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Abstract 
 

The loss in Relative A-, D- and G-efficiency due to missing single or multiple observations is studied using cuboidal designs associated 

with response models. Higher losses in Relative A- and D-efficiencies are attributed to missing vertex points. The absence of one or two 

center points does not affect any of Relative A-, D- and G-efficiency, but when its absence is in combination with either a vertex or axial 

point, there is some negative effect on the design efficiency resulting in some percentage loss in Relative efficiency. The loss in relative 

efficiency is higher when the missing center point is in combination with missing vertex point. Losses in Relative A- and D-efficiencies 

are generally higher than losses in Relative G-efficiency. In fact, Relative G-efficiency is mildly affected by the missing vertex or axial 

point or both. 

 
Keywords: Missing Observations; Cuboidal Design; Loss in Relative A-Efficiency; Loss in Relative D-Efficiency; Loss in Relative G-Efficiency. 

 

1. Introduction 

Missing data points or observations are practical issues in many 

experiments as it is clearly not certain that all responses of exper-

imental trials would be realized during experimentation. Encoun-

tering missing data points is not far-fetched as instrument mal-

function could lead to data point that is not consistent with the 

other data points thus resulting in outlying observation that is dis-

carded from further consideration in the analysis of the experi-

ment. It could also arise when no value is obtained at one or more 

factor settings. Since missing data points could grossly affect the 

statistical power of a test, offer biased estimates of parameters and 

give invalid conclusions, handling missing data points raises many 

interests among researchers. Many methods have been proposed to 

handle missing data and include substitution, imputation, use of 

robust statistics, etc. It is obvious from literature that attention has 

been given to missing observations in many areas of statistics, 

including the area of optimal design of experiments as seen in 

Herzhberg and Andrews [9], Anbrews and Herzhberg [7], Akhtar 

and Prescott [4], Akhtar and Prescott [5], Akhtar [2], Whittinghill 

[14]. Concentrations are generally on the effect of one or more 

missing observations on certain aspects of optimality. For exam-

ple, Akhtar [2] considered the effect of one or two missing obser-

vations on the determinant of information matrix using the five-

factor Box and Behnken design and compared its robustness with 

the five-factor mimimax loss central composite design. Attention 

is still rising in the recent years among researchers in the area of 

optimal design of experiments on aspects of either missing model 

coefficients or missing observations with particular interests in 

design robustness to missing model coefficients and design ro-

bustness to missing observations. Akhtar [3] considered the case 

of two missing observations in three different configurations of 

factorial and axial parts of a five-factor central composite design. 

Akram [6] assessed the effects of all possible combinations of one 

to three missing observations of factorial, axial and center points 

on parameter estimation using the D-efficiency criterion. The 

setup for the experimental design was multiple replications of 

center points and single replication of factorial and axial parts of 

central composite designs. Results showed that the effect of miss-

ing a center point is less severe than the effect of missing a facto-

rial point or an axial point. Ahmad [1] considered the construction 

of different types of second-order response surface designs that 

are robust to missing observations. Yakubu et al. [15] considered 

the impact of single missing observations of the various composite 

design points on estimation and predictive capability of central 

composite designs with four center points and defined for varying 

axial distances. Largest loss in precision of parameters was associ-

ated with a missing factorial point. An extensive study on robust 

response surface designs against missing observation was made by 

Srisuradetchai [13] who considered robustness of response surface 

designs to one missing observation. In particular, the behaviours 

of D-, A-, G- and IV-efficiencies were studied with a missing 

response in central composite designs for varying axial distances 

and center point. Smucker et al. [12] considered the robustness of 

classical and optimal designs to missing observations using D- and 

I-efficiencies. One to three missing observations were examined to 

see their impact on D- and I-efficiencies as well as on the leverage 

and THA criteria. Results showed that optimal designs fared rela-

tively well in terms of robustness when compared to classical 

designs. Designs that are “more robust” to missing observations 

have been proposed by da Silva et al. [8]. The loss in Relative A-, 

D- and G-efficiency due to missing single or multiple observations 

using central composite cuboidal designs shall be the focus of this 

work. The design variables shall be for two and three cases. The 

unreplicated factorial and axial parts of the central composite de-

signs together with replicated center points shall be used. Maxi-

mum and minimum losses in Relative efficiency shall be present-

ed for the two and three control variable cases of cuboidal designs.  

