Precise Control of Quantum Cat and Fock States in Driven-Dissipative Multi-Mode Kerr Cavities via Engineered Nonlinearity Ratios

  • Authors

    • Isamu Ohnishi Faculty of Mathematical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima-Pref., JAPAN 739-8526
    https://doi.org/10.14419/0dytr206
  • Quantized Lugiato-Lefever equation, Engineered Kerr nonlinearities, Quantum cat states, Fock states, Driven-dissipative systems, Spectral crowding mitigation, Wigner function negativity (AMS Classification NO.s: 81Q05, 81V70, 35Q55, 81V80, 81S22)
  • Abstract

    Driven-dissipative Kerr cavities serve as a versatile platform for generating nonclassical states, such as quantum cat states and high-photon-number Fock states, which are essential for quantum information processing. Building on the quantized Lugiato-Lefever equation (QLLE), which predicts steady-state coherent state superpositions in multi-mode Kerr resonators, and the framework for engineering Kerr nonlinearity ratios to mitigate spectral crowding in coupled oscillators, we propose an

    integrated approach for precise quantum control. By engineering the Kerr ratio K1/K2 to approximate an incommensurate value using complex rational approximations, we eliminate parasitic degeneracies and enable selective addressing of transitions in the QLLE steady state. Employing a Magnus expansion, we derive an effective Hamiltonian that incorporates Stark-shift corrections, facilitating deterministic synthesis of entangled cat states and Fock states with fidelities exceeding 99.9%. Numerical simulations using QuTiP validate robustness against dissipation and thermal noise, demonstrating quantum hysteresis and Wigner negativity in multi-mode configurations. This synthesis bridges dissipative phase transitions with architectural control, offering a blueprint for scalable bosonic quantum processors in circuit QED. The Wigner function plays a pivotal role in characterizing these nonclassical states, providing a phase-space representation that reveals quantum interference effects. In our framework, the emergence of negative values in the Wigner function for the central mode confirms the non-Gaussian nature of the cat states, as dictated by Hudson’s theorem, which states that only Gaussian pure states have non-negative Wigner functions everywhere [23]. This negativity arises from the interference term in the cat-state Wigner expression, quantifying macroscopic quantum coherence and serving as a witness for entanglement in multi-mode systems. For instance, our simulations at F = 2.0 yield a minimum Wigner value of approximately -0.006, highlighting the system’s departure from classical behavior and its utility for bosonic error correction, where cat codes leverage phase-space separation to suppress bit-flip errors exponentially with cat size. Furthermore, the relation to Wigner functions extends to dynamical properties: the steady-state Wigner negativity is robust against thermal noise due to the dissipative stabilization mechanism, aligning with results from driven Bose-Hubbard models where two-mode cat states maintain negativity under loss [50]. In the QLLE context, the multi-mode extension introduces spatial localization, where the Wigner function’s negative regions correspond to soliton-like structures, as evidenced by photon population distributions [0.33, 0.90, 0.33]. This negativity is not merely a feature but a consequence of fundamental limits on classical simulability, relating to the Gottesman-Knill theorem’s extension to continuous variables, where non-Gaussian operations are necessary for universal quantum computation. Quantum hysteresis, observed in our hysteresis plots, is intimately linked to the Wigner representation through the bifurcation dynamics. Near the codimension-2 point, the system’s bistability manifests as distinct paths in phase space, with Wigner functions switching between Gaussian-like (low-photon) and cat-like (high-photon) forms, supported by spectral theory of Liouvillians that guarantees metastable states in dissipative phase transitions [32]. The forward and backward sweeps in our simulations demonstrate this path dependence, with the Wigner negativity peaking in the high-drive regime, underscoring the role of Kerr nonlinearity in engineering quantum resources. Overall, the Wigner function’s negativity serves as a diagnostic tool for the efficacy of our engineered ratios, directly tying to experimental verifiability in circuit QED setups, where homodyne measurements can reconstruct Wigner distributions to confirm cat-state fidelity. This work not only advances control protocols but also highlights the profound interplay between phase-space quasi-probabilities and dissipative quantum engineering, paving the way for fault-tolerant bosonic qubits.

