On the Conharmonic and Concircular curvature tensors of almost $\mathbf{C}(\lambda)$ Manifolds

Ali Akbar*, Avijit Sarkar
Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal, India
*Corresponding author E-mail: aliakbar.akbar@rediffmail.com

Abstract

The object of the present paper is to characterize certain curvature conditions on conharmonic and concircular curvature tensors on almost $\mathrm{C}(\lambda)$ manifolds. In this paper we study conharmonically flat, ξ-conharmonically flat, concircularly flat and ξ-concircularly flat almost $\mathrm{C}(\lambda)$ manifolds.

Keywords: Almost $C(\lambda)$ manifolds, Conharmonic and concircular curvature tensor, ξ-conharmonically flat and ξ-concircularly flat.

1 Introduction

The notion of almost $\mathrm{C}(\lambda)$ manifolds was introduced by D. Janssen and L. Vanhecke [3]. Further Z. Olszak and R. Rosca [8] investigated such manifolds. Again S. V. Kharitonova [5] studied conformally flat almost C (λ) manifolds. In the paper [1] the author studied Ricci tensor and quasi-conformal curvature tensor of almost $C(\lambda)$ manifolds. In paper [4] the authors have studied ξ-conharmonic flat Generalized Sasakian-Space-Forms. Also in paper [7] the authors have studied ξ-concircularly flat 3 -dimensional quasi-Sasakian manifold. Our present work is motivated by these works. The present paper is organized as follows:

After introduction we give some preliminaries in Section 2. In Section 3 and Section 4 we study conharmonically and concircularly flat almost $C(\lambda)$ manifolds. In Sections 5 and Section 6 we investigate respectively ξ-conharmonically and ξ-concircularly flat almost $\mathrm{C}(\lambda)$ manifolds.

2 Preliminary notes

Let M be a $(2 n+1)$-dimensional connected differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a tensor field of type $(1,1), \xi$ is a vector field, η is an 1-form and g is a Riemannian metric on M such that [2]

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1 \tag{1}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad X, Y \in T(M) \tag{2}
\end{align*}
$$

Then also

$$
\begin{align*}
& \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(X)=g(X, \xi) . \tag{3}\\
& g(\phi X, X)=0 . \tag{4}\\
& \left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X . \tag{5}
\end{align*}
$$

If an almost contact Riemannian manifold M satisfies the condition

$$
\begin{equation*}
S=a g+b \eta \otimes \eta \tag{6}
\end{equation*}
$$

for some functions a and b in $C^{\infty}(M)$ and S is the Ricci tensor, then M is said to be an η-Einstein manifold. If, in particular, $a=0$ then this manifold will be called a special type of η-Einstein manifold.
An almost contact manifold is called an almost $C(\lambda)$ manifold if the Riemannian curvature R satisfies the following relation [5]

$$
\begin{equation*}
R(X, Y) Z=R(\phi X, \phi Y) Z-\lambda[X g(Y, Z)-g(X, Z) Y-\phi X g(\phi Y, Z)+g(\phi X, Z) \phi Y] \tag{7}
\end{equation*}
$$

where, $X, Y, Z \in \mathrm{TM}$ and λ is a real number. From (7) we have,

$$
\begin{equation*}
R(X, Y) \xi=R(\phi X, \phi Y) \xi-\lambda[X \eta(Y)-\eta(X) Y] \tag{8}
\end{equation*}
$$

On an almost $\mathrm{C}(\lambda)$ manifold, we also have [1]

$$
\begin{equation*}
Q X=A X+B \eta(X) \xi \tag{9}
\end{equation*}
$$

where, $A=-\lambda(2 n-1), B=-\lambda$ and Q is the Ricci-operator.

$$
\begin{align*}
& \eta(Q X)=(A+B) \eta(X) \tag{10}\\
& S(X, Y)=A g(X, Y)+B \eta(X) \eta(Y) \tag{11}\\
& r=-4 n^{2} \lambda \tag{12}\\
& S(X, \xi)=(A+B) \eta(X) \tag{13}\\
& S(\xi, \xi)=(A+B) \tag{14}\\
& g(Q X, Y)=S(X, Y) \tag{15}
\end{align*}
$$

3 Conharmonically flat almost $C(\lambda)$ manifolds

Definition 3.1. The conharmonic curvature tensor C of type $(1,3)$ on a Riemannian manifold (M, g) of dimension $(2 n+1)$ is defined by [6]

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{1}{2 n-1}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{16}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$, where Q is the Ricci-operator. If C vanishes identically then we say that the manifold is conharmonically flat.

