝜕𝑙𝑜𝑔ℒ

𝜕𝛽
= − ∑  (𝑅𝑖 + 1) 𝑥𝑖

𝑚

𝑖=1
.                                                         (6) 

                              
𝜕 𝑙𝑜𝑔ℒ

𝜕𝑝
= −

∑ (𝑅𝑖 + 1)  𝑚
𝑖=1

(1 − 𝑝)
+

∑ (𝑅𝑖 + 2) 𝑒−𝛽 𝑥𝑖  𝑚
𝑖=1

(1 − 𝑝𝑒−𝛽 𝑥𝑖)
.                   (7) 

                                                    
The maximum likelihood estimators, say �̂� and �̂�, of 𝛽 and 𝑝 are 

the solutions of the equations (6) and (7). We note that they cannot 

be achieved in closed forms. Therefore, we use the EM algorithm 

to solve these equations. 

2.2. Expectation-Maximization algorithm 

The EM algorithm is used to compute the estimators based on the 

maximum likelihood in the presence of missing or incomplete data. 

Since the progressive type-II censoring can be considered as an 

incomplete data set (see [8] and [9]), therefore, the EM algorithm 

is an alternative method to find the MLEs numerically. The EM 

algorithm consists of an E-step (Estimation step) followed by an 

M-step (Maximization step) defined as follows: 

 

E-step: Compute 𝑄(𝜃; 𝜃𝑡) where 𝑄(𝜃 ;  𝜃𝑡) = 𝐸𝜃𝑡[ ℓ( 𝜃; 𝑥)|𝑌]. 

M-step: Find 𝜃𝑡+1  in 𝛩  such that 𝑄( 𝜃𝑡+1;  𝜃𝑡) ≥  𝑄(𝜃; 𝜃𝑡)  for 

all 𝜃 ∈ 𝛩. 

 

The E-step and the M-step are repeated interchangeably until the 

difference 𝐿(𝜃𝑡+1) − 𝐿(𝜃𝑡)  is less than  𝛿 , where 𝛿  is a small 

quantity. Now, assume that  𝑌 = (𝑌1, … , 𝑌𝑚) in such 𝑌1 < ⋯ < 𝑌𝑚  

represents the progressive type-II censored (observed) data from a 

population with pdf and cdf that given in equations (1) and (2), 

respectively. Further, let 𝑍 = (𝑍1, 𝑍2, . . . , 𝑍𝑚−𝑛) be the censored 

(unobserved) data, which can be considered as missing data. The 

combination vector of 𝑌 and 𝑍, say 𝑊 = (𝑋, 𝑍), is the complete 

data. Then, the maximum likelihood estimates of 𝜃 = (𝛽, 𝑝) based 

on the distribution of 𝑊, ignoring the additive constant, is 
  

𝐿𝐶  (𝑊; 𝜃) = 𝑛 𝑙𝑛(𝛽) + ∑(𝑅𝑖 + 1) 𝑙𝑛(1 − 𝑝)

𝑚

𝑖=1

       

− 𝛽 ∑𝑦𝑖  (𝑅𝑖 + 1)

𝑚

𝑖=1

− ∑(𝑅𝑖 + 2) 𝑙𝑛(1 − 𝑝𝑒−𝛽𝑦𝑖)

𝑚

𝑖=1

− 𝛽 ∑ 𝑧𝑖  (𝑅𝑖 + 1)

𝑛−𝑚

𝑖=1

− ∑ (𝑅𝑖 + 2) 𝑙𝑛(1 − 𝑝𝑒−𝛽𝑧𝑖)

𝑛−𝑚

𝑖=1

.                   (8) 

 

The E-step of the EM algorithm emerges from 𝐿𝑐 (𝑊; 𝜃) by sub-

stituting any function of 𝑧𝑖  say 𝑔 (𝑧𝑖)  with 𝐿𝑠 (𝑊; 𝜃) =
𝐸[ 𝑔 (𝑧𝑖)| 𝑧𝑖 > 𝑦𝑚].  Therefore, the log-likelihood function be-

comes  

𝐿𝑆(𝑊; 𝜃) = 𝑛 𝑙𝑛(𝛽) + ∑(𝑅𝑖 + 1) 𝑙𝑛(1 − 𝑝)

