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Abstract

In this paper, given a progressively type II censored sample from a generalized half logistic distribution, the Bayesian
and E-Bayesian (expectation of the Bayesian estimate) estimators are obtained under LINEX and squared-error
loss functions, for the parameter and reliability function. Monte Carlo simulation method is used to generate a
progressive Type-II censored data from generalized half logistic distribution, then these data is used to compute
the estimations of the parameter and compare both the methods used with different random schemes.
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1 Introduction

Let X = |Z|, where Z is the standard logistic random variable, X is called the folded or half logistic random
variable. The density function of half logistic distribution is a monotonic decreasing function of x is [0,∞) and has
an increasing hazard rate. The generalized versions of half logistic distribution namely Type-I and TypeII were
considered along with point estimation of scale parameters and estimation of stress strength reliability based on
complete sample by Ramakrishna [2]. Recently Arora et al. [1] considered maximum likelihood estimators of the
generalized half logistic distribution under type I progressive censoring with changing failure rates. Azimi et al. [8]
obtained Bayes estimators of the parameter and reliability function of generalized half logistic distribution by taking
progressive type II censored sample using different loss functions such as LINEX, precautionary and entropy loss
functions. The cumulative distribution function (cdf), and probability density function (pdf), of the generalized
half logistic distribution with parameter β > 0 are

F (x|β) = 1−
[

2e−x

1 + e−x

]β

, x > 0 (1)

f(x|β) =
β (2e−x)β

(1 + e−x)β+1
(2)

The reliability function R(t), at mission time t is given by

R(t) =
[

2e−t

1 + e−t

]β

,

Progressive Type-II censored sampling is an important method of obtaining data in lifetime studies. A recent
account on progressive censoring schemes can be obtained in the monograph by Balakrishnan and Aggarwala [4] or
in the excellent review article by Balakrishnan [3]. Suppose that n independent items are put on a test and that
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the lifetime distribution of each item is given by the probability density function of (2). The ordered m-failures are

observed under the type-II progressively censoring plan (R1, ..., Rm) where each Ri ≥ 0 and
m∑

j=1

Rj + m = n. If

the ordered m-failures are denoted by x(1) < x(2) < ... < x(m), then the likelihood function based on the observed
sample x(1) < x(2) < ... < x(m) (for convenience notation are denoted by x1 < x2 < ... < xm) is

L(β) = c

m∏

i=1

f(xi|β)[1− F (xi|β)]Ri (3)

where c = n(n− 1− R1)...(n− R1 − ...− Rm−1 −m + 1). Substituting (1), (2) in (3), The latter function can be
obtained as follows,

L(β) = c

m∏

i=1

β

(
2e−xi

1 + e−xI

)β (
2e−xi

1 + e−xi

)βRi

(1 + e−xi)−1

∝ βm exp {βw} (4)

where

W (xi) = w =
m∑

i=1

(Ri + 1) ln
(

2e−xi

1 + e−xi

)
.

2 Bayesian estimation

We now derive the Bayes estimator for the parameter and reliability function of the generalized half logistic distri-
bution based on the progressive Type-II censored data. Here we consider family of prior densities as the following
form

π (β) =
ba

Γ(a)
βa−1e−bβ . (5)

where a, b > 0. By combining (4) and the latter prior density function, we can obtain posterior density of β as the
following form,

π(β|x) =
(b− w)m+a

Γ(m + a)
βm+a−1e−β(b−w) (6)

Substituting β = − log s

log 1+e−t

2e−t

into (6), we can obtain the posterior density function of s = R(t) as

π(s|X) =
(b− w)m+a

Γ(m + a)

(
log

{
1 + e−t

2e−t

})−(m+a)

(− log s)m+a−1s

b−w

log 1+e−t

2e−t

−1

where 0 < s < 1.
The Bayesian estimator under the squared-error loss function is given by

β̂S = E(β|X) =
m + a

b− w
(7)

Under squared-error loss function, the Bayesian estimators of R(t) is given by

R̂S =

(
b− w

b− w − log 2e−t

1+e−t

)m+a

(8)

Based on LINEX loss function (for more details about the LINEX loss function, see for example, Calabria and
Pulicini [9]), we obtain Bayesian estimator of the parameter β as the following form (for more details see Azimi et.
al [8])

β̂L = −m + a

k
log

(
b− w

b + k − w

)
(9)
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for estimate R(t) under LINEX loss function we can expand e−ks also in taylor series, and approximate this
estimator, the Bayesian estimators under LINEX loss function denoted by R̂L is,

R̂L = −1
k

log


1 +

∞∑

j=1

(−k)j

j!

