Vertex and edge Co-PI indices of bridge graphs

Sharmila devi G1° and Kaladevi V2

1Research Scholar Research and Development Centre, Bharathiar University, Coimbatore, Department of Mathematics, Kongu Arts and Science College (Autonomous), Erode, India.
2Department of Mathematics, Bishop Heber College, Trichy, India
°Corresponding author E-mail: sharmilasharmitha@gmail.com

Abstract

The Co-PI index of a graph G, denoted by Co – PI(G), is defined as Co – PI(G) = \(\sum_{uv \in E(G)} |n^G_0(u) - n^G_0(v)| \), where \(n^G_0(u) \) is the number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the edge Co-PI index of G is defined as Co – Pl(G) = \(\sum_{uv \in E(G)} |m^G_0(u) - m^G_0(v)| \), where \(m^G_0(u) \) is the number of edges of G whose distance to the vertex u is less than the distance to the vertex v in G. In this paper, the upper bound for the Co-PI and edge Co-PI indices of bridge graphs are obtained.

Keywords: Bridge Graph; Co-PI Index; Edge Co-PI Index.

1. Introduction

All the graphs considered in this paper are connected and simple. A vertex \(x \in V(G) \) is said to be equidistant from the edge \(e = uv \) of G if \(d_G(x,u) = d_G(x,v) \), where \(d_G(x,u) \) denotes the distance between u and x in G. The degree of the vertex u in G is denoted by \(d_G(u) \).

For an edge \(e \in E(G) \), the number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v in G is denoted by \(n^G_0(u) \); analogously, \(n^G_0(v) \) is the number of vertices of G whose distance to the vertex v in G is smaller than the distance to the vertex u; the vertices equidistant from both the ends of the edge \(e \) are not counted. Similarly, \(m^G_0(u) \) denotes the number of edges of G whose distance to the vertex u is less than the distance to the vertex v.

The vertex PI index of G, denoted by PI(G), is defined as

\[
PI(G) = \sum_{e=uv \in E(G)} (n^G_0(u) + n^G_0(v))
\]

and the edge PI index of G, denoted by Pl(G), is defined as

\[
Pl(G) = \sum_{e=uv \in E(G)} (m^G_0(u) + m^G_0(v))
\]

Similarly, the Co-PI index of G, denoted by Co-PI(G), is defined as

\[
Co – PI(G) = \sum_{e=uv \in E(G)} |n^G_0(u) - n^G_0(v)|
\]

and the edge Co-PI index of G, denoted by Co-Pl(G), is defined as

\[
Co – Pl(G) = \sum_{e=uv \in E(G)} |m^G_0(u) - m^G_0(v)|
\]

Khuddar [12] first introduced edge PI index of graphs and they investigated the chemical applications of the PI index. The PI index of the graph G is a topological index related to equidistant vertices. Another topological index of G related to distance of G is the Wiener index of G, first introduced by Wiener; see [18].

Karmakar and Agarwal [12] first introduced edge Padmakanth-Ivan index of graphs and they investigated the chemical applications of the Padmakanth-Ivan index. The mathematical properties of the Pl and its applications in chemistry and nanoscience are well studied by Ashifi and Loghman [1, 3], Ashrafi and Rezai [2], Deng, Chen and Zhang [6], Khullar [10], Khullar, Youssefi-Azani and Ashrafi [11], Klavzar [13] and Youssefi-Azani, Manoochehrad and Ashrafi [17]. The vertex PI indices of the tensor and strong products of graphs are studied in [14, 16]. In [20, 21, 22] the PI indices of bridge graphs and chain graphs are discussed. In this paper, the upper bounds for the Co-PI and edge Co-PI indices of bridge graphs are obtained. Let \(\{G_i\}_{i=1}^s \) be a set of \(s \) finite pairwise vertex disjoint connected graphs with \(v_i \in V(G_i) \). The bridge graph \(B(G_1, G_2, \ldots, G_s) = B(G_1, G_2, \ldots, G_s; v_1, v_2, \ldots, v_s) \) of \(\{G_i\}_{i=1}^s \) with respect to the vertices \(\{v_i\}_{i=1}^s \) is the graph obtained from the graphs \(G_1, G_2, \ldots, G_s \) by connecting the vertices \(v_i \) and \(v_{i+1} \) by an edge for all \(i = 1, 2, \ldots, s-1 \).

2. Co-PI Index of Bridge Graph

Let \(G \) be a graph and let \(v \in V(G) \). The set of all edges \(xy \) such that \(d_G(x,v) = d_G(y,v) \) is denoted by \(N_d(x,v) \). Define \(K(G_i) = \{ e = xy \in E(G_i) \mid d_G(x,v) < d_G(y,v) \} \) and \(L(G_i) = \{ e = xy \in E(G_i) \mid d_G(x,v) > d_G(y,v) \} \).