𝑚

𝑖=1

       

− 𝛽 ∑𝑦𝑖  (𝑅𝑖 + 1)

𝑚

𝑖=1

− ∑(𝑅𝑖 + 2) 𝑙𝑛(1 − 𝑝𝑒−𝛽𝑦𝑖)

𝑚

𝑖=1

 

− (𝑛 − 𝑚)[ 𝛽𝐴(𝑦𝑚, 𝜃) + 𝐵(𝑦𝑚, 𝜃)],            (9) 
 

Here,  𝐴(𝑦𝑚, 𝜃) and 𝐵(𝑦𝑚, 𝜃) are as follows 

 
𝐴(𝑦𝑚, 𝜃) =  𝐸[(𝑅𝑖 + 1)  𝑧𝑖  | 𝑧𝑖 > 𝑦𝑚]     

𝐵(𝑦𝑚, 𝜃) = 𝐸[(𝑅𝑖 + 2) 𝑙𝑜𝑔 (1 − 𝑝𝑒−𝛽𝑧𝑖)| 𝑧𝑖 > 𝑦𝑚]
}               (10) 

 

To solve the above two equations in Equation (9), the following 

theorem should to be stated first: 

 

Theorem 1 Given a random variable 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑚) distrib-

uted as EG distribution, 𝑌~𝐸𝐺(𝛽, 𝑝),  the conditional distribution 

of 𝑍𝑖; 𝑖 = 1,2,3,… , 𝑛 − 𝑚, can be written as  

𝑓𝑍|𝑌(𝑍𝑖|𝑌𝑚:𝑛 = 𝑦𝑚:𝑛) = {

𝑓(𝑍𝑖|𝜃)

[1 − 𝐹(𝑌𝑚:𝑛|𝜃)]
  ; 𝑧𝑖  >  𝑦𝑚:𝑛     

    0                       ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑍|𝑌(𝑍𝑖|𝑌𝑚:𝑛 = 𝑦𝑚:𝑛) = {𝛽 𝐷
𝑒−𝛽𝑧𝑖

(1 − 𝑝𝑒−𝛽𝑧𝑖)2
  ; 𝑧𝑖  >  𝑦𝑚:𝑛

    0                       ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

   (11) 

                                                                                                                                                                                
Here 𝐷 is a function of 𝑦 and is given by 
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  𝐷 =  
(1 − 𝑝𝑒−𝛽𝑦𝑚  )

𝑒−𝛽𝑦𝑚  

  .  

 

A proof of the theorem can be found in details in ref. [9]. There-

fore, the expectations in (10) can be written as follows:  

 

𝐴(𝑦𝑚, 𝜃) =  −
(𝑅 + 1)𝐷

𝑝𝛽
[𝑙𝑛(1 − 𝑝)], 

𝐵(𝑦𝑚, 𝜃) = −(𝑅 + 2) 
1

𝑝𝑒
−𝛽𝑦𝑚  

 [ 𝑙𝑛(1 − 𝑝𝑒−𝛽𝑦𝑚  )
 
+ 𝑝𝑒−𝛽𝑦𝑚  

 
].                  