Thus for a conharmonic flat almost $C(\lambda)$ manifold, we get from (16)

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 n-1}\{S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y\} \tag{17}
\end{equation*}
$$

By virtue of (9) and (11), (17) takes the form

$$
\begin{align*}
R(X, Y) Z & =\frac{1}{2 n-1}\{A g(Y, Z) X+B \eta(Y) \eta(Z) X-A g(X, Z) Y-B \eta(X) \eta(Z) Y+A g(Y, Z) X \tag{18}\\
& +B g(Y, Z) \eta(X) \xi-A g(X, Z) Y-B g(X, Z) \eta(Y) \xi\}
\end{align*}
$$

In view of (7) we get from (18)

$$
\begin{align*}
& R(\phi X, \phi Y) Z \\
= & \lambda\{X g(Y, Z)-g(X, Z) Y-\phi X g(\phi Y, Z)+g(\phi X, Z) \phi Y\}+\frac{1}{2 n-1}\{A X g(Y, Z))+B X \eta(Y) \eta(Z) \tag{19}\\
- & A Y g(X, Z)-B \eta(X) \eta(Z) Y+\operatorname{Ag}(Y, Z) X+B g(Y, Z) \eta(X) \xi-A g(X, Z) Y-B g(X, Z) \eta(Y) \xi\}
\end{align*}
$$

Putting $Y=\xi$ and using the value of A and B in (19) we get

$$
\begin{equation*}
2 n \lambda\{X \eta(Z)-g(X, Z) \xi\}=0 \tag{20}
\end{equation*}
$$

Taking inner product of (20) with a vector field ξ, we obtain

$$
\begin{equation*}
2 n \lambda\{\eta(X) \eta(Z)-g(X, Z)\}=0 \tag{21}
\end{equation*}
$$

Putting $X=Q X$ in (21) we get

$$
\begin{equation*}
2 n \lambda\{\eta(Q X) \eta(Z)-g(Q X, Z)\}=0 \tag{22}
\end{equation*}
$$

Using (10) and (15) in (22) we obtained

$$
\begin{equation*}
2 n \lambda\{(A+B) \eta(X) \eta(Z)-S(X, Z)\}=0 \tag{23}
\end{equation*}
$$

Therefore, either $\lambda=0$ or, $S(X, Z)=(A+B) \eta(X) \eta(Z)$.
Thus we are in a position to state the following result:
Theorem 3.1. For a conharmonically flat almost $C(\lambda)$ manifold, either $\lambda=0$ or the manifold is special type of η-Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary.
Corollary 3.1. Every conharmonic flat almost $C(\lambda)$ manifold is, either cosymplectic or the manifold is special type of η-Einstein.

4 Concircularly flat almost $C(\lambda)$ manifold

Definition 4.1. The concircular curvature tensor C of type $(1,3)$ on a Riemannian manifold (M, g) of dimension $(2 n+1)$ is defined by [6]

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{r}{2 n(2 n+1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{24}
\end{equation*}
$$

for any vector fields $X, Y, Z \in \chi(M)$, r is the scalar curvature of the manifold. The concircular curvature tensor C of M represents the deviation of the manifold from constant curvature. If C vanishes identically, we say that the manifold is concircularly flat.