  • References

    1. Antonio Ac´ın, Immanuel Bloch, Harry Buhrman, Tommaso Calarco, Christopher Eichler, Jens Eisert, Daniel Esteve, Nicolas Gisin, Steffen J Glaser, Fedor Jelezko, Stefan Kuhr, Maciej Lewenstein, Max F Riedel, Piet O Schmidt, Rob Thew, Andreas Wallraff, Ian Walmsley, and Frank K Wilhelm. The quantum technologies roadmap: a european community view. New Journal of Physics, 20(8):080201, 2018. aug.
    2. arXiv. Topological quantum computing. https://arxiv.org/html/2410.13547v2, 2024.
    3. Stephen D. Bartlett, Barry C. Sanders, Samuel L. Braunstein, and Kae Nemoto. Efficient classical simulation of continuous variable quantum information processes. Physical Review A, 66(4):042314, oct 2002. This paper presents an extension of the Gottesman- Knill theorem to continuous-variable quantum systems, showing that Gaussian operations on harmonic oscillators (quadratic Hamiltonians, Gaussian states, homodyne measurements) can be efficiently simulated classically, implying that non-Gaussian elements are required for limiting universality in continuous-variable quantum computation.
    4. A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff. Circuit quantum electrodynamics. Rev. Mod. Phys., 93:025005, 2021.
    5. Alexandre Blais, Arne L Grimsmo, SM Girvin, and Andreas Wallraff. Circuit quantum electrodynamics. Reviews of Modern
    6. Physics, 93(2):025005, 2021.
    7. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage. Trapped-ion quantum computing: Progress and challenges. Applied
    8. Physics Reviews, 6:021314, 2019.
    9. C&EN. Will quantum computing be chemistry’s next ai? https://cen.acs.org/business/
    10. quantum-computing-chemistrys-next-AI/103/web/2025/11, 2025.
    11. Sisi Chen, Shuai Zhou, et al. Going beyond the standard quantum limit in noisy quantum metrology. arXiv preprint arXiv:2309.12411,
    12. Michele C Collodo, Anton Potoˇcnik, Simone Gasperinetti, Yves Salath’e, Stefan J Weber, Pascal B”ohi, Christian Reichl, Werner
    13. Wegscheider, Andreas Wallraff, and Christian Lang. Tuneable hopping and nonlinear cross-kerr interactions in a high-coherence
    14. superconducting circuit. NPJ Quantum Information, 4(1):1–9, 2018.
    15. Gabriella G. Damas, Ciro Micheletti Diniz, Norton G. de Almeida, Celso J. Villas-Boas, and G. D. de Moraes Neto. Engineered
    16. kerr nonlinearities for precise quantum control of fock states. arXiv preprint arXiv:2510.26399, oct 2025. arXiv:2510.26399v1
    17. [quant-ph].
    18. C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of Modern Physics, 89:035002, Jul 2017.
    19. C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89:035002, 2017. Jul.
    20. C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of Modern Physics, 89:035002, Jul 2017.
    21. Michael H. Freedman, Michael Larsen, and Zhenghan Wang. A modular functor which is universal for quantum computation.
    22. Communications in Mathematical Physics, 227(3):605–622, 2002.
    23. I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153–185, 2014. Mar.
    24. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum metrology. Phys. Rev. Lett., 96:010401, 2006. Jan.
    25. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Advances in quantum metrology. Nature Photonics, 5(4):222–229, 2011.
    26. March.
    27. Nicolas Gisin and Rob Thew. Quantum communication. Nature Photonics, 1(3):165–171, 2007. March.
    28. Xiayu He, Zhihao Lu, Ze-Liang Xiang, Chang-Kui Li, Zhen-Tao Zhang, Keqiang Song, Ji-Qian Ni, Hui Wang, Dongning Yu, et al.
    29. Fast generation of schr”odinger cat states using a kerr-tunable superconducting resonator. Nature Communications, 14(1):6358,
    30. J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland. Complete methods set for scalable ion trap
    31. quantum information processing. Science, 325:1227–1230, 2009.
    32. L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C.-L. Zou, S. M. Girvin, L.-M. Duan, and L. Sun.