                    

In M-step of the EM algorithm which involves the maximization 

of equation (9) with respect to 𝜃 .If at the kth stage the estimate of 

𝜃  is 𝜃(𝑡) then 𝜃(𝑡+1)  is computed by maximizing the following 

equation:  

 

𝑔(𝜃) = 𝑛 𝑙𝑛(𝛽) + ∑(𝑅𝑖 + 1) 𝑙𝑛(1 − 𝑝)

𝑚

𝑖=1

− 𝛽 ∑𝑦𝑖  (𝑅𝑖 + 1)

𝑚

𝑖=1

  

              − ∑(𝑅𝑖 + 2) 𝑙𝑛(1 − 𝑝𝑒−𝛽𝑦𝑖)

𝑚

𝑖=1

 

                 −(𝑛 − 𝑚)[ 𝛽𝐴(𝑦𝑚, 𝜃(𝑡)) + 𝐵(𝑦𝑚, 𝜃(𝑡))].                    (12) 
 

Differentiating (12) with respect to 𝜃 = (𝛽, 𝑝)  and setting the 

results equal to 0, yields the two following equations:  

 

𝜕𝑔 

𝜕𝛽 
 =

𝑛

𝛽 
(𝑡+1)

−
𝑝 ∑ (𝑅𝑖 + 2) 𝑚

𝑖=1 𝑦𝑖𝑒
−𝛽 

(𝑡+1)
 
𝑦𝑖    

(1 − 𝑝𝑒−𝛽 
(𝑡+1)

 
𝑦𝑖)

 

𝜕 𝑔

𝜕𝛽 
 = −∑ (𝑅𝑖 + 1) 𝑦𝑖

𝑚

𝑖=1

− (𝑛 − 𝑚) 𝐴(𝑦𝑚, 𝜃(𝑡)) = 0  

                                  
𝜕𝑔 

𝜕𝑝
=  −

∑ ( 𝑅𝑖 + 1) 𝑚
𝑖=1

(1 − 𝑝(𝑡+1))
 +

∑ (𝑅𝑖 + 2) 𝑒−𝛽𝑦𝑖  𝑚
𝑖=1

(1 − 𝑝(𝑡+1)𝑒−𝛽𝑦𝑖)
 = 0 

 

Next, we find 𝜃(𝑡) = (𝛽 ̂
(𝑡+1)

, �̂�(𝑡+1)) by solving fixed-point type 

equations, ℎ(𝜃) = 𝜃, where 

  

ℎ(𝛽 ) = 𝑛   

[
 
 
 
 
  𝑝 ∑ (𝑅𝑖 + 2)  𝑚

𝑖=1 𝑦𝑖𝑒
−𝛽 

(𝑡+1)
 𝑦𝑖    

(1 − 𝑝𝑒−𝛽 
(𝑡+1)

𝑦𝑖)
 

+∑ (𝑅𝑖 + 1)

𝑚

𝑖=1

𝑦𝑖 + (𝑛 − 𝑚) 𝐴(𝑦𝑚, 𝜃(𝑡))
]
 
 
 
 
 
−1

, 

and 

ℎ(𝑝) =  1 −  1 − ∑( 𝑅𝑖 + 1)

𝑚

𝑖=1

[ 
∑ (𝑅𝑖 + 2)𝑒−𝛽𝑦𝑖𝑚

𝑖=1

(1 − 𝑝(𝑡+1)𝑒−𝛽𝑦𝑖)
]

−1

. 

 
Subsequently, the E-step and the M-step are then repeated until 

convergence is achieved to the desired level of accuracy. 

 

3. Asymptotic variance  
  
In this section, we compute the asymptotic variance of MLEs 

using the idea of missing information principle see [9]. In addition, 

the asymptotic variance of MLEs can be used to construct the 

asymptotic confidence intervals through the observed information. 

The idea of missing information principle can be expressed 

through the following: 

 

𝐼𝑌(𝜃) = 𝐼𝑊(𝜃) − 𝐼𝑍|𝑌(𝜃), 

 

where 𝐼𝑌(𝜃) is the observed information, 𝐼𝑊(𝜃)  is the complete 

information and 𝐼𝑍|𝑌(𝜃) is the (unobserved) missing information. 

The complete information matrix is  

                               

𝐼𝑤(𝜃) = −𝐸 [
𝜕2𝑙𝑐(𝑊, 𝜃)

𝜕𝜃2  ] ,                                                             (13) 

 

where 𝑙𝑐(𝑊, 𝜃) is the log-likelihood function of the complete data. 