http://creativecommons.org/licenses/by/3.0/
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2. Methodology 

2.1. Linear model setting 

For the purpose of this study, it is assumed that the typical linear 

regression model in (1) will be fitted: 

k k
2y x x x x0 i i ij i j ii i

i 1 i j i 1

            
  

                                 (1) 

 

Written in matrix form as  

 

y X                                                                                       (2) 

 

where 

y is an N × 1 vector of observations. 

 is an N × 1 vectors of random experimental error assumed to 

have a zero mean and constant variance 2 .  

X is an N p expanded design matrix otherwise called model 

matrix.  

 is a p×1 vectors of unknown parameters estimated as 

1ˆ (X X) X y   using the least square approach. 

The variance of the estimate is  

 
2 1ˆVar( ) (X X)    

 
ˆE(y) X   

 
2 ' 1 'ˆV(y(x)) x(X X) x   

 

Letting fT(x) be a row of the model matrix, X , so that  

 

fT(x)𝛽 = β0 + ∑ βixi
k
i=1  + ∑ ∑ βij

k
j xixj

k−1
i=1  + ∑ βii

k
i=1 xi

2            (3) 

 

The procedures employed in studying the effects of missing ob-

servations are outlined as follows. 

2.2. The central composite cuboidal design 

Factorial, axial and center parts make up the design points for a 

central composite design and each central composite design is 

defined for a specified axial distance α. According to Myers et al. 

[10], the axial distance lies in the range 1.0 ≤  α ≤  √k, where k 

is the number of controllable variables. For a two-variable central 

composite design with nc = 4 replicated center points, the design 

measure is made up of  N = 12 design points and listed as 

 

ξ12 = 

(

 
 
 
 
 
 
 
 

−1 −1
1 −1
−1
1
1
−1
0
0
0
0
0
0

1 
1
0
0
1
−1
0
0
0
0 )

 
 
 
 
 
 
 
 

 

 

The design matrix associated with the 12-point design measure is 

 

D = 

(

 
 
 
 
 
 
 
 

−1 −1
1 −1
−1
1
1
−1
0
0
0
0
0
0

1 
1
0
0
1
−1
0
0
0
0 )

 
 
 
 
 
 
 
 

 

 

The corresponding model matrix is  

 

X =  

(

 
 
 
 
 
 
 
 
 

1 −1 −1
1 1 −1
1 −1 1

1 1 1
−1 1 1
−1 1 1

1 1 1
1 1 0
1 −1 0

1 1 1
0 1 0
0 1 0

1 0 1
1 0 −1
1 0 0
1 0 0
1 0 0
1 0 0

0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0 )

 
 
 
 
 
 
 
 
 

  

 

The moment matrix is defined as  

 

M =
XTX

N
 

 

 
 

For a three-variable central composite design with nc = 4 replicat-

ed center points, the design measure is made up of N = 18 design 

points and listed as 

 

ξ18 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
1 −1 −1
−1 1 −1
1 1 −1
−1 −1 1
1 −1 1
−1 1 1
1 1 1
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0 )
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The design matrix associated with the 18-point design measure is 

D = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
1 −1 −1
−1 1 −1
1 1 −1
−1 −1 1
1 −1 1
−1 1 1
1 1 1
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The corresponding model matrix is 

 

 
 

The moment matrix is defined as  

 

M =
𝑿𝑻𝑿

𝑵
 

 

 
 

In studying the loss in efficiency due to missing observations, 

some rows of the design matrix and the model matrix shall be 

deleted. The deleted rows correspond to the missing observations. 