Theorem 2.1

Let \(G = B(G_1, G_2, \ldots, G_s) \) of \(\{G_i\}_{i=1}^s \) with respect to the vertices \(\{v_i\}_{i=1}^s \) and \(|V(G)| = a \). Then \(Co – PI(G) \leq \sum_{i=1}^s (Co – PI(G_i)) + \sum_{i=1}^s (|V(G)| – |V(G_i)|)(k_i + \ell_i) + \sum_{i=1}^s 2a_i – a \), where \(a_i = \sum_{j=1}^s |V(G_j)|, k_i = |E(K(G_i))| \) and \(\ell_i = |E(L(G_i))| \).
Proof. From the definition of $Co - PL(G)$,
\[
Co - PL(G) = \sum_{e \in \text{arc}(G)} \left| n^G_e(e) - n^G_e(e) \right|
\]
\[
= \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| n^G_e(e) - n^G_i(e) \right| + \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| n^G_i(e) - n^G_i(e) \right|
\]
\[
= \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| n^G_i(e) - n^G_i(e) \right|
\]
\[
+ \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| n^G_i(e) - n^G_i(e) \right|
\]
\[
= \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| n^G_i(e) - n^G_i(e) \right|
\]
\[
= \sum_{i=1}^{s} \left(|V(G)| - |V(G)| \right).
\]
Hence, $Co - PL(G) = \sum_{i=1}^{s} \left(|V(G)| - |V(G)| \right)$.

3. Edge Co-PI Index of Bridge Graph

For a graph G with $v \in V(G)$, let $T_0(G)$ be the set of edges uv of G such that $d_G(u,v) = d_G(v,u)$. For a bridge graph $B(G_1, G_2, \ldots, G_i)$, $i = 1, 2, \ldots, s - 1$, let $K(G)$ be the set of edges $e = uv \in E(G) \setminus T_0(G)$ such that $d_G(u,v) < d_G(v,u)$ and $L(G)$ the set of edges $e = uv \in E(G) \setminus T_0(G)$ such that $d_G(u,v) > d_G(v,u)$.

Theorem 3.1

Let $G = B(G_1, G_2, \ldots, G_i)$ of $(G_i)_i$ with respect to the vertices $\{v_i\}_{i=1}^s$. Then $Co - PL(e) = \sum_{i=1}^{s} \left(|V(G)| - |V(G)| \right)$.

Proof. Let $G = B(G_1, G_2, \ldots, G_i)$. Observe that $E(G_i) = T_0(G_i) \cup K(G_i) \cup L(G_i)$ for $i = 1, 2, \ldots, s$. By the definition of the edge Co-PI index,
\[
Co - PL(e) = \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
= \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
+ \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
+ \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
= \sum_{i=1}^{s} \left(|E(G)| - |E(G)| \right).
\]

• For $i = 1, 2, \ldots, s$, if $e = uv \in T_0(G_i)$, then $d_G(u,v) = d_G(v,u)$ for any edge $e_i \in E(G_i \setminus E(G))$, then $d_G(u,v) = d_G(v,u)$. This implies $m^G(e) = m^G(e)$ and $m^G(e) = m^G(e)$. Then
\[
Co - PL(e) = \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
= \sum_{i=1}^{s} \left(|E(G)| - |E(G)| \right).
\]

• Similarly, if $e = uv \in L(G_i)$, then $d_G(u,v) > d_G(v,u)$, thus
\[
Co - PL(e) = \sum_{i=1}^{s} \sum_{e \in \text{arc}(G)} \left| m^G(e) - m^G(e) \right|
\]
\[
= \sum_{i=1}^{s} \left(|E(G)| - |E(G)| \right).
\]
From (5) and (6)
\[\sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_i}_e(e)| \]
\[= \sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_i}_e(e)| + \sum_{e \in \text{e}(G_i)} |m^{G_i}_e(e) - m^{G_i}_e(e)| \]
\[= \sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_j}_e(e) + (|E(G)| - |E(G_j)|)| + \sum_{e \in \text{e}(G_i)} |m^{G_i}_e(e) - m^{G_i}_e(e)| - (|E(G)| - |E(G_i)|) \]
\[\leq \sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_j}_e(e)| + \sum_{e \in \text{e}(G_i)} (|E(G)| - |E(G_i)|) \]
\[\leq \sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_j}_e(e)| + \sum_{e \in \text{e}(G_i)} (|E(G)| - |E(G_i)|). \]

* For an edge \(e = v_i v_{i+1} \), \(i = 1, 2, \ldots, s - 1 \), one can easily observe that \(m^{G_j}_e(e) \) and \(m^{G_j}_e(e) \) are:

\[\left(\sum_{j=i+1}^{s} |E(G_j)| + s - (i + 1) \right) \]
\[= \sum_{i=1}^{s-1} \left(\sum_{j=i+1}^{s} |E(G_j)| + 1 \right) - \sum_{i=1}^{s-1} |E(G_j) - 1| \]
\[= \sum_{i=1}^{s-1} \left(2a_i - |E(G)| + 1 \right). \]

Hence the edge Co-PI index of the bridge graph is given by,

\[\text{Co - PLE}(G) = \sum_{i=1}^{s} \sum_{e \in \text{e}(G_j)} |m^{G_j}_e(e) - m^{G_j}_e(e)| \]
\[+ \sum_{i=1}^{s} \sum_{e \in \text{e}(G_i)} |m^{G_i}_e(e) - m^{G_i}_e(e)| \]
\[+ \sum_{i=1}^{s} \sum_{e \in \text{e}(G_i)} (|E(G)| - |E(G_i)|) \]
\[+ \sum_{i=1}^{s} \sum_{e \in \text{e}(G_j)} (|E(G)| - |E(G_j)|) + \sum_{i=1}^{s-1} \left(2a_i - |E(G)| + 1 \right) \]
\[= \sum_{i=1}^{s} \text{Co - PLE}(G) + \sum_{i=1}^{s} \sum_{e \in \text{e}(G_i)} (|E(G)| - |E(G_i)|)(k_i + \ell_i) \]
\[+ \sum_{i=1}^{s-1} \left(2a_i - |E(G)| + 1 \right). \]

References
