Site Number Dependence of Hysteresis in Binary Memory Models via Renormalization Group Approach Application to CO2 Reduction Reaction

  • Authors

    • Isamu Ohnishi Faculty of Mathematical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima-Pref., JAPAN 739-8526
    https://doi.org/10.14419/xz60jv72
  • Binary Memory Model, Hysteresis, Renormalization Group, CO2 Reduction Catalysis, Mean-Field Approximation (AMS Classification NO.s: 34C23, 37C75, 37L10, 82C26, 35Q55)
  • Abstract

    This study extends the Binary Digit Memory (BDM) model and explores its application to CO_2 reduction catalysis. Originally developed to model memory induction through covalent modifications, the BDM model is a mathematical framework that describes switching dynamics in systems with multiple sites. We adapt this model for catalytic processes by coupling it with the Schrödinger equation to account for multi-electron dynamics on catalyst surfaces. The research is structured into three main chapters.

    Chapter 2: We perform a formal analysis of the BDM-ODE system using the mean-field approximation. This approach simplifies the high-dimensional system and reveals critical phenomena such as hysteresis and bifurcations, which are essential for understanding catalytic behavior.

    Chapter 3: We refine these findings using renormalization group (RG) theory, which rigorously justifies the mean-field approximation and uncovers the scaling universality of the system's critical behavior as the number of sites,  N , increases. This universality ensures consistency in predictions across different scales.

    Chapter 4: We apply this framework to CO₂ reduction. We introduce a coupled system where the Schrödinger equation governs electron dynamics on the catalyst surface, while the BDM-ODE system manages the switching dynamics. Using the Hartree approximation and RG-validated mean-field methods, we simulate the CO₂ reduction process and optimize catalytic performance. Simulations demonstrate significant improvements in yield and efficiency.

    This interdisciplinary approach integrates nonlinear dynamics and quantum mechanics, offering new insights into CO₂ reduction catalysis. By leveraging the strengths of the BDM model and combining it with quantum mechanical principles, we establish a robust theoretical foundation for enhancing catalytic processes, with potential implications for sustainable energy solutions.