    33. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nature Physics, 15:503–508, 2019.
    34. R. L. Hudson. When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics, 6(2):249–252, aug
    35. This is the original paper establishing that the Wigner function of a pure state is non-negative if and only if the state is
    36. Gaussian (Hudson’s theorem).
    37. A. J. E. M. Janssen. A note on hudson’s theorem about functions with nonnegative wigner distributions. SIAM Journal on
    38. Mathematical Analysis, 18(1):170–174, Jan 1987.
    39. J. R. Johansson, P. D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems.
    40. Computer Physics Communications, 184:1234–1240, 2013.
    41. A. Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003.
    42. Alexei Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi, 44(10S):131, 2001.
    43. M. Kjaergaard, M. E. Schwartz, J. Braum¨uller, P. Krantz, J. I-J. Wang, S. Gustavsson, and W. D. Oliver. Superconducting qubits:
    44. Current state of play. Annual Review of Condensed Matter Physics, 11:369–395, 2020.
    45. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum engineer’s guide to superconducting
    46. qubits. Applied Physics Reviews, 6:021318, 2019.
    47. Marina Kudra, Martin Jirlow, Mikael Kervinen, Axel M Eriksson, Fernando Quijandr´ıa, Per Delsing, Tahereh Abad, and Simone
    48. Gasparinetti. Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary
    49. qubit. Quantum Science and Technology, 10(4):045037, 2025. sep.
    50. R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq, B. Huard, T. Kontos, M. Malek Akhlaghi, A. Cavalleri, G. Milburn,
    51. and Z. Leghtas. Exponential suppression of bit or phase errors with cyclic error correction. Nature, 577:205–210, 2020.
    52. M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M. Girvin. New class of quantum
    53. error-correcting codes for a bosonic mode. Phys. Rev. X, 6:031006, 2016.
    54. F. Minganti, A. Biella, N. Bartolo, and C. Ciuti. Spectral theory of liouvillians for dissipative phase transitions. Physical Review
    55. A, 98(4):042118, Oct 2018.
    56. MIT Technology Review. Creating a qubit fit for a quantum future. https://www.technologyreview.com/2025/08/28/1121890/
    57. creating-a-qubit-fit-for-a-quantum-future/, Aug 2025.
    58. Nature. Microsoft quantum-computing claim still lacks evidence. https://www.nature.com/articles/d41586-025-00829-2, Mar
    59. Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological
    60. quantum computation. Reviews of Modern Physics, 80(3):1083, 2008.
    61. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information: 10th anniversary edition. Cambridge
    62. University Press, 2010.
    63. L Niu et al. Realization of higher-order topological lattices on a quantum computer. Nature Communications, 15(1):1–10, 2024.
    64. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi,
    65. M. H. Devoret, and R. J. Schoelkopf. Extending the lifetime of a quantum bit with error correction in superconducting circuits.
    66. Nature, 536:441–445, 2016.
    67. Isamu Ohnishi. Emergence of coherent state superpositions of quantum cat states in driven-dissipative kerr cavities: Multi-mode
    68. steady-state analysis of the quantized lugiato-lefever equation. Preprint, nov 2025. Submitted to a journal.
    69. Stefano Pirandola and Samuel L Braunstein. Entanglement-enhanced quantum metrology: From standard quantum limit to
    70. heisenberg limit. Advances in Physics: X, 9(1):2055706, 2024.
    71. John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.
    72. S. R. K. Rodriguez. Driven-dissipative phase transition in a kerr oscillator: From semiclassical pt symmetry to quantum fluctuations.
    73. Physical Review A, 95(1):013841, Jan 2017.
    74. Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Duˇsek, Norbert L¨utkenhaus, and Momtchil Peev. The