Thus for a concircularly flat almost $C(\lambda)$ manifold, we have from (24)

$$
\begin{equation*}
R(X, Y) Z=\frac{r}{2 n(2 n+1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{25}
\end{equation*}
$$

In view of (7) we obtain from (25)

$$
\begin{align*}
& R(\phi X, \phi Y) Z \\
= & \lambda\{g(Y, Z) X-g(X, Z) Y-g(\phi Y, Z) \phi X+g(\phi X, Z) \phi Y\}+\frac{r}{2 n(2 n+1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{26}
\end{align*}
$$

Putting $Y=\xi$ and using (12) we get from (26)

$$
\begin{equation*}
\lambda\{\eta(Z) X-g(X, Z) \xi\}=0 \tag{27}
\end{equation*}
$$

Taking inner product of (27) with a vector field ξ, we obtain

$$
\begin{equation*}
\lambda\{\eta(X) \eta(Z)-g(X, Z)\}=0 \tag{28}
\end{equation*}
$$

Putting $X=Q X$ in (28) we get

$$
\begin{equation*}
\lambda\{\eta(Q X) \eta(Z)-g(Q X, Z)\}=0 \tag{29}
\end{equation*}
$$

Using (10) and (15) in (29) we obtain

$$
\begin{equation*}
\lambda\{(A+B) \eta(X) \eta(Z)-S(X, Z)\}=0 \tag{30}
\end{equation*}
$$

Therefore, either $\lambda=0$ or, $S(X, Z)=(A+B) \eta(X) \eta(Z)$.
Thus we are in a position to state the following :
Theorem 4.1. For a concircularly flat almost $C(\lambda)$ manifold, either $\lambda=0$ or the manifold is special type of η Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary.
Corollary 4.1. Every concircularly flat almost $C(\lambda)$ manifold is, either cosymplectic or the manifold is special type of η-Einstein.

5ξ-conharmonically flat almost $C(\lambda)$ manifold

Definition 5.1. The conharmonic curvature tensor C of type $(1,3)$ on a Riemannian manifold (M, g) of dimension $(2 n+1)$ will be called ξ-conharmonic flat [4] if $\mathrm{C}(\mathrm{X}, \mathrm{Y}) \xi=0$ for all $X, Y \in \mathrm{TM}$.

Thus for a ξ-conharmonic flat almost $C(\lambda)$ manifold we get from (16)

$$
\begin{equation*}
R(X, Y) \xi=\frac{1}{2 n-1}\{S(Y, \xi) X-S(X, \xi) Y+g(Y, \xi) Q X-g(X, \xi) Q Y\} \tag{31}
\end{equation*}
$$

In view of (8) we get from (31)

$$
\begin{equation*}
R(\phi X, \phi Y) \xi=\lambda\{X \eta(Y)-\eta(X) Y\}+\frac{1}{2 n-1}\{S(Y, \xi) X-S(X, \xi) Y+\eta(Y) Q X-\eta(X) Q Y\} \tag{32}
\end{equation*}
$$

Putting $Y=\xi$ in (32) we obtain

$$
\begin{equation*}
0=\lambda\{X-\eta(X) \xi\}+\frac{1}{2 n-1}\{S(\xi, \xi) X-S(X, \xi) \xi+Q X-\eta(X) Q \xi\} \tag{33}
\end{equation*}
$$

Using (9), (13) and (14) in (33) we get

$$
\begin{equation*}
\left\{\lambda+\frac{2 A+B}{2 n-1}\right\}\{X-\eta(X) \xi\}=0 \tag{34}
\end{equation*}
$$

Putting the value of $A=-\lambda(2 n-1)$ and $B=-\lambda$ in (34) we obtain

$$
\begin{equation*}
-\frac{2 n \lambda}{2 n-1}\{X-\eta(X) \xi\}=0 \tag{35}
\end{equation*}
$$

Taking inner product of (35) with a vector field U, we obtain

$$
\begin{equation*}
2 n \lambda[g(X, U)-\eta(X) \eta(U)]=0 \tag{36}
\end{equation*}
$$

Putting $X=Q X$ in (36) we get

$$
\begin{equation*}
2 n \lambda\{g(Q X, U)-\eta(Q X) \eta(U)\}=0 \tag{37}
\end{equation*}
$$

Using (10) and (15) in (37)

$$
\begin{equation*}
2 n \lambda\{S(X, U)-(A+B) \eta(X) \eta(U)\}=0 \tag{38}
\end{equation*}
$$

Therefore, either $\lambda=0$ or, $\mathrm{S}(\mathrm{X}, \mathrm{U})=(\mathrm{A}+\mathrm{B}) \eta(\mathrm{X}) \eta(\mathrm{U})$
Thus we are in a position to state the following result:
Theorem 5.1. For ξ-conharmonically flat almost $C(\lambda)$ manifold, either $\lambda=0$ or the manifold is special type of η-Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary:
Corollary 5.1. Every ξ-conharmonically flat almost $C(\lambda)$ manifold is either cosymplectic or the manifold is special type of η-Einstein.

