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Abstract

The core of the paper was to investigate the possibility of local hidden variable theory and its application in quantum teleportation. We
reviewed literature on the Bell’s inequality which is necessary for quantum teleportation. Quantum teleportation utilises a single-particle
entangled state which can be successfully achieved by the application of the locality assumption which leads to Bell’s inequality. A violation
of the Bell’s inequality signifies the nonlocal nature of a single particle useful for quantum teleportation.
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1. Introduction

The controversies surrounding the incompleteness of quantum
mechanics and with the Einstein, Podolsky and Rosen (EPR)
paradox led to several investigations, experiments and publications
of findings in the EPR paradox and Bell’s inequality and quantum
teleportation. Home, D., and Selleri, F. (1991) [13] worked on Bell’s
theorem and the EPR paradox.

Blaylock (2010) [6] employed a simple and well-known thought
experiment involving two correlated photons to help us focus on the
logical assumptions needed to construct the EPR and Bell arguments.
He presented in his paper that, the minimal assumptions behind
Bell’s inequality are locality and counterfactual definiteness, but
not scientific realism, determinism, or hidden variables, as is often
suggested. He also examined the resulting constraints on physical
theory with an illustration from the many-worlds interpretation of
quantum mechanics - an interpretation that we argue is deterministic,
local, and realistic, but that nonetheless violates the Bell inequality.

Hasega et al., (2010) [12] measured the correlations between two
degrees of freedom (comprising spatial and spin components) of
single neutrons; which removes the need for a source of entangled
neutron pairs. A Bell-like inequality was introduced to clarify
the correlations that can arise between observables of otherwise
independent degrees of freedom.

With quantum entanglement being a pure quantum phenomenon,
many findings were discovered in the area of quantum information
such us quantum computing, quantum cryptography and quantum
teleportation. Quantum teleportation which is our subject of interest

in this paper is a new area where more studies are made daily.
Quantum teleportation uses shared entanglement between the sender
(named Alice) and the remote receiver (Bob) as source.

After the work of Bennett et al. (1993) [5] teleportation of
single-body quantum state via single quantum channel has received
extent investigations both theoretically and experimentally. Since
then, many scientist have worked in that area and new discoveries
are been made every time.

Hu M. L. (2011) [15] studied standard quantum teleportation of
one-qubit state for the situation in which the channel is subject to
de-coherence, and a detailed calculation reveals that the quality of
teleportation is determined by both the entanglement, and the purity
of the channel state, and only the optimal matching of them ensures
the highest fidelity of standard quantum teleportation.

The teleportation of an entangled two-body pure state by using
two copies of Werner states as noisy quantum channels was
considered by Lee and Kim, (2000) [18] and he then found out
that, the quantum entanglement of the unknown state can be lost
during the teleportation even when the channel is quantum correlated.

Horodeck et al., (1996) [14]. investigated the relations between
teleportation, Bell’s inequalities and inseparability and it was shown
that for any mixed two spin- 1

2 state which violates the Bell-CHSH
inequality, then it is useful for teleportation. The result did also
extended to any Bell’s inequalities constructed of the expectation
values of products of spin operators.

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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1.1. Objective

Motivated by the works and findings above, the main objective of
this work is to investigate the possibility of local hidden variable
theory and its application will be in quantum teleportation. We will
also explore some consequences of quantum mechanics and ways
in which is it fundamentally different from classical mechanics, in
particular due to superposition of states and the process of measure-
ment. Then finally the study of Bell’s inequality and the method by
which a teleporting system can be created by the violation of Bell’s
inequality.

2. Quantum mechanics vs. classical mechanics

Classical mechanics solves problems in the macroscopic world. The
Newtonian mechanics which had been firmly established as a valid
theory for explaining the behaviours of all kinds of dynamic systems
in the macroscopic world, could not give a valid explanation for
experimental anomalies. Explaining these anomalies led to the rise
of quantum mechanics (Reilly, 1970) [20]. Quantum mechanics
requires an ordinary prescription for operators and none ordering
prescription respects the symmetries of the classical theory (Terhal
et al., 2003) [25].

Quantum mechanics deals with physical phenomena at nanoscopic
scales:- in the order of Planck constant (h) and it gives a mathe-
matical description of particle like and wavelike behaviour and
interactions of matter and energy.

Quantum mechanics has gone beyond the illusion of Newton’s uni-
verse. It has revealed that

(i) atomic matter, dissolves into waves of potential existence.
(ii) determinism falls apart, giving us a spontaneous world.

(iii) we are living a world in which the observed phenomena de-
pends on how we choose to look at things.

(iv) quantum mechanics is a world of “possibility”. Eg. quan-
tum tunnelling:- the phenomenon that real - energy classical
particles can never enter classically forbidden regions.

“The Newtonian laws that govern the universe everyday don’t hold
true on the quantum level”.

Ways in which quantum mechanics is different from classical me-
chanics will be explained from the angle of

• Superposition of states and
• Process of measurement.

2.1. Superposition of states

One of the basic principles of quantum mechanics is the superposi-
tion principle. It is the relation that exist among states.

Example is the quantum qubit (the corresponding unit of quantum
information) state which is a linear superposition of the basis state
represented as a linear combinations of |0〉 and |1〉. Thus mostly
expressed in the normalized state as

|Ψ〉= α|0〉+β |1〉, (1)

where α and β represent the probability of amplitudes in the
complex form satisfying |α|2 + |β |2 = 1.

Qubits represent atoms, ions, electrons or photons in their respective
control devices that are working to act as a computer memory.
Measuring the state (1) results in |0〉 with probability |α|2, and |1〉
with probability |β |2. Except in cases where α = 0 and β = 0, that
the measurement constantly disturbs the state. After measurement,

the system is in the measured state.

