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Abstract 

 

In this paper we present a multi-stage procedure for improving the Bayes estimates of first order moving average model 

(MA(1)) using the estimated residuals.  Simulation results based on different model structures with varying numbers of 

observations are used to investigate the performance of the proposed procedure. The results show a remarkable 

improvement of the t-approximation using two and three stage procedure in terms of the posterior mean and variance 

for different model structures. It is also noted that these estimates converge as the series lengths increase. 
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1 Introduction 

The Bayesian inferences on autoregressive moving average (ARMA) models are limited due to the complicated form of 

the likelihood function which makes it difficult to get tractable marginal posteriors and Bayes estimates.  Shaarawy and 

Bromeling, [1] proposed an approximate Bayes estimates based on the estimated residuals for the analysis of MA and 

ARMA models. Using the estimated residuals, they obtain marginal posteriors, Bayes estimates, and predictive 

densities in a closed form. Asymptotic justification of the Bayes estimates of MA(q) model is given by Smadi and Abu-

Taleb [3]. 

 The estimated residuals became a popular method in Bayesian inference of different parametric time series models.  

Cathy [6] used the estimated residuals in Bayesian inference of the bilinear models. Smadi [2] and Safadi and Morettin 

[5] have used this estimated residuals approach to explore the posterior distributions of the threshold autoregressive 

moving average models. Smadi [7] used the estimated residuals in Bayesian inference of threshold moving average 

models. On the other hand, Koreisha and Pukkila [4] use the estimated residuals by fitting long autoregression and 

developed a generalized least-squares approach for estimation of ARMA models. 

In this work, we propose a multi-stage procedure for improving the Bayes estimates of first order moving average 

model (MA(1)) using the estimated residuals.  Simulation results based on different model structures with varying 

numbers of observations are used to investigate the performance of the proposed procedure.  

 

2 Bayes estimation for MA(1) model 

The first order moving average model (MA(1)) is given by: 

1             0, 1, 2,...t t tX Z Z t       ,         (1) 

where { }tZ  are i.i.d 2(0, )N   random variables. 
 
 

Shaarawy and Bromeling (1984) derived approximate marginal posterior distributions and posterior means for the 

parameters of the MA(q) model. For MA(1) model, the true innovations  tZ  are first estimated as  ˆ
tZ  and 

calculated recursively using 1
ˆˆ ˆ    ( 1,..., )t t tZ X Z t n    , where 0

ˆ 0Z  , and ̂  is the least squares estimate of θ. 

They assume a multi-normal-gamma prior density on the model parameters of the MA(q) model. For the MA(1) model, 

the normal-gamma prior density on θ and τ reduces to 
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        (2) Based on Shaarawy and Bromeling 

(1984) results, the following results follow: 

(i) The marginal posterior density of θ has a t-distribution with n+2α -1 degrees of freedom. The mean and 

precision are given by 
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The marginal posterior density of τ is a gamma distribution, where; 
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3 Bayes estimation using multi-stage procedure 

The above Bayes estimates depends heavily on the estimated residuals, since the estimated residuals are estimates of the 

true innovations, they may contain random variation due to estimation errors, and consequently, may yield inefficient 

parameter estimates. The simulation results below shows poor performance of such estimates especially for small and 

moderate series lengths.  

In the following a proposed multi-stage procedure for improving the above  t-approximation is given as follows: 

Step 1: Find the LSE of θ.  

Step 2: Calculate the estimated residuals recursively;  

, 
0

ˆ 0Z   ,
  1

ˆˆ ˆ ( 1,..., )t t tZ X Z t n      

Step 3: Calculate the Bayes estimate which is the mean of the t-distribution using  
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 Step 4: Use the Bayes estimate is step 3 to estimate again the residuals { }tZ recursively as in step 2. 

Step 5: Calculate the Bayes estimate given in step 3 using the updated estimated residuals computed in step 4.  

Step 6:  Repeat the above procedure k-steps. 

 

4 Simulation results and discussion 

A simulation study to investigate the performance of the proposed procedure was performed. Different parameter values 

are used, θ=-0.8, 0.8 step 0.2, σ
2
=1 with series n=50,100, 200, and 300 are used. Estimates based on two and 3 steps are 

computed and compared with Bayes estimate based on one step. 

