Quantum Klein-Gordon model of Quantum Many-BodyHysteresis in Topological Insulators for Hydrogen Switching inMg-Ni Alloys and CO2 Reduction Catalysis
-
https://doi.org/10.14419/en094q27
-
Quantum Many-Body Hysteresis, Topological Insulators, Renormalization Group, Nonlinear Klein-Gordon, Hydrogen Storage, Sustainable Catalysis (AMS Classification NO.s: 81V70, 37N20, 81Q60, 82C31, 81P68) -
Abstract
This work integrates the Simple Binary Memory (SBM-ODE) model with topological insulator (TI) dynamics and quantum
many-body hysteresis, extending to quantum Klein-Gordon (KG) frameworks for hydrogen switching in Mg-Ni alloys and CO2
reduction. We canonically quantize Duffing oscillator chains to derive quantum KG equations, incorporating synchronization
for efficient absorption/desorption. Using Chiba’s Renormalization Group Method (RGM), we prove SU(2)-symmetry
breaking preservation via Schur’s lemma, derive scale-dependent flows for N-dependent hysteresis, and evaluate Hartree-
Fock-Bogoliubov (HFB) self-consistency. Numerical simulations with QuTiP show oscillatory ⟨σz⟩ (amplitude ∼0.1, period
5) with damping in quantum KG under Mg-Ni lattice, confirming winding number shifts (w: 1 → 0 at μ = ±2t). Model
Predictive Control (MPC) optimizes multi-electron transfers, yielding 15-25% improvements. This bridges spintronics,
quantum materials, and sustainable energy, aligning with 2025 trends in topological many-body systems[15][33][1].
-
References
- Charlotte Boettcher, Ashvin Vishwanath, Xiaodong Xu, and Matthew Yankowitz. Topological quantum many-body systems.
- Aspen Center for Physics, 2025. https://aspenphys.org/event/topological-quantum-many-body-systems/.
- Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press, 2002.
- Weibin Chen, Menghui Bao, Fanqi Meng, Bingbing Ma, Long Feng, and Xuan Zhang. Designer topological-single-atom catalysts
- with site-specific selectivity. Nature Communications, 2025.
- Hayato Chiba. Renormalization group method for reduction of differential equations. SIAM Journal on Applied Dynamical
- Systems, 8(3):1076–1106, 2009.
- Hayato Chiba. Simplified renormalization group method for ordinary differential equations. SIAM Journal on Applied Dynamical
- Systems, 2009.
- Hayato Chiba. High-order renormalization group for nonlinear systems. Journal of Mathematical Physics, 61(6):062701, 2020.
- Hayato Chiba. Normal forms of c∞ vector fields based on the renormalization group. Journal of Mathematical Physics, 62(6):062703,
- Shuya Dong, Zhilong Song, and Jianfeng Jia. Exploration and design of mg alloys for hydrogen storage with targeted property
- improvement using machine learning. International Journal of Hydrogen Energy, 2024.
- Shin-Ichiro Ei, Kazuyuki Fujii, and Teiji Kunihiros. Renormalization-group method for reduction of evolution equations. Journal
- of Mathematical Physics, 1999.
- Ivan Gilardoni, Federico Becca, Antimo Marrazzo, and Nicola Marzari. Real-space many-body marker for correlated topological
- insulators. Physical Review B, 2024.
- J. Gu, J. Huang, Z. Jin, and T. Wei. Multidimensional engineering of zif-8-based electrocatalysts for co2rr. RSC, 2025.
- https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc03189c.
- Dominik Hahn and Juan Felipe Rodriguez-Nieva. Ergodic and nonergodic many-body dynamics in strongly nonlinear lattices.
- Physical Review E, 2021.
- Jonah Herzog-Arbeitman, B. Andrei Bernevig, and Zhi-Da Song. Interacting topological quantum chemistry in 2d with many-body
- real-space invariants. Nature Communications, 2024.
- Xiangting Hu, Xiang Huang, Peiyao Qin, Chao He, and Hu Xu. Redefining catalyst design in topological materials. Physical
- Review B, 2024.
- Olivier Huber. Optical control over topological chern number in moir’e materials. arXiv, 2025. https://arxiv.org/html/2508.
- v1.
- Kunihiko Kaneko and Mari Tsubota. Non-equilibrium ϕ4 theory in open systems as a toy model of quantum field theory of the
- real scalar field. Annals of Physics, 2018.
- Xiangdong Kong, Jiawei Wan, Zhen Zhang, Shibo Xi, Ming Xu, Yonghua Du, Binbin Chang, Xiao Wang, Qing Kang, Chen Chen,
- Bingcai Pan, Shuai Yuan, Wei Chen, Jun Li, Chen-Gang Wang, Bin Wang, Yong Xu, and Lei Jiang. Experimental demonstration
- of topological catalysis for co2 electrochemical reduction. Journal of the American Chemical Society, 2024.
