Generalized free Gaussian white noise
- Abstract
- Keywords
- References
-
Abstract
Based on an adequate new Gel'fand triple, we construct the infinite dimensional free Gaussian white noise measure \(\mu\) using the Bochner-Minlos theorem. Next, we give the chaos decomposition of an \(L^{2}\) space with respect to the measure \(\mu\).
-
Keywords
Chebychev polynomials; Wigner semicircle distribution; Fourier transform; Wigner semicircle white noise
-
References
[1] N. Asai, I. Kubo and H.-H. Kuo, Multiplication Renormalization and Generating Function I., Taiwanese Journal of Mathematics, Vol. 8, No. 4 (2004), 583-628.
[2] T.S. Chihara, ”An introduction to Orthogonal Polynomialization” ,Gordon and Breach, New York, 1978.
[3] G. Gasper and M. Rahman, ” Basic hypergeometric series”, Vol 35 of Encyclopedia Of Mathematics And Its Application, Cambridge Universty Press, Cambridge (1990).
[4] Yu. G. Kondratiev, J.L. Silva, L. Streit and G.F. Us, ”Analysis on Pois-son and Gamma space”, Infinite dimensional anal. Quant. Probab, Vol. 1 No. 1 (1998), 91-118.
[5] H. Van Leeuwen and H. Maassen, ”A q-deformation of the Gauss distribution”, Journal of mathematical physic, 36(9), 4743-4756 [1995].
[6] H. Rguigui, ”Quantum l -potentials associated to quantum Ornstein-Uhlenbeck semigroups”, Chaos, Solitons & Fractals, Volume 73, April 2015, Pages 80-89.
-
![]() View |
![]() Download | ![]() Article ID: 5911 |
![]() |