A classical bit differs from a qubit; a classical bit can be measured
without disturbing it and we can decrypt all of the information that it
encodes. We can completely encode one bit in one qubit. A qubit can
hold more information, for example up to two bits using super-dense
coding (a technique used to send two bits of classical information
using one qubit). Whereas the state of a bit is either 0 or 1, the state
of a qubit can be a superposition of both. Supposing the value of a
classical bit is initially unknown to us, then based on the information
available to us, we can say there is a probability p0 that has the
value 0, and a probability p1, that the bit has the value 1, where
p0 + p1 = 1.

2.2. Implications of superposition

In superposition principle, quantum mechanics is fundamentally
different from classical mechanics. Newton‘s second law (F = ma)
which states that the acceleration produced by a net force is directly
proportional to the magnitude of the net force in the same direction
as in the net force is the equation of motion used mathematically in
classical mechanics. It predicts what the system will do at any time
after the initial condition.

The Schrödinger equation for quantum system is the analogue
of Newton’s law. The Schrödinger equation describes how wave
propagates and behaves, the wave is described by the wave function
and the equation governing it is called the Schrödinger wave
equation. It gives a consistent explanation with both classical
mechanics and special relativity.

The general time dependent Schrödinger equation (TDSE) is ex-
pressed as

ih̄
∂

∂ t
Ψ = ĤΨ,

and the non relativistic equation is expressed in the form

ih̄
∂

∂ t
Ψ(r, t) =

[
− h̄2

2µ
52 +V (r, t)

]
Ψ(r, t).

The time independent Schrödinger equation (TISE) in the general
form is

EΨ = ĤΨ,

and its non relativistic equation is in the form

EΨ(r) =

[
− h̄2

2µ
52 +V (r)

]
Ψ(r).

Quantum mechanics incorporates four classes of phenomena for
which classical mechanics can not account for:

• Quantization: It predicts only specific discrete values can
occur when certain properties of the system are measured. It is a
phenomenon used in quantum mechanics. Examples are energy
quantization (E = h̄w) and quantization of angular momentum.

• Measurement and Uncertainty: Quantum mechanics talks
about probability as a particle property can not be determined
exactly (that is, you can not measure position and momentum at
the same time) as compared to classical mechanics (the particle
has an exact position and momentum using Newton’s laws).
The uncertainty equation is expressed as

4Px 4 x≥ h̄
2π

.
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• Quantum Tunneling: It describes a phenomenon where a par-
ticle can penetrate through a potential barrier. It does not have a
classical counterpart since a ball roll back to its initial position
because it does not have enough energy to get over the hill to
the other side. It is possible in quantum mechanics what seems
impossible in the classical world.

• Particle as wave: It is the property that a single element has
both particle-like and wavelike properties. It explains classi-
cal mechanics inability of “wave” and “particle” completely
describing the nature and behaviour of nanoscopic (quantum)
objects. As written by Einstein “It seems as though we must
use the one theory and sometimes the other, while at times we
may use either. We are faced with a new kind of difficulty. We
have two contradictory pictures of reality; separately neither of
them fully explains the phenomenon of light, but together they
do”.

2.3. Process of measurement

The representation of the states and the measurement process in
quantum mechanics is very counterintuitive. This is mainly due
to the difference between the treatments of classical and quantum
mechanics.

2.4. Measurements in classical mechanics

Properties such as position, momentum and energy can be measured
in any degree of accuracy desired (Griffiths, 2005) [5]. In classical
measurement, there is interference or pre-existing account of the
behaviour of the measurement property and it is often considered
deterministic, real and local which that of the quantum measurement
process is also considered as random and indeterministic. The
predicted values of the measurement in quantum mechanics are
described by a probability distribution (Wakita, 1960) [26]. Observ-
ables are represented as scalar quantities of classical mechanics as
opposed to self adjoint operators of quantum mechanics.

A pair of numbers (x, p) is used to represent a state of a system in
classical mechanics. The pair of numbers contains every necessary
information needed about that system in one dimension.

2.5. Representation of state and observables

“Measurement causes the system to jump to eigenstate of the
dynamic variable that is been measured, the eigenvalue this
eigenstate belongs to being equal to the result of the measurement”,
(Dirac, 1981) [8]. Measurement in quantum mechanics are values
which are stated as postulates.

A wave-function Ψ(x) is used in quantum mechanics instead of
two real variables. The wave-function Ψ(x) is the state of quantum
mechanics that gives all information about that particle.

Classical Mechanics: state⇔ (x, p)
Quantum Mechanics: state⇔ Ψ = Ψ(x)
Observable properties in classical mechanics is represented by a
function of the state, that is position and momentum (x, p). Example
is the energy of a given particle by the Hamilton function

E = H(p, x) =
p2

2m
+V (x) =

mv2

2
+V (x). (2)

Observables are represented by linear operators in quantum mechan-
ics.

Â(c1 Ψ1 + c2 Ψ2) = Âc1 Ψ1 + Âc2 Ψ2

Â(cm) = cÂm

The equation 3 is satisfied for all complex numbers c1, c2 and “func-
tions” Ψ1, and Ψ2. Quantum mechanics is a linear theory. The first
postulates states that,
“for a physical system, any possible state of the system is represented
by a wave function Ψ” (S. Turgut, 2013) [23].
Ψ assumes different mathematical structures depending on how the
system is described. Ψ might represent a column matrix where all
its entries are either numbers or functions.
Considering a single particle, Ψ is normally represented as a
function of position Ψ(x) in one dimension and in three dimension
as Ψ(x, y, z). For two particles, Ψ is then a function of both positions
(i.e., Ψ = Ψ(xn, yn, zn)) denoting the position of the n-th particle.
Both the classical and quantum mechanical states Ψ depends on
time. A particle in one dimension for a quantum state is represented
as Ψ = Ψ(x, t). The classical state in one dimension (1D) is (x, v).
As the particle move, x changes and therefore, the state is time
dependent.
For any observable property A of a system, there is a corresponding
operator Â.

