Elastico–Viscous Boundary Layer Flow Over A Wedge Incorporating Nanofluid Interaction Effects
-
https://doi.org/10.14419/4bv4wg35
-
Boundary Layer; Elastico-Viscous Fluid; Nanofluid; Shrinking Wedge; Stretching Wedge -
Abstract
The present discourse delineates a rigorous examination of steady elastico–viscous boundary layer flow past a wedge embedded within a nanofluid environment under a uniform free-stream velocity. The framework imposes isothermal boundary conditions alongside a pre-scribed homogeneous quantifiable measure of nanoparticle occupancy relative to the total fluidic domain at the stretching interface. The governing relations for the coupled mechanisms of momentum transfer, thermo-energetic diffusion, and nanoparticle volumetric stratification are constructed via Walter’s liquid model B/ synergistically coupled with the Kuznetsov–Nield nanofluid formulation [27-28]. Through the application of similarity transformations, augmented by appropriate boundary constraints, the system is reformulated as a nonlinear system of ordinary differential relations, subsequently addressed via the bvp4c numerical integrator embedded within MATLAB. The outcomes underscore the decisive role of the elastico–viscous parameter in modulating velocity, thermal, and concentration distributions, while simultaneously elucidating the coupled dynamics of the conjoint modulation of hydrodynamic, thermo-diffusive, and concentration stratified layers in shaping the overall transport phenomena of the system.
-
References
- Falkner, V. M., & Skan, S. W. (1931). Some approximate solutions of the boundary-layer equations. Philosophical Magazine, 12, 865–896. https://doi.org/10.1080/14786443109461870.
- Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., & Mohamed, H. A. (2011). A review of the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15(1), 310–323. https://doi.org/10.1016/j.rser.2010.08.018.
- Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. Interna-tional Journal of Heat and Mass Transfer, 57(2), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037.
- Behar, O., Khellaf, A., & Mohammedi, K. (2013). A review of studies on central receiver solar thermal power plants. Renewable and Sustainable Energy Reviews, 23, 12–39. https://doi.org/10.1016/j.rser.2013.02.017.
- Bondareva, N. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2017). Heatline visualization of natural convection in a thick-walled open cavity filled with a nanofluid. International Journal of Heat and Mass Transfer, 109, 175–186. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.013.
- Saidur, R., Leong, K. Y., & Mohammad, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15, 1646–1668. https://doi.org/10.1016/j.rser.2010.11.035.
- Das, S. K., Choi, S. U. S., Yu, W., & Pradeep, T. (2008). Nanofluids: Science and technology. Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470180693.
- Nield, D. A., & Bejan, A. (2013). Convection in porous media (4th ed.). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-5541-7.
- Minkowycz, W. J., Sparrow, E. M., & Abraham, J. P. (2013). Nanoparticle heat transfer and fluid flow (Vol. IV). CRC Press, Taylor & Francis Group.
- Shenoy, A., Sheremet, M., & Pop, I. (2016). Convective flow and heat transfer from wavy surfaces: Viscous fluids, porous media and nanofluids. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315367637.
- Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y. V., Keblinski, P., Hu, L., Alvarado, J. L., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106(9), 094312. https://doi.org/10.1063/1.3245330.
- Kakac, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13–14), 3187–3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
- Manca, O., Jaluria, Y., & Poulikakos, D. (2010). Heat transfer in nanofluids. Advances in Mechanical Engineering, 2010, 380826. https://doi.org/10.1155/2010/380826.
- Fan, J., & Wang, L. (2011). Review of heat conduction in nanofluids. ASME Journal of Heat Transfer, 133(4), 040801. https://doi.org/10.1115/1.4002633.
- Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. Interna-tional Journal of Heat and Mass Transfer, 57(2), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
- Sheikholeslami, M., & Ganji, D. D. (2016). Nanofluid convective heat transfer using semi-analytical and numerical approaches: A review. Journal of the Taiwan Institute of Chemical Engineers, 65, 43–77. https://doi.org/10.1016/j.jtice.2016.05.014.