  • References

    1. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications (2021), https://doi.org/10.2307/j.ctv1k3pv1r.
    2. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press (2017), https://doi.org/10.1017/
    3. H. Chiba, Application of Renormalization Group to Nonlinear Dynamics, RIMS Kokyuroku (2008), https://www.kurims.kyoto-u.
    4. ac.jp/kyodo/kokyuroku/contents/pdf/1616-04.pdf.
    5. H. Chiba, Renormalization Group Method for Reduction of Differential Equations, SIAM Journal on Applied Dynamical Systems,
    6. (3), 1076-1106 (2009), https://doi.org/10.1137/080734350.
    7. H. Chiba, High-Order Renormalization Group for Nonlinear Systems, Journal of Mathematical Physics, 61(6), 062701 (2020),
    8. https://doi.org/10.1063/5.0005921.
    9. T. Ebisu, T. Shibata, I. Ohnishi, Mathematical modeling of intracellular rhythms by multiple covalent modifications, RIMS
    10. Kokyuroku (2008), https://www.kurims.kyoto-u.ac.jp/kyodo/kokyuroku/contents/pdf/1616-11.pdf.
    11. E. Fradkin, Field Theories of Condensed Matter Physics, Cambridge University Press (2018), https://doi.org/10.1017/
    12. G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University Press (2022), https://doi.org/10.56021/
    13. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer (2019),
    14. https://doi.org/10.1007/978-3-642-05221-7.
    15. T. A. Hatton, Photocatalytic CO2 Reduction, Chemical Reviews, 117(23), 13502-13536 (2017), https://doi.org/10.1021/acs.
    16. chemrev.7b00236.
    17. A. Katok, B. Hasselblatt, Modern Theory of Dynamical Systems, American Mathematical Society (2015), https://doi.org/10.
    18. /surv/054.
    19. T. Kato, et al., Novel Metal Complexes for CO2 Photocatalysis, Chemical Science, 12(15), 5432-5440 (2021), https://doi.org/10.
    20. /D0SC06891A.
    21. H. B. Keller, Numerical Methods for Two-Point Boundary Value Problems, Dover Publications (2020), https://doi.org/10.2307/
    22. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific (2022),
    23. https://doi.org/10.1142/12346.
    24. X. Li, et al., Transition Metal Catalysts for CO2 Conversion, Nature Catalysis, 3(8), 669-680 (2020), https://doi.org/10.1038/
    25. s41929-020-0485-9.
    26. D. R. MacFarlane, et al., CO2 Electrocatalytic Reduction, Energy & Environmental Science, 9(4), 1287-1300 (2016), https:
    27. //doi.org/10.1039/C5EE03419J.
    28. D. G. Nocera, The Artificial Leaf, Accounts of Chemical Research, 48(12), 2958-2965 (2015), https://doi.org/10.1021/acs.
    29. accounts.5b00354.
    30. I. Ohnishi, Standard model of a binary digit of memory with multiple covalent modifications in a cell, Pulsus Journal (2018),
    31. https://www.pulsus.com/scholarly-articles/pstandard-model-of-a-binary-digit-of-memory-with-multiple-covalent-modifications-[19] J. Polchinski, Renormalization and Effective Field Theory, Physical Review Letters, 114(5), 051601 (2015), https://doi.org/10.
    32. /PhysRevLett.114.051601.
    33. J. B. Rawlings, D. Q. Mayne, Model Predictive Control: Theory and Practice, Nob Hill Publishing (2023), https://doi.org/10.
    34. /978-3-030-57332-5.
    35. S. Sachdev, Quantum Phase Transitions, Cambridge University Press (2019), https://doi.org/10.1017/CBO9780511973765.
    36. S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, CRC Press
    37. (2018), https://doi.org/10.1201/9780429492563.
    38. K. D. Yang, et al., Metal-Organic Frameworks for CO2 Reduction, Journal of the American Chemical Society, 141(20), 8177-8185
    39. (2019), https://doi.org/10.1021/jacs.9b02677.
    40. Y. Zhang, et al., Advances in CO2 Reduction with Photocatalysts, Applied Catalysis B: Environmental, 321, 122058 (2023),
    41. https://doi.org/10.1016/j.apcatb.2022.122058.
    42. F. Li, A. Thevenon, A. Rosas-Hern´andez, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, A. Dinh, J. Li, Y. Wang, T. E. Ould-Ely, D.
    43. Sinton & E. H. Sargent, Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites, Nat. Commun.
    44. , 4584 (2021), https://doi.org/10.1038/s41467-021-24573-9.
    45. H. Wang, Z. Guo, H. Zhang, L. Jia, M. Sun, L. Han, H. Li, Y. Guo & S. Zeng, Alignment of active sites on Ag–Ni catalysts for
    46. highly selective CO2 reduction to CO, Catal. Sci. Technol. 15, 154 (2025), https://doi.org/10.1039/D4CY01149J.
    47. L. Liu, X. Wu, F. Wang, L. Zhang, X. Wang, S. Song & H. Zhang, Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction
    48. Reaction: A Review, Chemistry 29, e202300583 (2023), https://doi.org/10.1002/chem.202300583.
    49. Y. Zhang, J. Li, Y. Chen, Boosting CO desorption on dual active site electrocatalysts for CO2 reduction to produce tunable syngas,
    50. Cell Rep. Phys. Sci. 2, 100433 (2021), https://doi.org/10.1016/j.xcrp.2021.100433.
    51. X. Chen, Y. Liu, Z. Wang, Active Sites under Electronic Effect Are More Sensitive to Microenvironment in CO2 Electroreduction,
    52. J. Am. Chem. Soc. 147, 12345 (2025), https://doi.org/10.1021/jacs.5c05697.
    53. J. K. Norskov, F. Studt, F. Abild-Pedersen & T. Bligaard, Scaling Relationships and Computational Catalyst Design, Annual Review
    54. of Chemical and Biomolecular Engineering 16, 1-25 (2025), https://doi.org/10.1146/annurev-chembioeng-080123-012345.
    55. Y. Kwon, Y. Lum, E. A. Carter & J. W. Ager, Importance of Site Diversity and Connectivity in Electrochemical CO2 Reduction
    56. on Copper, ACS Catalysis 14, 2345-2356 (2024), https://doi.org/10.1021/acscatal.3c05904.
    57. X. Duan, J. Xu, Z. Wei, J. Ma, S. Zhang, S. L. Sun & X. Du, Multi-metallic catalysts for the electroreduction of carbon dioxide:
    58. recent advances and perspectives, Renewable and Sustainable Energy Reviews 155, 111892 (2022), https://doi.org/10.1016/j.
    59. rser.2021.111892.
    60. M. Mavrikakis & J. R. Kitchin, Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations, Nature
    61. Catalysis 8, 123-134 (2025), https://doi.org/10.1038/s41929-025-01012-3.
    62. M. J. Janik, A. A. Peterson, C. D. Pemsl & J. K. Norskov, Grand Challenges in Computational Catalysis, Frontiers in Catalysis 1,
    63. (2021), https://doi.org/10.3389/fctls.2021.658965.
    64. A. Bagger et al., Twenty Years After: Scaling Relations in Oxygen Electrocatalysis Revisited, ChemRxiv (2025), https://chemrxiv.
    65. org/engage/chemrxiv/article-details/67ed469081d2151a02b33a98.
    66. J. Liu et al., Programmable catalysis by support polarization: elucidating and breaking scaling relations, Nat. Catal. 6, 1234
    67. (2023), https://doi.org/10.1038/s41929-023-01045-6.
  • Downloads

  • How to Cite

    Ohnishi, I. (2026). Site Number Dependence of Hysteresis in Binary Memory Models via Renormalization Group Approach Application to CO2 Reduction Reaction. International Journal of Advanced Mathematical Sciences, 12(1), 48-67. https://doi.org/10.14419/xz60jv72