Typical observables are position, momentum and energy. Consid-
ering ÂΨ = φ , if Ψ is a function of position x, i.e., Ψ = Ψ(x), then
so is φ . The operator Â acts on the wave-function like mathemat-
ical objects and produces a mathematical object of the same type.
Ψ can also be considered as an elements of vector space. We can
form linear combinations of of Ψ1 and Ψ2 to obtain another possi-
ble wave-function Ψ = c1Ψ1 + c2Ψ2. Thus the wave function can
also be called vectors. The term given for this linear combination
is usually called superposition. In ÂΨ = φ , the operator acts on a
function and produces another function.
In quantum mechanics, the state of a system on the atomic and sub-
atomic scale is not defined by a set of dynamic variables each with a
specific numerical value specified by “state function”, (Tang, 2005)
[24].

2.6. States where observables are definite

If the equation Âφ = λ φ is satisfied for a complex number and non-
zero function φ , then λ is the eigenvalue of the observable Â and φ is
the eigenvector. The set of all eigenvalues λ forms the spectrum of Â.

If we consider Ψ to be an eigenvector of an observable Â with
eigenvalue a, then the equation

ÂΨ = aΨ (3)

is satisfied. Thus the observable Â has the definite value a in the state
Ψ. The system in the state Ψ when an observable Â is measured
implies that

• getting the value a with certainty and
• the system remains in the same state.

Example: Considering a particle in one dimension, the momentum
operator p̂x = p̂ is expressed as

p̂ =
h̄
i

∂

∂ x
.

The eigenvalue is usually expressed as h̄k where k is the wave number.
The corresponding eigenfunction as φk is given as

p̂φk = h̄ k φk,

φk(x) = Aeikx.

The function above is the Broglie relation having a single wavelength
λ = 2π

k .
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If we consider a particle in the state Ψ = 4eikx, then the momentum
has a definite value of h̄k and the constant 4 has no effect on the state-
ment because it does not change the fact that Ψ is an eigenvector of p̂.

If φ is an eigenvector of Â with eigenvalue λ , then for any non-zero
complex number c the function cφ is also an eigenvector Â with the
same eigenvalue λ .

Âφ = λ ⇒ Â(cφ) = λ (cφ)

3. EPR experiment, Bell’s theorem and Bell’s
inequality

The question is whether quantum mechanics is an incomplete theory,
whether it is non-local and whether it can be explained realistically.
The EPR experiment seeks to answer the bewildering interpretations
given by physicist and philosophers as to the possibility of a local
hidden variable and incompleteness.

“Theoretical physicist live in a classical world, looking out into a
quantum mechanical world. Nobody knows just where the boundary
between classical and quantum mechanics is situated. Most feel
the experiment switch setting and pointer readings are on this side.
But some would think the boundary nearer, others would think it is
farther, and many would prefer not to think about it”, (Bell, 2004) [3].

“To know the quantum mechanical system of a state implies, in
general, only statistical restrictions on the results of measurement, it
seems interesting to ask if this statistical element be thought of as
arising, as in classical mechanics, because the states in question are
averages over better states for which individually the results would
be quite determined. These hypothetical ‘dispersion free’ states
would be specified not only by quantum mechanical state vector
but also by additional ‘hidden variables’- hidden because if states
with prescribed values of these variables could actually be prepared,
quantum mechanics would be observable inadequate (Bell, 1982)
[4].”

The two quotes above are from the introduction of John Bell’s collec-
tion of papers. It addresses the so-called incompleteness of whether
quantum mechanics is a complete physical theory.

Definition 3.1. (Incompleteness problem, preliminary formalism).
“Is quantum mechanics a complete physical theory?”

What do we mean when we talk of a complete physical theory?
Does quantum mechanics really give a comprehensive description
of the physical phenomena? The ambiguity of this formulation is
only preliminary.

Following John Bell’s (2004) [3] paper, the motivation to study
hidden local variable - was an attempt to the incompleteness problem
- and the motivation was distinguished into three categories.

1 . The likelihood of a unitary account of the world and the
desire to dichotomize the physical world into classical and
quantum mechanics. Bell put it as: “it is the possibility, of
a homogeneous account of this world, which is for me the
chief motivation of the study of the so-called ‘hidden-variable’
possibility, (Bell, 2004) [3]”. The possibility that the world
exist as a uniform or single entity and things are correlated.

2 . To disencumber the statistical element of quantum mechanics
and get some form of realism and or determinism back into the
realm of micro-physics. That the behaviour of physical objects
could be principally ascertain by physical laws.

3 . To come to terms with some uncanny quantum mechanics
predictions that deal with the notion of non-locality, “we seem

almost to cry out for a hidden local variable interpretation (Bell,
2004) [3]” in Bell’s own words. It had to do with some quan-
tum mechanical relations exhibiting non-locality that the EPR
addresses in their paper (Einstein et al., 1935) [9]. Nonetheless
quantum mechanics does not specify these variable and one
is left to doubt even non-local correlations. EPR argues that,
following the principle of scientific realism, that quantum me-
chanical theory fails to specify an element of reality. Thereby
implying, as a physical theory, it is incomplete. An example
is seen in the orthodox interpretation of quantum mechanics
that claims that the polarizations of two photons are not well
specified before measuring it. The entangled superposition of
|x〉 and |y〉 of the two photons. Both photons are said to collapse
only when one measurement takes place. Quantum mechanics
does not define what the polarizations are and does not even
accept the definite polarization of either photon.

Bell’s motivation to study hidden local variable formalism, fix the
quantum formalism of the then called local realism.

Definition 3.2. (Local realism:) All correlations in correlation tables
for all physical systems obtained from actual or possible physical
measurements allow a local hidden variable (HV) - model.