$6 \quad \xi$-concircularly flat almost $C(\lambda)$ manifold

Definition 6.1. The concircular curvature tensor C of type $(1,3)$ on a Riemannian manifold (M, g) of dimension n will be called ξ-concircularly flat $[7]$ if $\mathrm{C}(\mathrm{X}, \mathrm{Y}) \xi=0$ for all $X, Y \in \mathrm{TM}$.

Thus for a ξ-concircularly flat almost $C(\lambda)$ manifold we get from (24)

$$
\begin{equation*}
R(X, Y) \xi=\frac{r}{2 n(2 n+1)}[\eta(Y) X-\eta(X) Y] \tag{39}
\end{equation*}
$$

In view of (8) we obtain from (39)

$$
\begin{equation*}
R(\phi X, \phi Y) \xi=\left\{\lambda+\frac{r}{2 n(2 n+1)}\right\}\{\eta(Y) X-\eta(X) Y\} . \tag{40}
\end{equation*}
$$

Setting $Y=\xi$ in (40) we get

$$
\begin{equation*}
0=\left\{\lambda+\frac{r}{2 n(n+1)}\right\}\{X-\eta(X) \xi\} \tag{41}
\end{equation*}
$$

By virtue of (12) we get from (41)

$$
\begin{equation*}
\left\{\lambda-\frac{2 n \lambda}{(2 n+1)}\right\}\{X-\eta(X) \xi\}=0 \tag{42}
\end{equation*}
$$

Taking inner product of (42) with a vector field U, we obtain

$$
\begin{equation*}
\frac{\lambda}{(2 n+1)}\{g(X, U)-\eta(X) \eta(U)\}=0 \tag{43}
\end{equation*}
$$

Putting $X=Q X$ in (43) we get

$$
\begin{equation*}
\lambda\{g(Q X, U)-\eta(Q X) \eta(U)\}=0 \tag{44}
\end{equation*}
$$

Using (10) and (15) in (44) we get

$$
\begin{equation*}
\lambda\{S(X, U)-(A+B) \eta(X) \eta(U)\}=0 \tag{45}
\end{equation*}
$$

Therefore, either $\lambda=0$ or, $\mathrm{S}(\mathrm{X}, \mathrm{U})=(\mathrm{A}+\mathrm{B}) \eta(\mathrm{X}) \eta(\mathrm{U})$.
Thus we are in a position to state the following result:
Theorem 6.1. For ξ-concircularly flat almost $C(\lambda)$ manifold, either $\lambda=0$ or the manifold is special type of η Einstein.
Again we know from [3] that a manifold is cosymplectic if λ vanishes. Thus we have the following corollary:
Corollary 6.1. Every ξ-concircularly flat almost $C(\lambda)$ manifold is either cosymplectic or the manifold is special type of η-Einstein.

References

[1] Ali Akbar, Some Results on Almost $C(\lambda)$ manifolds, International Journal of Mathematical Sciences Engineering and applications (IJMSEA), Volume 7(1)(2013) pp. 255-260 .
[2] Blair, D. E., Contact manifolds in Riemannian geometry. Lecture Notes in Math. No. 509. Springer 1976.
[3] D. Janssen and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4(1981), 1-27.
[4] G. Zhen, J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28(1997), 725-734.
[5] Kharitonova, S.V., Almost $C(\lambda)$ manifolds, Journal of Mathematical Sciences, 177(2011), 742-747.
[6] De U.C. and Shaikh A. A., Differential Geometry of Manifolds, Narosa Pub. House, New Delhi, 2007
[7] Uday chand De, Ahmet Yildiz, Mine Turan and Bilal E. Acet, 3-Dimensional Quasi-Sasakian Manifolds with semisymmetric non-metric connection, Hacettepe Journal of Mathematics and Statistics, Volume 41(1)(2012), 127-137.
[8] Z . Olszak and R. Rosca, Normal locally confomal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(1991), 315-323.