If there are m missing observations, exactly m rows in the design 

matrix D and exactly m rows in the model matrix M will be miss-

ing. Hence, for m missing observations, the design matrix D shall 

be a matrix of size (N-m) x k and the model matrix shall be a ma-

trix of size (N-m) x p. However, the moment or information ma-

trix shall maintain its dimension irrespective of the missing obser-

vations. The design measure associated with the missing observa-

tions shall be regarded as the reduced design measure while the 

design measure associated with the complete observations shall be 

regarded as the complete design measure. Notationally, 𝐷  shall 

describe the design matrix for a design with complete observa-

tions. 𝐷𝑟 shall describe the design matrix for a design with miss-

ing observations. 𝑋 shall describe the model matrix for a design 

with complete observations. 𝑋𝑟 shall describe the model matrix for 

a design with missing observations. 𝑀 shall describe the infor-

mation matrix for a design with complete observations and 𝑀𝑟 
shall describe the information matrix for a design with missing 

observations. 𝑀−1 and  𝑀𝑟
−1  shall describe the respective matrix 

inverses. The relationship between the complete and reduced in-

formation matrices may be written as  

 

𝑀 = 𝑀𝑚 + 𝑀𝑟 
 

where 𝑀𝑚  is associated with the missing observations and 

equals 𝑋𝑚
′𝑋𝑚. 

Normalization of the information matrix allows comparison of 

designs with varying design sizes.  

2.3. The relative loss in A-efficiency 

The concept of Loss in A-efficiency takes its bearing from the 

criterion of A-optimality, which focuses on good model parameter 

estimation. It considers making the variances of the parameter 

estimates small and does not take into account the covariances 

among model parameters. As in Rady et al. [11], A-optimality 

criterion is one in which the sum of the variances of the model 

coefficients is minimized. It is defined by the criterion function 

 
Φ (M (ξ)) = Min tr (𝑀−1)  

 

where Min implies that minimization is over all designs and tr 

represents trace.  

The A-efficiency of a design 𝜉 is defined as 

 

𝐴(𝜉) =  
𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉∗)}

𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉)}
  

 

where 𝜉∗ is A-optimal. 

When comparing two designs 𝜉𝑁  and 𝜉𝑁−𝑚  for a p-parameter 

model, the A-efficiency of 𝜉𝑁−𝑚 relative to 𝜉𝑁 is the ratio of the 

separate A-efficiencies and is given as 

 

𝐴𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) =  
𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉∗)}

𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉𝑁−𝑚)}

𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉∗)}

𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉𝑁)}
⁄   

 

= 
𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉𝑁)}

𝑡𝑟𝑎𝑐𝑒 {(𝑀−1(𝜉𝑁−𝑚)}
 

 

= 
𝑡𝑟𝑎𝑐𝑒 𝑀−1

𝑡𝑟𝑎𝑐𝑒 𝑀𝑟
−1 

 

where, as earlier stated, 𝑀 is the information matrix for a design 

with complete observations and 𝑀𝑟 is the information matrix for a 

design with missing observations. In comparing designs, the best 

design is one with the largest A-efficiency value. The relative A-

efficiency of a design is such that 

 

0 ≤ 𝐴𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) ≤ 1, 

 

However, 𝐴𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) may be negative if the design 𝜉𝑁−𝑚 is 

better than the design 𝜉𝑁. 

The loss in relative A-efficiency is thus 

 

𝐴𝑅.𝑙.𝑒= 1− 𝐴𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) 
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= 1−
𝑡𝑟𝑎𝑐𝑒 𝑀−1

𝑡𝑟𝑎𝑐𝑒 𝑀𝑟
−1 

3.4. The relative loss in D-efficiency 

The concept of Loss in D-efficiency takes its bearing from the 

criterion of D-optimality, which also focuses on good model pa-

rameter estimation. As in Rady et al. [11], D-optimality criterion 

considers making both the variances of the parameter estimates 

and the covariances among model parameter estimates small. It is 

one in which the determinant of the moment matrix  

 

M = 
𝑋′𝑋

𝑁
 

 

is maximized over all designs, where 𝑋 represents the design ma-

trix associated with the design and 𝑋′  represents its transpose. 

Equivalently, a design is D-optimum if it minimizes the general-

ized variance of the parameter estimates. It is defined by the crite-

rion function  

 

Φ (M (ξ)) = max {det M (ξ)} 

 

= min {det (M-1(ξ))} 

 

where det (.) represents determinant. 