PA,B(a,b|λ ) = PA(a|λ )PB(b|λ )

The outcomes of a and b for a fixed λ are completely statistically
independent which is referred to as factorisability. This means that
the hidden variable for quantum mechanics seeks for a local realistic
account of the quantum phenomena. It gave room to the question,
“can one really answer the incompleteness problem with local hidden
variables?”. Thus three great scientists, Einstein, Podolsky and
Rosen, (1935) [9] were the first to say quantum mechanics can not
be a complete theory but should be added up by additional variable.

3.1. EPR experiment

The EPR experiment was formulated in 1935 and their argument
was that “Quantum mechanics cannot be a complete theory of the
physical world”. It drew attention to Quantum Entanglement (which
quantum mechanics predict) in those days. Their argument was
based on the analysis of measuring the property of a particle (two
separate particles but correlated) which interacted in the past and
then separated. When one particle is measured, it will have effect
on the other particle (spooky-action-at-a-distance) which Einstein
could not accept due to the “principle of locality” which states that,
action at one location does not have any effect at a separate location.

Thus all particles possessed some sort of fixed properties which
were hidden from our view (hidden variable).

Bohm in 1950 reformulated the EPR experiment as measurements
of spin 1

2 particles instead of the continuous range of results using
colour experiment.

Figure 1: Bohm EPR colour experiment (Einstein et al., 1935) [9]
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If a single particle splits into two: one red and one green, and red and
green are replaced by spin up and spin down respectively showing
their state of measurement and a white particle is a combination
of these two colours in figure 1. If the two particles move in
opposite direction and we do not know which colour is which, then
one particle is measured to be spin up, then the other spin down.
Using Heisenberg’s uncertainty principle in quantum mechanics,
it could be either spin up or spin down depending on the time of
measurement. Through the hidden variable parameter, one particle
had always been spin up in one direction and the other spin down in
the opposite direction. The laws violated by quantum mechanics
in the EPR experiment is the principle of locality and Heisenberg
uncertainty principle.

The EPR experiment defines determinism:- that is complete
knowledge of the current state of a physical system is sufficient
to determine the future state of the system. And if one can also
determine certain parameters without interfering with the system,
those parameters must be ‘real’. Considering a theory to be
complete implies that, it should be able to predict all real parameters,
including the polarizations in Bohm’s EPR experiment. But QM
does not predict the polarizations hence considered to be incomplete.
This assumption, when combined with the conclusions of special
relativity, implies that no effect can travel faster than the speed of
light.

For a complete theory, “every element of the physical reality must
have a counterpart in the physical theory”.

EPR is not a no-go theorem for hidden variable models of quan-
tum mechanics but it argues that there must be a more complete
description of physical reality behind quantum mechanics.

3.2. Bell’s theorem

Definition 3.3. Bell theorem states that no physical theory of local
hidden variables can ever reproduce all the predictions of quantum
mechanics (Bell, 1964).

When the EPR paper was first published, Bell was concerned if the
whole EPR experiment can be accommodated in a world which is
compatible with the world-view (classical world) of pre-quantum
mechanics physics. The classical world is local, deterministic and
Markovian (LDM) which satisfies the assumption that: Our world is

1 . Local:- No direct casual connection between spatially sepa-
rated events (Genovese, 2005) [10].

2 . Deterministic:- knowledge of a current state of a physical
system to determine the future state of the system.

3 . Markovian:- All necessary information from the past is en-
coded in the state of affairs in the present.

Bell considered polarization measurements for twin state photons at
arbitrary angles θ1,θ2. The twin state is represented by an entangled
isotropic state in quantum mechanics as

Ψ =
1√
2
(|x〉1 |x〉2 + |y〉1 |y〉2),

where |x〉i is the polarization state of the ith photon through a
horizontal filter and absorbed by a vertical filter and |y〉i represents
a polarization state of the ith photon through a vertical filter and
absorbed by a horizontal filter. Quantum mechanics’ predictions
about the correlations of polarization are different from correlated
predictions by common sense. Considering the measurement of
twin state photons with polarizing filters oriented at different angles
θ1 for the first photon and θ2 for the second photon. Which ever
measurement is performed first collapses the entangled twin state
superposition to a single polarization state which is identical to both

Table 4: θ1 =−α, θ2 = α avg. mismatch ≤ 50%

Filter 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1
Filter 2 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1

according to quantum mechanics. If the wave is polarized along
θ2 direction, the amplitude along θ1 is cos(θ2 − θ1). Quantum
mechanics predict that the probability for transmission given by a
wave amplitude squared is Prob(M1(θ) = M2(θ)) = cos2(θ2−θ1).

What does common sense predict? Common sense predict that,

Prob(M1(θ) = M2(θ)) is 100% coincidence.

The measurement with filters along the same direction gives the
probability of obtaining the same measurement.

Table 1: Sequence of both being absorbed (0) or both transmitted (1)

Filter 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1
Filter 2 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1

We also know that paired measurements with perpendicular
orientation of the filters will always give an opposite results, that is
when one photon is absorbed, the other is transmitted.

Let’s say the filters differ in angles, that is for θ2−θ1 between 0◦

and 90◦ will yield an intermediate correlations.

Prob(M1(θ) = M2(θ +90◦)) is 100% coincidence. The coincidence
is between 0% and 100%.

For example, let α be some angle for which the mismatch is
25%(averagely) and the coincidence is 75%. The sequence for filter
1 oriented at θ1 = 0 and filter 2 oriented at an angle θ2 = α might
also look like Table 2.

Table 2: θ1 = 0, θ2 = α avg. mismatch 25%

Filter 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1
Filter 2 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1

where the boldface entries highlight where there is disagreement
between the two sequences in table 2.