- Myers, T. G., Ribera, H., & Cregan, V. (2017). Does mathematics contribute to the nanofluid debate? International Journal of Heat and Mass Transfer, 111, 279–288. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.118.
- Sheikholeslami, M., Mehryan, S. A. M., Shafee, A., & Sheremet, M. A. (2019). Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. Journal of Molecular Liquids, 277, 388–396. https://doi.org/10.1016/j.molliq.2018.12.104.
- Maatoug, S., Khan, S. U., Abbas, T., Ul Haq, E., Ghachem, K., Kolsi, L., et al. (2023). A lubricated stagnation point flow of nanofluid with heat and mass transfer phenomenon: Significance to hydraulic systems. Journal of the Indian Chemical Society, 100(6), 100825. https://doi.org/10.1016/j.jics.2022.100825
- Zhang, K., Li, Z., Wang, S., Wang, P., Zhang, Y., & Guo, X. (2023). Study on the cooling and lubrication mechanism of magnetic field-assisted Fe₃O₄@CNTs nanofluid in micro-textured tool cutting. Journal of Manufacturing Processes, 85, 556–568. https://doi.org/10.1016/j.jmapro.2022.11.081.
- Gupta, S. K. (2023). A short and updated review of nanofluids utilization in solar parabolic trough collector. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.12.278.
- Hisham, S., Kadirgama, K., Alotaibi, J. G., Alajmi, A. E., Ramasamy, D., Sazali, N., et al. (2024). Enhancing stability and tribological applications using hybrid nanocellulose–copper (II) oxide (CNC–CuO) nanolubricant: An approach towards environmental sustainability. Tribology Internation-al, 2024, 109506. https://doi.org/10.1016/j.triboint.2024.109506
- Zawawi, N. N. M., Azmi, W. H., Hamisa, A. H., Hendrawati, T. Y., & Aminullah, A. R. M. (2024). Experimental investigation of air-conditioning electrical compressor using binary TiO₂–SiO₂ polyol-ester nanolubricants. Case Studies in Thermal Engineering, 54, 104045. https://doi.org/10.1016/j.csite.2024.104045.
- Khan, W. A., & Pop, I. (2013). Boundary layer flow past a wedge moving in a nanofluid. Mathematical Problems in Engineering, 2013, Article 637285. https://doi.org/10.1155/2013/637285.
- Nield, D. A., & Kuznetsov, A. V. (2011). The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 54(1–3), 374–378. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.009.
- Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243–247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
- Kuznetsov, A. V., & Nield, D. A. (2006). Boundary layer treatment of forced convection over a wedge with an attached porous substrate. Journal of Porous Media, 9(7), 683–694. https://doi.org/10.1615/JPorMedia.v9.i7.20.
- Nield, D. A., & Kuznetsov, A. V. (2009). The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturat-ed by a nanofluid. International Journal of Heat and Mass Transfer, 52(25–26), 5792–5795. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024.
- Yih, K. A. (1998). Uniform suction/blowing effect on forced convection about a wedge: Uniform heat flux. Acta Mechanica, 128(3–4), 173–181. https://doi.org/10.1007/BF01182648.
- Yacob, N. A., Ishak, A., & Pop, I. (2011). Falkner–Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sci-ences, 50(2), 133–139. https://doi.org/10.1016/j.ijthermalsci.2010.11.009
- White, F. M. (1991). Viscous fluid flow (2nd ed.). McGraw-Hill.
- Kuo, B. L. (2005). Heat transfer analysis for the Falkner–Skan wedge flow by the differential transformation method. International Journal of Heat and Mass Transfer, 48(23–24), 5036–5046. https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.021.
- Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zentralblatt für Mathematische Physik, 56, 1–37.
-
Downloads
-
How to Cite
Saha , B. K. . (2026). Elastico–Viscous Boundary Layer Flow Over A Wedge Incorporating Nanofluid Interaction Effects. International Journal of Advanced Mathematical Sciences, 12(1), 68-78. https://doi.org/10.14419/4bv4wg35