(
b− w

b− w + jT

)m+a

 (10)

where T = log 2e−t

1+e−t .

3 E-Bayesian estimation

According to Han [5], the prior parameters a and b should be selected to guarantee that π(β) is a decreasing function
of β. The derivative of π(β) with respect to β is

dπ(β)
dβ

=
ba

Γ(a)
βa−2e−bβ ((a− 1)− bβ)

since a > 0, b > 0, and β > 0, it follows 0 < a < 1, b > 0 due to dπ(β)
dβ < 0 and therefore π(β) is a decreasing

function of β.

Assuming that a and b are independent with bivariate density function

π(a, b) = π1(a)π2(b),

then, the E-Bayesian estimate of β (expectation of the Bayesian estimate of β ) can be written as

β̂EB = E(β|X) =
∫ ∫

β̂B(a, b)π(a, b)dadb, (11)

where β̂B(a, b) is the Bayes estimate of β given by (7) and (9). For more details, see Han [6] or jaheen and okasha [7].

3.1 E-Bayesian estimation under squared-error loss function

The following distributions of a and b may be used

π1(a, b) =
2(c− b)

c2
, 0 < a < 1, 0 < b < c,

π2(a, b) =
1
c
, 0 < a < 1, 0 < b < c, (12)

π3(a, b) =
2b

c2
, 0 < a < 1, 0 < b < c,

For π1(a, b), the E-Bayesian estimate of β is obtained from (7), (11) and (12) as

β̂EBS1 =
∫ ∫

β̂S(a, b)π1(a, b)dbda =
2
c2

∫ 1

0

∫ c

0

(
m + a

b− w(xi)

)
(c− b)dbda

=
2

(
m + 1

2

)

c2

(
(c− w) log

(
c− w

−w

)
− c

)
(13)

Similarly, the E-Bayesian estimates of β based on π2(a, b) and π3(a, b) are computed and given, respectively, by

β̂EBS2 =
m + 1

2

c
log

(
c− w

−w

)
(14)

β̂EBS3 =
2

(
m + 1

2

)

c2

(
c + w log

(
c− w

−w

))
(15)
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Under squared-error loss function, the E-Bayesian estimates for the reliability function are computed for the
three different distributions of the hyperparameters a and b given by (12).For πi(a, b), i = 1, 2, 3, the E-Bayesian
estimate of the reliability is obtained from (11), (8) and (12) as

R̂EBSi =
∫ ∫

R̂BSπi(a, b)dbda =
∫ ∫ (

b− w

b− w − T

)m+a

πi(a, b)dbda (16)

Since obtaining a closed form expression for R̂EBSi is not possible, We can expand R̂BS also in Taylor series, and
approximate R̂EBSi. Therefore,

R̂BS =
(

b− w

b− w − T

)m+a

= A1

[
1 + aA2 + A3 + A4a

2 + A5ab + A6b
2
]

(17)

where

A1 =
(

w

w + T

)m

, A2 = log
w

w + T
, A3 = − mT

(w + T )w
, A4 =

1
2

(
log

w

w + T

)2

and

A5 = −mTw log w
w+T + Tw + T 2 + mT 2 log w

w+T

(w + T )2w
,A6 =

1
2
−2mTw + mT 2(m− 1)

(w + T )2w2

Then we can obtain R̂EBSi from (16) and (17) as the following form

R̂EBS1 ≈ A1

(
1 +

1
2
A2 + A3 +

1
3
A4 +

c

6
A5 +

c2

6
A6

)

R̂EBS2 ≈ A1

(
1 +

1
2
A2 + A3 +

1
3
A4 +

c

4
A5 +

c2

3
A6

)

R̂EBS3 ≈ A1

(
1 +

1
2
A2 + A3 +

1
3
A4 +

c

3
A5 +

c2

2
A6

)

3.2 E-Bayesian estimation under LINEX loss function

Based on the LINEX loss function, the E-Bayesian estimation of β is computed for the three different distributions
of the hyperparameters a and b given by (12). For π1(a, b), the E-Bayesian estimate of β is obtained from (9), (11)
and (12) as

β̂EBL1 =
m + 1

2

c2k

[
c2 log G1 +

(
(k − w)2 − 2c(w − k)

)
log G2 + (2cw − w2) log G3 − ck

]
(18)

Similarly, the E-Bayesian estimates of β based on π2(a, b) and π3(a, b) are computed and given, respectively, by