- Nitesh Kumar, Satya N. Guin, Kaustuv Manna, and Chandra Sekhar M. Topological quantum materials from the viewpoint of
- chemistry. ACS Chem. Rev., 2020. https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00732.
- Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Springer, 1984.
- Yang Liu, Chuanliang Zhao, and Haotian Wang. Experimental demonstration of topological catalysis for co2 electrochemical
- reduction. JACS, 2024. https://pubs.acs.org/doi/abs/10.1021/jacs.3c11088.
- Xinliang Lyu. Three-dimensional real space renormalization group with well-defined fixed-point tensor. arXiv, 2025. https:
- //arxiv.org/html/2412.13758v2.
- Jingyi Ma, Yujie Bai, Zhiyuan Zhang, Xiaohui Deng, Hongliang Dong, and Zhigang Zou. Co2 reduction reactivity on the sic
- monolayer with doped 585 extended line defects: A computational study. Energy & Fuels, 2024.
- Isamu Ohnishi. Nonlinear klein-gordon dynamics and control via chiba-rg in mg-ni alloy hydrogen storage. Preprint (in submitting),
- Isamu Ohnishi. Rigorous analysis of langevin noise effects on hysteresis in simplified binary memory models: Classical and quantum
- dynamics for co2 reduction catalysis. Preprint (in submittion), 2025. submit arXiv 6829258.
- Isamu Ohnishi. Rigorous renormalization group analysis of quantum many-body hysteresis in topological insulators: Applications
- to hydrogen switching and co2 reduction catalysis. Preprint (in submittion), 2025. https://papers.ssrn.com/sol3/papers.cfm?
- abstract_id=5490827.
- Isamu Ohnishi. Topological insulator dynamics with hydrogen on-off switching: Capacity improvement by mpc method via chiba
- rigorous renormalization group in view of control theory. American J. Engineering Research, 2025.
- P. H. S. Palheta, P. E. G. Assis, T. M. Nogueira, J. M. S. Ferreira, and A. S. L. Malheiro. The evolution of spectral data for
- nonlinear klein-gordon models. arXiv preprint arXiv:2408.10101, 2024.
- Junqi Qiu, Mingxia Gao, Yongquan Qing, and Hongge Yan. Tailoring hydrogen diffusion pathways in mg-ni alloys through gd
- substitution and its impact on hydrogen storage properties. Chemical Engineering Journal, 2024.
- Saurabh Kumar Singh and Sumantra Bhattacharya. Unconventional and emerging approaches to co2 reduction. Sustainability,
- Bo Song, Wentao Song, Yuhang Liang, Yong Liu, Bowen Li, He Li, Liang Zhang, Yanhang Ma, Ruquan Ye, Ben Zhong
- Tang, Dan Zhao, and Bin Liu. Yi Zhou. Direct synthesis of topology-controlled bodipy and co2-based zr-mofs. PubMed, 2025.
- https://pubmed.ncbi.nlm.nih.gov/39742452/.
- P. Stanley, Karina Hemmer, Lea N. Winter, Jonathan A. Steele, Dirk E. De Vos, and Karolien Jans. Topology- and wavelengthgoverned
- co2 reduction photocatalysis in molecular catalyst-metal-organic framework hybrids. Chemical Communications, 2022.
- Duy Van Tran and Duc Ba Nguyen. Tailoring hydrogen storage performance of mg-mg2ni alloys by fine-tuning the phase
- compositions and morphologies. Nanoscale, 2025.
- Bent Weber, Michael S. Fuhrer, Xian-Lei Sheng, Shengyuan A. Yang, Ronny Thomale, Saquib Shamim, Laurens W. Molenkamp,
- David Cobden, Dmytro Pesin, and Harold J. W. Zandvliet. 2024 roadmap on 2d topological insulators. IOPscience, 2024.
- https://iopscience.iop.org/article/10.1088/2515-7639/ad2083.
- Chao Zhang, Huichao Wang, Rui Chen, Zaichen Xiang, Yongqing Cai, Kai Yan, Kangwang Wang, Huixia Luo, Longfu Li, and
- Peifeng Yu. Revealing the nontrivial topological surface states of catalysts for effective photochemical co2 conversion. Applied
- Catalysis B: Environmental, 2024.
-
Downloads
-
How to Cite
Ohnishi, I. (2026). Quantum Klein-Gordon model of Quantum Many-BodyHysteresis in Topological Insulators for Hydrogen Switching inMg-Ni Alloys and CO2 Reduction Catalysis. International Journal of Advanced Mathematical Sciences, 12(1), 39-47. https://doi.org/10.14419/en094q27