The D-efficiency of a design 𝜉 is given as 

 

𝐷(𝜉) = (𝑑𝑒𝑡 𝑀(𝜉))
1
𝑝  

 

When comparing two designs 𝜉𝑁  and 𝜉𝑁−𝑚  for a p-parameter 

model, the D-efficiency of 𝜉𝑁−𝑚 relative to 𝜉𝑁 is the ratio of the 

separate D-efficiencies and is given as 

 

𝐷𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) =  (
𝑑𝑒𝑡𝑀(𝜉𝑁−𝑚)

𝑑𝑒𝑡𝑀(𝜉𝑁)
)
1
𝑝
  

 

= (
𝑑𝑒𝑡𝑀𝑟

𝑑𝑒𝑡𝑀
)
1
𝑝
 

 

where, as earlier stated, 𝑀 is the information matrix for a design 

with complete observations and 𝑀𝑟 is the information matrix for a 

design with missing observations. In comparing designs, the best 

design is one with the largest D-efficiency value. The relative D-

efficiency of a design is such that 

 

0 ≤ 𝐷𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) ≤ 1 

 

However, 𝐷𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) may be negative if the design 𝜉𝑁−𝑚 is 

better than the design 𝜉𝑁. 

The loss in relative D-efficiency is thus 

 

𝐷𝑅.𝑙.𝑒= 1− 𝐷𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) 
 

= 1−(
𝑑𝑒𝑡𝑀𝑟

𝑑𝑒𝑡𝑀
)
1
𝑝
 

3.5. The relative loss in G-efficiency 

The concept of Loss in G-efficiency takes its bearing from the 

criterion of G-optimality. As in Rady et al. [11], G-optimality 

criterion considers designs whose maximum scaled prediction 

variance, v(𝑥), in the region of the design is not too large. Hence, 

a G-optimal design minimizes the maximum scaled prediction 

variance and is defined by the criterion function 

 

Φ (M (ξ)) =Min {𝑚𝑎𝑥
𝑥∈𝑅

𝑣(𝑥)} 

 

The G-efficiency of a design is defined as 

 

p

V(x)max
 

 

where p is the number of parameters in the model and V(x)max is 

the maximum scaled variance of prediction. G-efficiency com-

pares the maximum value of scaled variance of prediction within 

the design region with respect to its theoretical minimum variance 

𝑝. 
When comparing two designs 𝜉𝑁  and 𝜉𝑁−𝑚  for a p-parameter 

model, the G-efficiency of 𝜉𝑁−𝑚 relative to 𝜉𝑁 is the ratio of the 

separate G-efficiencies and is given as 

 

𝐺𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) =  
𝑝

𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁−𝑚)

𝑝

𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁)
⁄   

 

= 
𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁)

𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁−𝑚)
 

 

where𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁)  is associated with the design with complete 

observations and 𝑉(𝑥)𝑚𝑎𝑥 (𝜉𝑁−𝑚)  is associated with the design 

with missing observations. In comparing designs, the best design 

is one with the largest G-efficiency value. The relative G-

efficiency of a design is such that 

 

0 ≤ 𝐺𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) ≤ 1, 

 

However, 𝐺𝑅𝑒𝑙(𝜉𝑁−𝑚/𝜉𝑁) may be negative if the design 𝜉𝑁−𝑚 is 

better than the design ξN. 

The loss in relative G-efficiency is thus 

 

GR.l.e= 1− GRel(ξN−m/ξN) 
 

= 1−
V(x)max (ξN)

V(x)max (ξN−m)
 

3. Results and discussion 

Two categories of missing observations, namely a single missing 

observation and a pair of missing observations, are studied 

throughout this work. Single missing observation includes 

i) Missing a vertex point (V1). 
ii) Missing an axial or star point (S1). 

iii) Missing a center point (C1). 
On the other hand, missing a pair of observations includes 

i) Missing two vertex points (V2). 
ii) Missing two axial or star points (S2). 

iii) Missing two center points (C2). 
iv) Missing a vertex point and a center point (V1C1). 
v) Missing an axial or star point and a center point (S1C1). 

vi) Missing a vertex point and an axial or star point (V1S1). 