The missing information matrix can be written as    
                                                                                                                                                                            

𝐼𝑍|𝑌(𝜃) = −(𝑛 − 𝑚)𝐸 [
𝜕2𝑙𝑛𝑓𝑍|𝑌(𝑍 |𝑦)

𝜕𝜃2  ].                                    (14) 

 

Now, the complete information matrix of  𝑌 = (𝑌1, … , 𝑌𝑛) where 𝑌 

is a progressive type-II censored data selected from a population 

with pdf and cdf given in equations (1) and (2), respectively, is 

given as follows: 

 

𝐼𝑊(𝛽 ) = −𝐸 [
𝜕2𝑙𝑐(𝑊, 𝜃)

𝜕𝛽 
2  ]  

𝐼𝑊(𝛽 ) =
𝑛

𝛽 
2 − 𝑝 ∑ (𝑅𝑖 + 2)𝐸 [

𝑦𝑖
2𝑒−𝛽𝑦𝑖     

(1 − 𝑝𝑒−𝛽𝑦𝑖  )
2] .  

𝑚

𝑖=1
 

          

𝐼𝑊(𝑝) = −𝐸 [
𝜕2𝑙𝑐(𝑊, 𝜃)

𝜕𝑝2  ]  

𝐼𝑊(𝑝) =
∑ ( 𝑅𝑖 + 1 𝑚

𝑖=1 )

(1 − 𝑝 )2 − ∑ (𝑅𝑖 + 2)𝐸 [
𝑒−2𝛽𝑦𝑖  

(1 − 𝑝 𝑒−𝛽𝑦𝑖  )
2]  

𝑚

𝑖=1
. 

 

The logarithm of the conditional distribution is given by  

  

𝑙𝑛𝑓𝑍|𝑌(𝑍 |𝑦) = 𝑙𝑛(𝛽 ) + 𝑙𝑛(1 − 𝑝 𝑒−𝛽𝑦𝑚 ) + 𝛽 𝑦𝑚 − 𝛽 𝑧 

𝑙𝑛𝑓𝑍|𝑌(𝑍 |𝑦) = −2 𝑙𝑛(1 − 𝑝 𝑒−𝛽 𝑧).                                              (15)  

 
Next, the expectations of the second order derivative of (15) with 

respect to 𝜃 = (𝛽, 𝑝) are: 

 

𝐸 [
𝜕2  𝑙𝑛  𝑓𝑍|𝑌(𝑍 |𝑦)

𝜕𝛽 
2 ] = −

1

𝛽 
2 −

𝑝𝑦𝑚
2𝑒−𝛽𝑦𝑚 

(1 − 𝑝 𝑒−𝛽𝑦𝑚 )
2 

𝐸 [
𝜕2  𝑙𝑛  𝑓𝑍|𝑌(𝑍 |𝑦)

𝜕𝛽 
2 ] = +𝐸 [

2𝑝𝑧2𝑒−𝛽𝑧

(1 − 𝑝 𝑒−𝛽 𝑧)2
]. 

 

𝐸 [
𝜕2  𝑙𝑛  𝑓𝑍|𝑌(𝑍 |𝑦)

𝜕𝑝2 ] =  
−𝑒− 2𝛽 𝑦𝑚

(1 − 𝑝 𝑒−𝛽𝑦𝑚 )
2 + 𝐸 [

2𝑒−2𝛽 𝑧

(1 − 𝑝 𝑒−𝛽 𝑧)2
]. 

 

Therefore, the matrix 𝐼𝑍|𝑌(𝜃), where 𝜃 = (𝛽, 𝑝), can be written as 

follows:  

𝐼𝑍|𝑌(𝛽) = (𝑛 − 𝑚) {
1

𝛽 
2 +

𝑝𝑦𝑚
2𝑒−𝛽𝑦𝑚 

(1 − 𝑝 𝑒−𝛽𝑦𝑚 )
2

− 2𝐸 [
𝑝𝑧2𝑒−𝛽𝑧

(1 − 𝑝 𝑒−𝛽𝑧)2
]}. 