The following subroutines from the IMSL statistical library were used to obtain least squares estimates: 

1.  LSLSE which compute preliminary estimates of the autoregressive and moving average parameters of an 

ARMA model. 

2.  NLLSE which computes least-squares estimates of parameters for ARMA model. 

One thousand realizations are used in the simulation study. The posterior means and variances were computed using 

one, two, and three stage procedure. The results are given in tables (1), (2), (3), and (4).  
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The results in tables (1) to (4) show poor performance of t-approximation using one stage, especially for θ>0.5 and θ<-

0.5. It is noted a remarkable improvement of the t-approximation using two and three stage procedure in terms of the 

posterior mean and variance for different model structures, especially near the invertibility boundaries -1 and 1.  It is 

also noted that the estimates based on two and three stage procedures converges as the series lengths increases. 

Generalization of the proposed multi-stage procedure to general MA, ARMA, and other parametric time series models 

like Bilinear and threshold MA and ARMA models is straight forward.  

 

 
Table 1: The t-approximation, n = 50 

Three step Two step One step  

θ V(θ|x) E(θ|x) V(θ|x) E(θ|x) V(θ|x) E(θ|x) 

.0263 -.7495 .0349 -.7076 .0882 -.6116 -0.8 

.0228 -.5929 .0201 -.5756 .0466 -.4922 -0.6 

.0223 -.3984 .0214 -.3973 .0246 -.3760 -0.4 

.0225 -.1993 .0225 -.1999 .0227 -.2002 -0.2 

.0225 .2011 .0224 .2004 .0235 .2040 0.2 

.0226 .4004 .0213 5893. .0226 .4003 0.4 

.0230 .5961 .0194 3985. .0331 .5748 0.6 

.0237 .7619 .0355 .7199 .0458 .7537 0.8 

 

 
Table 2: The t-approximation, n = 100 

Three step Two step One step  

θ V(θ|x) E(θ|x) V(θ|x) E(θ|x) V(θ|x) E(θ|x) 

.0119 -.7807 .0144 -.7444 .0619 -.6626 -0.8 

.0099 -.5989 .0081 -.5833 .0354 -.5266 -0.6 

.0097 -.3996 .0093 -.3992 .0108 -.3968 -0.4 

.0096 -.1999 .0096 -.2000 .0097 -.2016 -0.2 

.0097 .2001 .0096 .1999 .0099 .2019 0.2 

.0097 .3996 .0095 .3992 .0102 .4020 0.4 

.0101 .5988 .0085 .5901 .0227 .5700 0.6 

.0113 .7840 .0164 .7456 .0563 .7173 0.8 

 

 
Table 3: The t-approximation, n = 200 

Three step Two step One step  

θ V(θ|x) E(θ|x) V(θ|x) E(θ|x) V(θ|x) E(θ|x) 

.0053 -.7884 .0095 -.7505 .0659 -.6766 -0.8 

.0050 -.5997 .0046 -.5911 .0220 -.5624 -0.6 

.0050 3005-. .0049 -.4002 .0052 -.4013 -0.4 

.0050 5003-. .0050 -.2005 .0050 -.2015 -0.2 

.0050 .1995 .0050 .1995 .0050 .2005 0.2 

.0050 .3985 .0049 .3992 .0051 .4010 0.4 

.0051 .5985 .0047 .5929 .0160 .5782 0.6 

.0050 .7882 .0105 .7515 .0654 8853. 0.8 

 

 
Table 4: The t-approximation, n = 300 

Three step Two step One step  

θ V(θ|x) E(θ|x) V(θ|x) E(θ|x) V(θ|x) E(θ|x) 

.0032 -.7868 .0102 -.7473 .0780 -.6651 -0.8 

.0033 -.5979 .0031 -5930 .0129 -.5787 -0.6 

.0033 -.3984 .0033 -3984 .0033 -.3999 -0.4 

.0033 -.1985 .0033 -.1985 .0033 -.1992 -0.2 

.00033 .2014 .0033 .2014 .0033 .2022 0.2 

.0033 .4012 .0032 .4012 .0033 .4029 0.4 

.0033 .6007 .0031 .5955 .0136 .5809 0.6 

. 0032 .7897 .0099 .7511 .0769 .6751 0.8 
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