Table 3: θ1 =−α, θ2 = 0 avg. mismatch 25%

Filter 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1
Filter 2 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1

We expect that the measurement disagreement should be 50% aver-
agely. This means that the mismatch between measurements with
θ1 =−α and θ2 = α should be less or equal to 50% in table 3 This
is an example of Bell’s inequality.
The “common sense” predict that the mismatch should be at most
50% which quantum mechanics (experimental) predicts a mismatch
of 75% in table 4.

For α = 30◦, coincidence is 75% and mismatch is 25%.

Coincidence rate predicted by quantum mechanics is cos2(θ2−θ1)
where θ1 = α and θ2 = 0 or vice versa

⇒ cos2(30◦) = 0.75.
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For θ1 =−30◦ and θ2 = 30◦,
⇒ cos2(30◦ + 30◦) = cos2(60◦) = 25%. The mismatch rate is
75% which is not less than 50% as predicted by common sense.

3.3. Bell’s inequality

This section is based on the original paper of Bell (Bell et al., 1964).
A linear polarization measurement on the two photons as observed
in figure 2, with filters 1 and 2. The filter 1, in orientation a, is
followed by two detectors, given the result 1 or 0 which corresponds
to a linear polarization parallel or perpendicular to a. The second
filter in orientation b also acts similarly (Alain, 2002) [1]. The Bell’s
inequality requires absence of communication between measurement
sites.

S

a b

λ λ

1

0

1

0

Figure 2: Einstein-Podolsky-Rosen-Bohm Gedanken experiment with pho-
tons (Einstein et al., 1935)

A(~a,λ ) = 1,0 at polarizer 1

B(~b,λ ) = 1,0 at polarizer 2
(4)

Transmission when a = b ⇒ B(~b,λ ) = A(~a,λ )

If ρ(λ ) is the probability distribution of λ (the hidden variable) then
the expectation value of the product of the two components is

Π(~a,~b) =
∫

dλρ(λ )A(~a,λ )B(~b,λ ). (5)

So, the result depends on the angle between λ and polarizer
orientation.

Equation (5) should be equal to the quantum mechanical expectation
value, which for a single state is

〈~σ1 ·~a~σ2 ·~b〉=−~a ·~b. (6)

where σ1 and σ2 are selected components of the spins.

Quantum mechanics predicts

Π(~a,~b) = cos2
θab

But no hidden local variable (λ ) can reproduce quantum mechanics
predictions at all orientations as in (3.2).

If ρ(λ ) is normalized, the probability distribution is,∫
dλ ρ(λ ) = 1,

and because of the equation (4) are valid, (5) cannot be less than −1.
It could reach the value −1 only for~a =~b if

A(~a, λ ) =−B(~b, λ ),

except for a set of points λ of zero probability.
Thus (5) becomes

Π(~a,~b) =−
∫

dλ ρ(λ )A(~a, λ )B(~b, λ ).

If we define~c, another unit vector; and with the help of (4),

Π(~a,~b)−Π(~a,~c) =−
∫

dλ ρ(λ ) [A(~a, λ )A(~b, λ )−A(~a, λ )A(~c, λ )]

=
∫

dλ ρ(λ )A(~a, λ )A(~b, λ )[A(~b, λ )A(~c, λ )−1],

from which

|Π(~a,~b)−Π(~a,~c)| ≤
∫

dλ ρ(λ ) [1−A(~b, λ )A(~c, λ )]. (7)

For (3), the second term of the right hand side of the equation (7) is
equal to Π(~b,~c), then

1+Π(~b,~c)≥ |Π(~a,~b)−Π(~a,~c)|. (8)

The inequality (8) is the Bell’s inequality.

Violation by Quantum Mechanics: Let the unit vectors ~a,~b,~c lie
into right circular cones with small width - since the directions are
physically affected by certain errors. Considering the averages of (5)
and (6) we have

Π̄(~a,~b), −~a ·~b,

where the bar denotes the independent averages of Π(~a′,~b′) and
−~a′ ·~b′ over vectors~a′ and~b′ within specified angles of~a and~b. For
any unit vector~a and~b, Π(~a,~b) approximates quantum mechanical
results well. Thus the average is bounded on the upper side by a
small quantity ε:∣∣∣Π̄(~a,~b)+~a ·~b

∣∣∣≤ ε. (9)

We want to show that ε cannot be made small, therefore the
impossibility of (5) to be equal to (6).

Consider∣∣∣~a ·~b−~a ·~b∣∣∣≤ δ ; (10)

then∣∣∣Π̄(~a,~b)+~a ·~b
∣∣∣≤ ∣∣∣Π̄(~a,~b)+~a ·~b

∣∣∣+ ∣∣∣~a ·~b−~a ·~b∣∣∣≤ ε +δ . (11)

From (6), we have

Π̄(~a,~b) =
∫

dλ ρ(λ )Ā(~a, λ ) B̄(~b, λ )≤ 1, (12)

where∣∣∣Ā(~a, λ )≤ 1
∣∣∣, ∣∣∣B̄(~b, λ )≤ 1

∣∣∣. (13)

From (11) and (12), let~a =~b, we have∫
dλ ρ(λ )

[
Ā(~b, λ ) B̄(~b, λ )+1

]
≤ ε +δ . (14)

From equation (12) we have

Π̄(~a,~b)− Π̄(~a,~c) =
∫

dλ ρ(λ )
[
Ā(~a, λ ) B̄(~b, λ )− Ā(~a, λ ) B̄(~c, λ )

]
=
∫

dλ ρ(λ ) Ā(~a, λ ) B̄(~b, λ )
[
1+ Ā(~b, λ ) B̄(~c, λ )

]
−
∫

dλ ρ(λ ) Ā(~a, λ ) B̄(~c, λ )
[
1+~A(~b, λ ) B̄(~b, λ )

]
.