𝐼𝑍|𝑌(𝑝) =  (𝑛 − 𝑚) { 
𝑒− 2𝛽 𝑦𝑚

(1 − 𝑝 𝑒− 𝛽 𝑦𝑚)2
− 2𝐸 [

𝑒−2𝛽𝑧

(1 − 𝑝 𝑒−𝛽𝑧)2
]}. 

 

Subsequently, the asymptotic variance of  𝜃 = (𝛽 ̂, �̂�) can be ob-

tained by taking the inverse of the matrix 𝐼𝑌(𝜃). Appling the nor-

mality properties of MLEs, we can use   100%(1 − 𝛾) approxi-

mate confidence intervals of parameters 𝜃 = (𝛽, 𝑝) as follow. 
 

𝛽 ̂ ± 𝑧𝛼
2⁄
√𝑣𝑎𝑟(𝛽 ̂)     ,    𝑝 ̂ ± 𝑧𝛼

2⁄
√𝑣𝑎𝑟(𝑝 ̂), 

 

where 𝑣𝑎𝑟(𝛽 ̂) and 𝑣𝑎𝑟(𝑝 ̂) are asymptotic variance of  𝜃 = (𝛽 ̂, 𝑝 ̂) 

and 𝑧𝛼
2⁄
 is percentile of standard normal distribution with right-

tail probability  
𝛾

2
. 
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4. Result and Discussions  
 

To assess the mathematical derivations and the behavior of the 

estimated parameters, a simulation study has been conducted us-

ing R software. The program has been designed to obtain the 

MLEs, 𝜃 = (�̂�, �̂�) , and other important measurements such as 

mean squared error (MSE), bias and a 95% confidence interval 

with lower and upper limits (LL, UL) along with its length. Sam-

ples of different sizes, n= 10, 20, 30, 40, 50, 60, 70, 80, 90,100, 

have been generated from EG distribution. The process has been 

run based on 2000 iterations by setting  𝜃 = (𝛽 = 1, 𝑝 = 0.9) . 

Also, different censoring schemes have been considered at differ-

ent number of failures 𝑚 to each sample. The obtained results are 

shown in two tables. 

 

 

 

Table 1 shows the length of the 95% confidence intervals of the 

MLEs for the parameters of EG distribution under progressive 

type-II censored sample at starting point 𝜃 = (𝛽 = 1, 𝑝 = 0.9) 

using different sample size and fixed number of failures observed.  

It has been noted that, for fixed number of failures and as the sam-

ple size increased, the lengths of the 95% confidence intervals 

tend to be narrower.  

 

Table 2 presents the simulated values of MLEs, MSE, bias and 

(LL, UL) of 95% confidence interval along with its length, under 

the consideration of the censoring schemes for different samples 

sizes n= 10, 20, 30, …,100 and different numbers of failures 𝑚 for 

parameters 𝜃 = (𝛽 = 1, 𝑝 = 0.9). From this table we could con-

clude that regardless of the censoring schemes and at which point 

the censored units are removed from the sample, for increasing 

sample size; the estimated value of the parameters converges to 

the true value, and the MSE of the MLEs decreases. It is also not-

ed that for 𝑛 = 100, complete case, as 𝑚 increases (i.e. from 50 to 

100) the MSE values decrease too. However, this may not satisfy, 

in some cases, as the simulated samples have been generated ran-

domly. Additionally, different censoring schemes have been used 

for different samples sizes.  

 

 

5. Conclusion 
 
The problem of estimating the unknown parameters of the EG 

distribution under progressive type-II censored was discussed. The 

EM algorithm was used to find the maximum likelihood estima-

tors of the scale and shape parameters of the model. Furthermore, 

the asymptotic variance was derived along with the asymptotic 

confidence intervals. The simulation study was conducted using 

different censoring schemes and different samples sizes to figure 

out the MLEs numerically. In addition, the MSE, Bias and their 

confidence intervals were presented under various aspects. The 

results show that as the sample size increased the estimated values 

of the unknown parameters converge to the true values. 
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Table 1: The length of confidence intervals of MLEs of EG distribution 
under progressive type-II censored data for 𝛽 = 1 and 𝑝 = 0.9 with 

different sample size and fixed number of failures observed. 