3.1. One missing observation in vertex, axial and center 

parts of cuboidal design in two control variables 

In studying the robustness of A-, D- and G-efficiency to missing 

points of vertex, axial and center parts of the cuboidal design in 

two control variables with four replicated center points, no loss is 

incurred by a missing center point even though losses are incurred 

by missing vertex or axial point. Higher losses in Relative A- and 

D-efficiencies are attributed to missing vertex point. Relative G-

efficiency is mildly affected by missing vertex or axial point with 

maximum loss of 5.78% attributed to missing an axial point. De-

tails of the results for each subcategory are as in Table 1. 

3.2. One missing observation in vertex, axial and center 

parts of cuboidal design in three control variables 

As with the two control variable case in section 3.1, there is no 

loss in Relative A-, D- and G-efficiencies to missing a center point 
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Table 1: Relative Efficiencies and Losses to A Single Missing Observa-

tion at Factorial, Axial and Center Points of Cuboidal Design with k = 2 

Criterion 

One miss-

ing vertex 

point V1 

One miss-

ing axial 

point S1 

One miss-

ing center 

point C1 

No miss-

ing point 

Design size N 11 11 11 12 

Determinant of 
normalized in-

formation matrix 

0.0016 0.0039 0.0062 0.0046 

Trace of the 
inverse of infor-

mation matrix 

24.9333 20.4722 17.9956 18.50 

Maximum scaled 
predictive vari-

ance 

9.5333 10.0833 8.7325 9.5 

Minimum scaled 
predictive vari-

ance 

2.3833 2.4444 2.8947 2.5 

Relative D-
efficiency 

0.8386 0.9729 1.0510 - 

Relative G-

efficiency 
0.9965 0.9422 1.0879 - 

Relative A-

efficiency 
0.7420 0.9037 1.0280 - 

Loss in Relative 
D-efficiency 

0.1614 0.0271 - - 

Loss in Relative 

G-efficiency 
0.0035 0.0578 - - 

Loss in Relative 

A-efficiency 
0.2580 0.0963 - - 

 

of the central composite design in three control variables with four 

replicated center points. However, losses are incurred by missing a 

vertex or an axial point with higher losses in A- , D- and G-

efficiencies being attributed to missing a vertex point. Details of 

the results for each subcategory are as in Table 2. 

3.3. Two missing observation in vertex, axial and center 

parts of cuboidal design in two control variables 

In studying the robustness of A-, D- and G-efficiency to a pair of 

missing observations at vertex point, axial point, center point as 

well as a combinations of two categories of points, associated with 

the cuboidal design in two control variables with four replicated 

center points, no loss is incurred by missing two center points. 

Three categories, namely V2,  S2and V1S1, incurred multiple losses 

in efficiency. Maximum losses in A- and D-efficiency are attribut-

ed to missing two vertex points ( V2) followed by missing one 

vertex point and one axial point ( V1S1). G-efficiency is mildly 

affected by missing points with a maximum of 5% loss in effi-

ciency associated with missing two vertex points ( V2) and missing 

one vertex point and one axial point ( V1S1). Details of the results 

for each subcategory are as in Table 3. 

 
Table 2: Relative Efficiencies and Losses to A Single Missing Observa-
tion at Factorial, Axial and Center Points of Cuboidal Design with k = 3 

Criterion 

One miss-

ing vertex 

point V1 

One miss-

ing axial 

point S1 

One miss-

ing center 

point C1 

No missing 

point 

Design size N 17 17 17 18 

Determinant 

of normalized 

information 

matrix 

3.5147x10-5 8.4521x10-5 1.4425x10-4 9.6364x10-

5 

Trace of the 

inverse of 
information 

matrix 

39.8812 39.3615 33.6229 34.8543 

Maximum 
scaled predic-

tive variance 

16.6069 14.0250 13.5102 14.2929 

Minimum 
scaled predic-

tive variance 

2.6777 2.9423 3.1127 2.7857 

Relative D-
efficiency 

0.9041 0.9870 1.0412 - 

Relative G-

efficiency 
0.8607 1.0191 1.0579 - 

Relative A-

efficiency 
0.8742 0.8857 1.0369 - 

Loss in Rela-
tive D-

efficiency 

0.0959 0.0130 - - 

Loss in Rela-
tive G-

efficiency 

0.1393 - - - 

Loss in Rela-
tive A-

efficiency 

0.1258 0.1143 - - 

 
Table 3: Relative Efficiencies and Losses to A Pair of Missing Observations at Factorial, Axial, Center and the Point Combinations of Cuboidal Design 