Considering (13), we arrive at∣∣∣Π̄(~a,~b)− Π̄(~a,~c)
∣∣∣≤ ∫ dλ ρ(λ )

[
Ā(~b, λ ) B̄(~c, λ )

]
+
∫

dλ ρ(λ )
[
1+ Ā(~b, λ ) B̄(~b, λ )

]
.

Using (12) and (14),∣∣∣Π̄(~a,~b)− Π̄(~a,~c)
∣∣∣≤ 1+ Π̄(~b,~c)+ ε +δ . (15)

From (11), the right hand side will be,

1+ Π̄(~b,~c)+ ε +δ = 1+ Π̄(~b,~c)+~b ·~c−~b ·~c+ ε +δ

≤ 1+
∣∣∣Π̄(~b,~c)+~b ·~c

∣∣∣−~b ·~c+ ε +δ

≤ 1−~b ·~c+2(ε +δ ), (16)



International Journal of Advanced Mathematical Sciences 7

and the left hand side is also,∣∣∣Π̄(~a,~b)− Π̄(~a,~c)
∣∣∣= ∣∣∣Π̄(~a,~b)+~a ·~b−~a ·~b− Π̄(~a,~c)+~a ·~c−~a ·~c

∣∣∣
≥
∣∣∣~a ·~c−~a ·~b∣∣∣− ∣∣∣Π̄(~a,~b)+~a ·~b

∣∣∣− ∣∣∣Π̄(~a,~c)+~a ·~c
∣∣∣ (17)

≥
∣∣∣~a ·~c−~a ·~b ∣∣∣−2(ε +δ ), (18)

The violation of the Bell’s inequality implies that, quantum mechanics is a
totally non-classical phenomenon:- non-realistic and non-local, (Shankar,
2012) [22].

To obtain Bell’s inequality and consequently conflicts with quantum mechan-
ics, the hypothesis below seem necessary.

• distant correlations can be understood by introduction of supplementary
parameters carried along by the separated particles, in the spirit of
Einstein’s ideas that separated objects have separated physical realities.

• the quantities A(λ ),B(λ ) and P(λ ) obey the locality condition, that is,
they do not depend on the orientations of the distant polarizers.

This is why we say quantum mechanics conflicts with local realism, (Dada et
al., 2011) [17].

4. Quantum teleportation

Quantum teleportation is a form of quantum information using features of
quantum physics to deal with computational problem. Quantum teleportation
was first proposed (Bennett et al., 1993) [5]. A device scans an object,
de-materialize it and transmitted to another location where the object is
re-materialized back to its original state.

In 1997, two groups of physicist Anton Zerlinger and A. Francisco De
Martini both carried out the first successful teleportation of a single photon
called quantum bit teleportation in probabilistic sense. Each group used
the technique of a report in 1993 by Bennett of IBM and it was related
on quantum entanglement. Quantum entanglement is a strange intimate
relationship between two particles and each of these two particles being
in the same quantum state. When one of the particles change its spin, the
other will fall exactly on the same way instantaneously regardless of spatial
separation. The teleportation used by Zerlinger and De Martini is known as
quantum teleportation. Quantum teleportation is where the specific quantum
state of the photon is measured and sent to another location where that
information can be used to manipulate another photon and into the same
quantum state. However, the act of measuring the quantum of a specific
photon will cause that photon to move into a new quantum state. Therefore,
the quantum state of the second photon will not reflect the quantum state of
the first photon before measurement. Suppose we want to teleport a photon
A to a distant location. The first step is to have the entangled pair photon
B and C, C then at the destination. We do not measure directly photon A
because in doing so, we will disrupt its quantum state, instead we measure
a joint feature between photon A and the entangled photon B. In doing so,
we see the relation between photon A and photon B. Since photons B and
C are entangled, we get to know how photon A relates to photon C. This
information is then communicated to the desired location through traditional
means such as telephone, email and fax. Once the other side receives this
information, we can use it to manipulate photon C into the same quantum
state as photon A. Since the act of measuring photon A disrupts its quantum
state; quantum teleportation has been achieved. Although marine science has
successfully teleported a single photon, even smallest objects are made of
billions of particles. Therefore telepotation by this method is not practical
but theoretically possible.

Quantum teleportation can be thought of as a quantum gate where input and
output are the same.

Classical teleportation is easy by making a model of the object and measuring
all the dimensions and positions of the component. This information
can be sent digitally from A to B using a prototype of that object. But in
Quantum states, there are physical rules which does not allow copying. The
superposition states of a α|1〉 and β |0〉 cannot be cloned. We need to choose
a measurement basis in which to measure it and project into α|1〉 or β |0〉.

“ . . . the quantum state of a photon can be maintained whiles transporting it
into a crystal without the two coming directly into contact”.

He explains that “one needs to imagine two entangled photons in other words
two photons extricable linked at the most infinitesimal level by their joint
states. One is propelled along an optical fibre . . . but not the other, which is
sent to a crystal. It is a bit like a game of billiards, with a third photon hitting
the first which obliterates both of them . . .”.

He conclude that “the quantum state of the two elements of light, these
two entangled photons which are like two siamese twins, is a channel that
empowers the teleportation from light into matter.”

Quantum entanglement has become essential in quantum information and
also important in the applications of quantum telepotation and quantum
cryptography (Barrett et al., 2004) [2]. Our ability to manipulate these
entangled states is the basis for the applications. Experiments such as
photons pair produced in an optical process as atoms in cavity QED,
parametric downconversion and with ions in an ion trap are due to the
manipulation of these entangled state using two or more spatially separated
particles.

“The experimental violation of Bell’s inequalities confirms that a pair of
entangled photons separated by hundreds of metres must be considered a
single non-separable object - it is impossible to assign local physical reality
to each photon.”
In this section, we discuss the method by which a teleporting system can be
created using the Bell’s inequality. We argue that the violation of the Bell’s
inequality of any two mixed spin- 1

2 states is necessary for teleportation.
Teleportation is purely based on classical information and non-classical EPR
correlations.