Length 
�̂�, �̂� 

n m 
Length 

�̂�, �̂� 
n m 

0.45000 60  50 0.81735 20 15 

0.05742 0.13793 

0.38249 70  0.57272 30 

0.03407 0.05430 

0.32516 80  0.85069 20  18 

  0.02509 0.14561 

0.29762 90  0.52005 30  

0.02552 0.04203 

0.27042 100 0.74598 30 25 

0.02335 0.15101 

0.43663 70  60 

 

 

0.61806 40  

0.05479 0.09461 

0.40866 80 0.50023 50 

0.05294 0.07328 

0.32432 90 0.60046 40 30 

0.02839 0.09558 

0.24488 100 0.54362 50 

0.01897 0.07391 

0.40483 

0.05364 

80 70 0.53822 50 40 

0.07848 

0.30732 

0.02423 

90 0.47204 60 

0.05489 
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Table 2: The MLES, MSE, Bias, and 95% Confidence limits and Length of the MLEs of the EG distribution based on progressive Type-II censored data 

for β = 1 and p = 0.9 with different sample size and different number of failures observed. 

for β = 1and p = 0.9 

Length (LCI, UCI) Bias MSE 
MLE 

𝜃 = (�̂�, �̂�) 
Censoring Scheme m n 

1.19303 (1.06736, 2.26040) 0.66388 0.82656 1.66388 (0,0,3,1,1) 5 10 

0.13734 (0.83533, 0.97267) 0.00400 0.00138 0.90400 

1.16289 (0.51108, 1.67396) 0.09252 0.20420 1.09252 (3,0,0,0,0,0,0) 7 

0.12861 (0.83066, 0.95926) -0.00504 0.00145 0.89496 

1.14890 (0.33203, 1.48093) -0.09352 0.15708 0.90648 (0*8,1) 9 

0.22935 (0.78181, 1.01115) -0.00352 0.00385 0.89648 

0.82697 (0.95547, 1.78245) 0.36896 0.26403 1.36896 (0*6,4,3,2,1) 10 20 

0.10295 (0.84849, 0.95143) -0.00004 0.00078 0.89996 

0.81735 (0.57293, 1.39027) 0.13509 0.13509 0.98160 (0*13,4,1) 15 

0.13793 (0.82439, 0.96233) -0.00664 0.00160 0.89336 

0.85069 (0.56020, 1.41088) -0.01446 0.08401 0.98554 (0*17,2) 18 

0.14561 (0.82645, 0.97207) -0.00074 0.00171 0.89926 

0.57272 (1.05972, 1.63244) 0.34608 0.23543 1.34608 (0*12,5,5,5) 15 30 

0.05430 (0.87095, 0.92525) -0.00190 0.00034 0.89810 

0.52005 (0.84722, 1.36726) 0.10724 0.05195 1.10724 (0*17,12) 18 

0.04203 (0.87450, 0.91654) -0.00448 0.00028 0.89552 

0.74598 (0.70783, 1.45381) 0.08082 0.05171 1.08082 (0*25,5) 25 

0.15101 (0.83742, 0.98842) 0.01292 0.00168 0.91292 

0.48716 (1.32194, 1.80910) 0.56552 0.43857 1.56552 (0*16,5,5,5,5) 20 40 

0.04598 (0.88271, 0.92869) 0.00570 0.00025 0.90570 

0.61806 (1.15671, 1.77477) 0.46574 0.26964 1.46574 (0*25,5,5,3,2) 25 

0.09461 (0.87656, 0.97116) 0.02386 0.00116 0.92386 

0.60046 (0.72061, 1.32107) 0.02084 0.06607 1.02084 (0*25,3,3,2,1,1) 30 