with k = 2 

Criterion 

Two missing 

vertex points 

V2 

Two missing 

axial points S2 

Two missing 

center points 

C2 

One missing 
vertex point 

and one miss-

ing axial point 

V1S1 

One missing 
vertex point and 

one missing 

center point 

V1C1 

One missing 
axial point and 

one missing 

center point 

S1C1 

No missing 

point 

Design size N 10 10 10 10 10 10 12 
Determinant of nor-

malized information 

matrix 

5.76x10-4 

3.84 x10-4 
0.0031 
0.0031 

0.0081 
0.0013 
5.76 x10-4 

0.0023 0.0054 0.0046 

Trace of the inverse 

of information ma-

trix 

31.1111 
41.6667 

24.1667 
24.3750 

17.9762 
27.1429 
44.4444 

23.9007 19.7024 18.50 

Maximum scaled 

predictive variance 

10.0 

8.3333 

9.1667 

9.7917 
7.9762 

9.5238 

10.0000 
8.7234 9.1667 9.5 

Minimum scaled 

predictive variance 

2.2222 

2.5000 

2.50 

2.2917 
3.5714 

2.3810 

2.2222 
2.7660 2.8571 2.5 

Relative D-efficiency 
0.8386 
0.6611 

0.9363 
0.9363 

1.0989 
0.8101 
0.7073 

0.8909 1.0271 - 

Relative G-efficiency 
0.95 

1.1400 

1.0364 

0.9702 
1.1910 

0.9975 

0.9500 
1.0890 1.0364 - 

Relative A-efficiency 
0.5946 

0.4440 

0.7655 

0.7590 
1.0291 

0.6816 

0.9500 
0.7740 0.9390 - 

Loss in Relative D-
efficiency 

0.1614 
0.3389 

0.0637 
0.0637 

- 
0.1899 
0.2927 

0.1091 - - 

Loss in Relative G-

efficiency 

0.05 

- 

- 

0.0298 
- 

0.0025 

0.0500 
- - - 

Loss in Relative A-

efficiency 

0.4054 

0.5560 

0.2345 

0.2410 
- 

0.3184 

0.5837 
0.2260 0.0610 - 
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3.4. Two missing observation in vertex, axial and center 

parts of cuboidal design in three control variables 

As with the two control variable case in section 3.3, there is no 

loss in A-, D- and G-efficiencies to missing of a pair of center 

points of the cuboidal design in three control variables with four 

replicated center points. Three categories, namely V2,  S2and V1S1, 

incurred multiple losses in efficiency. Maximum loss in D-

efficiency is attributed to missing two vertex points (V2) followed 

by missing one vertex point and one axial point (V1S1). Maximum 

loss in A-efficiency is attributed to missing two vertex points (V2) 

followed by missing two axial points (S2) and thirdly, missing one 

vertex point and one axial point (V1S1 ). G-efficiency is again 

mildly affected by missing points with a maximum of approxi-

mately 9% loss in efficiency across the subcategories V2, V1S1 and 

V1C1. Details of the results for each subcategory are as in Table 4. 

 

 
Table 4: Relative Efficiencies and Losses to A Pair of Missing Observations at Factorial, Axial, Center and the Point Combinations of Cuboidal Design 