    75. security of practical quantum key distribution. Rev. Mod. Phys., 81:1301–1350, Sep 2009.
    76. Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Duˇsek, Norbert L¨utkenhaus, and Momtchil Peev. The
    77. security of practical quantum key distribution. Rev. Mod. Phys., 81:1301–1350, 2009. Sep.
    78. Pasquale Scarlino et al. Near-ultrastrong nonlinear light-matter coupling in superconducting circuits. Nature Communications,
    79. Science Magazine. Corrected study rekindles debate over microsoft’s quantum computing research. https://www.science.org/
    80. content/article/corrected-study-rekindles-debate-over-microsoft-s-quantum-computing-research, Aug 2025.
    81. SciTechDaily. Physicists break quantum barrier with record-breaking qubit coherence. https://scitechdaily.com/
    82. physicists-break-quantum-barrier-with-record-breaking-qubit-coherence/, Jul 2025.
    83. Francisco Soto and Pierre Claverie. When is the wigner function of multidimensional systems nonnegative? Journal of Mathematical
    84. Physics, 24(1):97–100, jan 1983. This paper extends Hudson’s theorem to multi-dimensional (multi-mode) systems, proving that
    85. the Wigner function of a pure state is non-negative everywhere if and only if the state is a (multivariate) Gaussian state.
    86. Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys.,
    87. :041003, 2017. Oct.
    88. Google Quantum AI Team. A colorful quantum future. https://research.google/blog/a-colorful-quantum-future/, 2025.
    89. Google Quantum AI Team. A colorful quantum future. Google Research Blog, Jun 2025.
    90. Google Quantum AI Team. Scaling and logic in the colour code on a superconducting quantum processor. Nature, 2025.
    91. IBM Quantum Team. Big cats: entanglement in 120 qubits and beyond. arXiv preprint arXiv:2510.09520, 2025.
    92. IBM Quantum Team. Ibm delivers new quantum processors, software, and algorithm breakthroughs on path to advantage and
    93. fault-tolerance. IBM Newsroom, Nov 2025.
    94. IBM Quantum Team. Ibm reports largest entangled state to date, achieving
    95. 56 fidelity on 120 superconducting qubits. https://quantumcomputingreport.com/
    96. ibm-reports-largest-entangled-state-to-date-achieving-0-56-fidelity-on-120-superconducting-qubits/, 2025.
    97. The Quantum Insider. Microsoft shows distinct parity lifetimes in topological qubit prototype. https://thequantuminsider.com/
    98. /07/14/microsoft-shows-distinct-parity-lifetimes-in-topological-qubit-prototype/, Jul 2025.
    99. University of Oxford. New quantum visualisation techniques could accelerate the arrival of fault-tolerant quantum computers. https:
    100. //www.ox.ac.uk/news/2025-05-30-new-quantum-visualisation-techniques-could-accelerate-arrival-fault-tolerant-
    101. quantum, May 2025.
    102. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong
    103. coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431:162–167, 2004.
    104. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong
    105. coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431:162–167, 2004.
    106. Yun-Hao Wang et al. Quantum simulation of topological zero modes on a 41-qubit superconducting processor. Physical Review
    107. Letters, 131(8):080401, 2023.
    108. Xiao-Gang Wen. Vacuum degeneracy of chiral spin states in compactified space. Physical Review B, 40(10):7387, 1989.
    109. F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, and W. D. Oliver. Tunable coupling
    110. scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Applied, 10:054062, 2018.
  • Downloads

  • How to Cite

    Ohnishi, I. (2026). Precise Control of Quantum Cat and Fock States in Driven-Dissipative Multi-Mode Kerr Cavities via Engineered Nonlinearity Ratios. International Journal of Advanced Mathematical Sciences, 12(1), 9-15. https://doi.org/10.14419/0dytr206