The basic idea is to use a pair of particles in a singlet state shared by distant
partners Alice and Bob to perform successful teleportation of an arbitrary
qubit from the sender Alice to the receiver Bob. There was a question what
value of fidelity of transmission of an unknown state can ensure us about
non-classical character of the state forming the quantum channel. It has
been shown that the purely classical channel can give at most F = 2

3 [10,3,5].
Then Popescu raised basic questions concerning a possible relation between
teleportation, Bell-CHSH inequalities and inseparability.

4.1. Quantum entanglement

Quantum entanglement is a pure quantum phenomenon that occurs when
pairs or groups of particles are generated in such a way that the quantum state
of each particle cannot be described independently. Entangled state has no
classical analogue, for it clearly distinguishes quantum mechanics from the
classical.
The existence of entanglement is based on superposition principle and an
entangled state. In superposition principle, outcomes of measurements are
modelled by vector basis in a complex vector space and the state can be in
superposition. Two state systems can be combined by using a tensor product
and the Hilbert space for each system are tensored as H1⊗H2.
An entangled state of two qubit state is defined as

|Ψ†〉AB =
1√
2
(|00〉AB + |11〉AB). (19)

4.2. Maximal fidelity for the standard teleportation
scheme

Fidelity is a measure of the “closeness” of two quantum states. The fidelity
of X and Y is defined as the quantity

F(X , Y ) = ∑
i

√
pi qi

where X and Y are two random variables with values (1 · · ·n) and probabilities
p = (p1 · · · pn) and q = (q1 · · ·qn).
For F ∈ [0, 1], with F = 1 meaning that two states are identical, and F = 0
means that, they are different. For example, create pairs of perfectly entangled
particles and having an extra stray (non-entangled) photons that you measure
in your ensemble of prepared bi-photons, then your ensemble averaged state
will be different than what you want (perfectly entangled bi-photon pairs)
and how close you are is given by fidelity (F),

F(ρ, σ) := [Tr|
√

ρ
√

σ | ]2

= (Tr
√√

ρ σ
√

ρ)2

where ρ and σ represent a density matrix.
Teleportation can be expressed as a quantum qubit |Ψ〉 in Alice’s possession
which wants to convey to Bob as

|Ψ〉C = A|0〉C +B|1〉C,

C distinguishes the state from A to B. In standard teleportation, Alice uses op-
erator basis in her frame of measurement whiles Bob is allowed to transform
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from one basis to another. The representation of this state in the Hilbert-
Schmidt space with a scalar product 〈A, B〉= Tr (A† B) is represented as

ρ =
1
4
[I⊗ I + r ·σσσ ⊗ I + I⊗ s−σσσ +

3

∑
n,m

tnm σn⊗σm], (20)

ρ acts on the Hilbert space H1⊗H2 = C2⊗C2, I represents the identity
operator, {σn}3

n=1 represents the Pauli matrices, r and s are vectors in R3,r ·
σσσ = ∑

3
i=3 σi. tmn = Tr(ρ σn ⊗σm) from a real matrix denoting as T . r

and s describes the local behaviour of the state and the mean value of the
Bell-CHSH observables only depends on the relationship parameter T of the
state.

ρ1 ≡ TrH2 ρ =
1
2
(I + r ·σσσ),

ρ2 ≡ TrH1 ρ =
1
2
(I + s ·σσσ)

(21)

The matrix T is responsible for the expectation of the correlation

E(a, b)≡ Tr(ρa ·σσσ ⊗b ·σσσ) = (a, T b). (22)

Considering two particle source producing pairs in a given state ρ given to
Bob whiles the other one and another third particle in an unknown state φ

subjected to Alice‘s measurement can be expressed as a family of projectors

Pk = |Ψk〉〈Ψk|, (23)

where k = 0, 1, 2, 3 and Ψk represents the Bell basis.

Ψ
1
(2) =

1√
2
(e1⊗ e2∓ e2⊗ e1)

Ψ
3
(0) =

1√
2
(e1⊗ e2± e2⊗ e1)

(24)

taking e1, e2 to be the standard basis in C2. Alice then sends to Bob the num-
ber of outcome k from the two bits and Bob applies a unitary transformation
Uk for his particle to be in state ρk .
The fidelity as a measure of efficiency of teleportation of a transmission of
the unknown state is expressed as

F =
∫

s
dM(φ) ∑

k
pkTr(ρk Pφ ). (25)

Pφ is the input state, ρk is the output state, provided the outcome k was
obtained by Alice. Where the integral is taken over all φ belonging to
the Bloch sphere with uniform distribution M,Pk = Tr[(Pk ⊗ I)(Pφ ⊗ ρ)]
denoting the probability of the k-th outcome. In computing for the integral
(25), the output state ρk is expressed as

ρk =
1
pk

Tr1,2 [(Pk⊗Uk)(Pφ ⊗ρ)(Pk⊗U†
k )], (26)

ρk pk = Tr1,2 [Pk Pφ Pk⊗Uk ρU†
k ].

Since Pk and ρ are tensor products, let Pk = A⊗ B and ρ = C⊗D and
substitute into equation (26). This implies that

ρk pk = Tr1,2

[
APφ A⊗BC B⊗Uk DU†

k

]
.

If

ρ =C⊗D =
1
4

[
I⊗ I + r ·σσσ ⊗ I + I⊗ s ·σσσ +

3

∑
n,m=1

tnmσn⊗σm

]
,

then

ρk pk =
1
4

Tr1,2
[
APφ A⊗B(I + r ·σσσ + I

]
+

+
1
4

Tr1,2

[
3

∑
n,m=1

tn,mσn)B⊗Uk(I + I + s ·σσσ +σm)U
†
k

]
.