with k = 3 

Criterion 
Two missing 

vertex points V2 

Two missing 

axial points S2 

Two missing 

center points 

C2 

One missing 
vertex point 

and one miss-

ing axial point 

V1S1 

One missing 
vertex point 

and one miss-

ing center point 

V1C1 

One missing 
axial point and 

one missing 

center point 

S1C1 

No missing 

point 

Design size N 16 16 16 16 16 16 18 
Determinant of nor-

malized information 

matrix 

1.0505x10-5 

9.7603x10-6 

1.4909x10-6 

4.7684x10-5 

7.3910x10-5 2.1607x10-4 3.01x10-5 

2.712x10-5 5.4296x10-5 1.2815x10-4 9.6364x10-5 

Trace of the inverse 
of information matrix 

47.6851 

50.7756 

179.20 

61.20 
44.5032 

32.5931 
44.7485 
46.0176 

38.2669 37.9907 34.8643 

Maximum scaled 
predictive variance 

15.6595 

15.6336 

13.60 

13.20 
13.5355 

12.7310 
15.7228 
15.6923 

15.6707 13.20 14.2929 

Minimum scaled 
predictive variance 

2.6383 

2.5344 

4.00 

4.0 
2.9677 

3.5862 
2.8911 
2.7692 

2.9914 3.3488 2.7857 

Relative D-efficiency 

0.8012 

0.7953 

0.6591 

0.9321 
0.9738 

1.0841 
0.8902 
0.8809 

0.9442 1.0289 - 

Relative G-efficiency 

0.9127 

0.9142 

1.0509 

1.0828 
1.0560 

1.1227 
0.9091 
0.9108 

0.9121 1.0828 - 

Relative A-efficiency 

0.7311 

0.6866 

0.1946 

0.5697 
0.7834 

1.0697 
0.7791 
0.7576 

0.9111 0.9177 - 

Loss in Relative D-

efficiency 

0.1988 

0.2047 
0.3409 

0.0679 

0.0262 
- 

0.1098 

0.1191 
0.0558 - - 

Loss in Relative G-

efficiency 

0.0873 

0.0858 
- 

- 

- 
- 

0.0909 

0.0892 
0.0879 - - 

Loss in Relative A-

efficiency 

0.2689 

0.3134 
0.8054 

0.4303 

0.2166 
- 

0.2209 

0.2424 
0.0889 0.0823 - 

 

4. Conclusion 

This work has assessed the effect of one or two missing observa-

tions of factorial, axial and center points on three optimality 

measures. It has particularly examined losses incurred in A-, D- 

and G-efficiency by missing a single observation of the factorial, 

axial or center part of cuboidal designs as well as losses incurred 

in A-, D- and G-efficiency by a pair of missing observations. Alt-

hough the absence of one or two center points was not seen to 

affect any of A-, D- and G-efficiency, but when its absence is in 

combination with either a vertex or axial point, there is some 

negative effect on the design efficiency resulting in some percent-

age loss in efficiency. The loss in efficiency is higher when the 

missing center point is in combination with missing vertex point. 

Relative efficiencies that exceed 1.0 simply imply that there is no 

loss in efficiency using the specified criterion but rather some 

percentage gain in efficiency has been incurred. By interpretation, 

such situation implies that using a design with the missing obser-

vation(s) is better than using the specified “complete” design. For 

instance, the relative D-efficiency of 1.0841 associated with a pair 

of missing observations at center part of the cuboidal design with 

three control variables implies that by the two missing points there 

is 8.41% gain in D-efficiency when compared with the 18 point 

cuboidal design having four center points. This result agrees with 

the result of Srisuradetchai [13] that in general, increasing the 

number of center runs does not much improve the robustness of 

central composite design with α = 1.0 but rather results in lower 

D-efficiency value. Unlike missing vertex points which seems to 

grossly affect design efficiency, missing one or two center runs do 

not incur losses in design efficiency for both two- and three-

control variable cases and missing one center point plus one axial 

point incurs minimal or no loss in efficiency. For missing single 

observation associated with two-control variable case, higher loss-

es in A- and D-efficiency are attributed to missing vertex point, 

the category V1. On the other hand, higher losses in G-efficiency 

are attributed to missing axial point, the category S1. For missing 

two observations, higher losses in D-efficiency are attributed to 

missing points in the category V1S1 . On the other hand, higher 

losses in A- and G-efficiency are attributed to missing points in 

the category V2 . For missing single observation associated with 

three control variable case, higher losses in A- D- and G-

efficiency are attributed to missing vertex point, the category V1. 

For missing two observations, higher losses in A- and D-

efficiency are attributed to missing vertex point, the category V2 

while higher losses in G-efficiency are attributed to missing points 

in the category V1S1 even though percentage losses are approxi-

mately identical across the subcategories V2, V1S1 and S1C1. Loss-

es in A- and D-efficiencies are generally higher than losses in G-

efficiency. Summarily, G-efficiency is mildly affected by the 
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missing observations. Unlike what is seen in most references cit-

ed, all information matrices used in the analysis have been nor-

malized to remove the effect of changing design sizes. 
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