0.09558 (0.85461, 0.95019) 0.00240 0.00067 0.90240 

0.50023 (1.56899, 2.06921) 0.81910 0.71397 1.81910 (0*25,10,10,3,2) 25 50 

0.07328 (0.89296, 0.96624) 0.02960 0.00124 0.92960 

0.54362 (0.96769, 1.51131) 0.23950 0.09143 1.23950 (0*26,15,3,1,1) 30 

0.07391 (0.86533, 0.93923) 0.00228 0.00039 0.90228 

0.53822 (0.75231, 1.29053) 0.02142 0.02803 1.02142 (0*36,3,3,2,2) 40 

0.07848 (0.86420, 0.94268) 0.00344 0.00046 0.90344 

0.40104 (1.22564, 1.62668) 0.42616 0.22214 1.42616 (0*24,5,5,5,5,5,5) 30 60 

0.03858 (0.88369, 0.92227) 0.00298 0.00014 0.90298 

0.47204 (0.91522, 1.38726) 0.15124 0.06306 1.15124 (0*35,5,5,4,3,3) 40 

0.05489 (0.87400, 0.92888) 0.00144 0.00024 0.90144 

0.45000 (0.68610, 1.13610) -0.08890 0.02962 0.91110 (0*47,5,0,5) 50 

0.05742 (0.86917, 0.92659) -0.00212 0.00023 0.89788 

0.41115 (0.99273, 1.40387) 0.19830 0.05652 1.19830 (0*40,5,5,5,5,5) 45 70 

0.04147 (0.88225, 0.92371) 0.00298 0.00031 0.90298 

0.38249 (0.83270, 1.21518) 0.02394 0.01300 1.02394 (0*48,10,10) 50 

0.03407 (0.88247, 0.91653) -0.00050 0.00009 0.89950 

0.43663 (0.78332, 1.21996) 0.00164 0.04089 1.00164 (0*58,5,5) 60 

0.05479 (0.87543, 0.93021) 0.00282 0.00035 0.90282 

0.32516 (1.30764, 1.63280) 0.47022 0.23056 1.47022 (0*49,10,10,10) 50 80 

0.02509 (0.90691, 0.93201) 0.01946 0.00042 0.91946 

0.40866 (0.81655, 1.22521) 0.02088 0.03108 1.02088 (0*56,6,5,6,3) 60 

0.05294 (0.87323, 0.92617) -0.00030 0.00024 0.89970 

0.40483 (0.74709, 1.15191) -0.05050 0.01463 0.94950 (0*68,5,5) 70 

0.05364 (0.87496, 0.92860) 0.00178 0.00021 0.90178 

0.29762 (1.15903, 1.45665) 0.30784 0.11901 1.30784 (0*46,10,10,10,10) 50 90 

0.02552 (0.89000, 0.91552) 0.00276 0.00008 0.90276 

0.32432 (0.98534, 1.30966) 0.14750 0.07093 1.14750 (0*57,10,10,10) 60 

0.02839 (0.88709, 0.91547) 0.00019 0.00019 0.90128 

0.30732 (0.81820, 1.12552) -0.02814 0.02031 0.97186 (0*69,20) 70 

0.02423 (0.88648, 0.91072) -0.00140 0.00009 0.89860 

0.27042 (1.16077, 1.43119) 0.29598 0.11145 1.29598 (0*45,10,10,10,10,10) 50 100 

0.02335 (0.88693, 0.91027) -0.00140 0.00007 0.89860 

0.24488 (1.09282, 1.33770) 0.21526 0.05549 1.21526 (0*58,20,20) 60 

0.01897 (0.89169, 0.91067) 0.00118 0.00004 0.90118 

0.39442 (0.80413, 1.19855) 0.00134 0.01556 1.00134 (0*100) 100 

0.68157 (0.55950, 1.24106) 0.00028 0.03078 0.90028 

 

 

 

 

 
 