This also implies that

ρk pk =
1
4

Tr1,2
[
APφ A⊗B(2I + r ·σσσ+

]
(27)

+
1
4

Tr1,2

[
3

∑
n,m=1

tnm σn)B⊗ (Uk 2IU†
k +Uk s ·σσσ U†

k +Uk σm U†
k )

]
(28)

Substituting Pφ = 1
2 (I+a ·σσσ) into equation (27) and rewritten in terms of Pk

will result in

ρk pk =
1
8

Tr
[
P2

k [ (I +a ·σσσ)⊗2I + r ·σσσ +σn]
]
Uk(2I + s ·σσσ +∑ tnm σm)U

†
k

ρk pk =
1
8

Tr [2P2
k (I⊗ I)+P2

k (I⊗ r ·σσσ)+P2
k I⊗σn +P2

k (a ·σσσ ⊗ I)

+P2
k (a ·σσσ ⊗ r ·σσσ)+P2

k (a ·σσσ)⊗σn].

Therefore

pkρk =
1
8
([1+(a,Tkr)]I +O†

k [s+T †Tka] ·σ). (29)

.
The T ′k s and r, s, T corresponds to P′ks and ρ respectively through (20) (Thus:
T0 = diag (−1,−1,−1), T1 = diag(−1, 1, 1), T2 = diag(1,−1, 1), T3 =
diag(1, 1,−1), rk = sk = 0, for k = 0, 1, 2, 3.);Ok‘s are rotations in R3

which we get from Uk‘s by

U n̂ ·σσσU† = (O† n̂) ·σσσ . (30)

Considering the formula∫
s
(a, Aa)dM(a) =

1
3

TrA (31)

and omitting the all terms in (25) which do not contribute to the integral, will
result in

F =
1
8 ∑

k

(
1+

1
3

TrT †
k TOk

)
. (32)

Now we maximize F , and since −T †
k is a rotation and the maxima of the

term in (32) does not depend on k, we then have

Fmax = max
0

1
2

(
1− 1

3
TrTO

)
(33)

where we take the maxima over all the rotations. This gives us

Fmax ≤
1
2

(
1+

1
3

Tr
√

T † T
)
. (34)

Without using entanglement, by purely classical communication, an average
fidelity of F = 1

2 is the best that can be achieved if the alphabet of input
states includes all coherent states with even weight. If the latter equation (34)
is greater than 2

3 which is the upper bound for classical teleportation, then
we can derive an expression for Fmax and the one say that the state of the
quantum channel is necessary for teleportation. Fmax can exceed 2

3 only if
Tr
√

T † T . From the result obtained in Ref. The equation (34) implies that
detT < 0 and the inequality (34) then progresses into equality. As result, if
we define a function

N(ρ) := Tr
√

T † T , (35)

we have

Proposition 1. Any mixed spin- 1
2 state is necessary for teleportation if and

only if N(ρ)> 1. The fidelity will then be expressed as

Fmax =
1
2

(
1+

1
3

N(ρ)

)
. (36)

4.3. Relation between Bell‘s inequalities and teleporta-
tion

To establish a strong relationship between the Bell-CHSH inequality and
quantum teleportation, the function N(ρ) must be a correlation parameter of
T . Violating the Bell-CHSH which involves a real valued function (which
is a necessary condition) implies that, M(ρ) = maxi> j(ui + u j), where ui

and u j represents the eigenvalues of the matrix T † T . This then becomes
equivalent to the Bell-CHSH when the inequality M(ρ) 6 1. If ui 6 1 for
i = 1, 2, 3 and N(ρ) = ∑

3
i=1
√

ui then we have

N(ρ)> M(ρ). (37)

M(ρ)> 1 is the state at which we violate the Bell-CHSH inequality. From
(37) and Prop.5.1.1 we get

Fmax >
1
2

(
1+

1
3

M(ρ)

)
>

2
3
. (38)

The CHSH-Bell observable at maximal will have a mean value of Bmax =
2
√

M(ρ), and this implies that

F >
1
2

(
1+

1
12

B2
max

)
. (39)

The inequalities (38) and (39) are useful for teleportation since they are valid
for any arbitrary mixed two spin- 1

2 which violate the Bell-CHSH inequality.
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The Bell-CHSH inequalities constructed from the expectations of products of
spin operators a ·σ⊗b ·σ where a and b are unit vectors [?]. The correlation
function can be expressed as

E(a, b)≡ Tr(ρa ·σ ⊗b ·σ) = (a, T b) (40)

and it depends on the T matrix only. Hence the Bell-CHSH can be violated
if N(ρ)> 1. If N(ρ)6 1, it means there always exist some separable state
that has the same T matrix as the state ρ (R. Horodecki et al., 1996).

Proposition 2. Every mixed two spin- 1
2 state which violates any Bell-CHSH

inequality is useful for teleportation (R. Horodecki et al., 1996).

5. Applications of teleportation and further
work

Quantum teleportation is applied cryptology. It provides a completely secure
method of communication between two distant correspondents. Sending pho-
tons entangled in a quantum state makes it impossible for an eavesdropper to
intercept a message. Future work will be on teleportation of more compli-
cated quantum systems such as molecules, DNA and organic molecules and
the development of other real-life applications.

6. Conclusion

In this paper, we considered questions concerning the completeness of quan-
tum mechanics by exploring the consequences of quantum mechanics differ-
ent from classical mechanics due to superposition of states and the process of
measurement. From the study of Bell’s inequality, he concluded that “with-
out changing the statistical predictions, there must be a mechanism whereby
the setting of one measuring device can influence the reading of another
instrument, however remote”. Quantum mechanics is therefore considered
non-local by the violation of Bell’s inequality. Therefore, an entangled EPR
photon pair is a non-separable object; that is, it is impossible to assign in-
dividual local properties to each photon.We reviewed how the violation of
Bell’s inequality can be used for quantum teleportation.
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