β̂EBL2 =
m + 1

2

c2k

[
c2 log G1 − c(w − k) log G2 + cw log G3

]
(19)

and

β̂EBL3 =
m + 1

2

c2k

[
c2 log G1 − (k − w)2 log G2 + w2 log G3 + ck

]
(20)

where

G1 =
c− w + k

c− w
,G2 =

c− w + k

k − w
, G3 =

c− w

−w

Based on the LINEX loss function, the E-Bayesian estimates for the reliability function are computed for the three
different distributions of the hyperparameters a and b given by (12). It follows that, for i = 1, 2, 3, the E-Bayesian
estimates of b are obtained from (10), (11) and (12) and written as

R̂EBLi =
∫ ∫

R̂BLπi(a, b)dbda =
∫ ∫

−1
k

log


1 +

∞∑

j=1

(−k)j

j!

(
b− w

b− w + jT

)m+a

 πi(a, b)dbda (21)

Analytical and numerical computations for the integrals in (21) are very complicated.



60 International Journal of Advanced Mathematical Sciences

4 Property of E-Bayesian estimation

Theorem-1 . For E-Bayesian Estimator of parameter β (β̂EBSi, i = 1, 2, 3) when 0 < c < w, we have:

(i) β̂EBS3 < β̂EBS2 < β̂EBS1

(ii) lim
w→∞

β̂EBS1 = lim
w→∞

β̂EBS2 = lim
w→∞

β̂EBS3

Proof (i) From (13),(14) and (15), we have

β̂EBS1 − β̂EBS2 = β̂EBS2 − β̂EBS3 =
2

(
m + 1

2

)

c2

[
(c− 2w)

2
log

(
1− c

w

)
− c

]
(22)

For −1 < x < 1, we have: log(1 + x) = x− x2

2 + x3

3 − x4

4 + x5

5 + · · ·
Let x = c

w , when 0 < c < w, 0 < c
w < 1, we get:

[
(c− 2w)

2
log

(
1− c

w

)
− c

]
=

c− 2w

2

[
− c

w
− 1

2
c2

w2
− 1

3
c3

w3
− 1

4
c4

w4
− 1

5
c5

w5
− · · ·

]
− c

= c

[
c2

w2

(
1
3
− 1

4

)
+

c3

w3

(
1
4
− 1

6

)
+

c4

w4

(
1
5
− 1

8

)
+ · · ·

]
(23)

according to (22) and (23), we have

β̂EBS1 − β̂EBS2 = β̂EBS2 − β̂EBS3 > 0,

that is

β̂EBS3 < β̂EBS2 < β̂EBS1

(ii) From (22) and (23) we get

lim
w→∞

(
β̂EBS1 − β̂EBS2

)
= lim

w→∞

(
β̂EBS2 − β̂EBS3

)

=
2

(
m + 1

2

)

c
lim

w→∞

[
1
12

c2

w2
+

1
12

c3

w3
+

3
40

c4

w4
+ · · ·

]

= 0

That is,

lim
w→∞

β̂EBS1 = lim
w→∞

β̂EBS2 = lim
w→∞

β̂EBS3

Thus, the proof is complete.

Theorem-2. For E-Bayesian Estimator of parameter β under Linex loss function (β̂EBLi, i = 1, 2, 3) when
0 < c < w, we have:

(i) β̂EBL1 < β̂EBL2 < β̂EBL3

(ii) lim
w→∞

β̂EBL1 = lim
w→∞

β̂EBL2 = lim
w→∞

β̂EBL3

proof: From (18),(19) and (20), we have

β̂EBL1 − β̂EBL2 = β̂EBL2 − β̂EBL3 =
m + 1

2

c2k

[(
(k − w)2 + c(k − w)

)
log G2 + (cw − w2) log G3 − ck

]
(24)

according theorem-1 we have

1
c2

[(
(k − w)2 + c(k − w)

)
log G2 + (cw − w2) log G3 − ck

]
=

(k − w)2 + c(k − w)
c2
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×
[

c

k − w
− 1

2
c2

(k − w)2
+

1
3

c3

(k − w)3
− 1

4
c4

(k − w)4
+

1
5

c5

(k − w)5
− · · ·

]

+
cw − w2

c2

[
− c

w
− 1

2
c2

w2
− 1

3
c3

w3
− 1

4
c4

w4
− · · ·

]

=
c

k − w

(
1
3
− 1

2

)
+

c2

(k − w)2

(
1
3
− 1

4

)
+

c3

(k − w)3

(
1
5
− 1

4

)
+ · · ·

+
c

w

(
1
3
− 1

2

)
+

c2

w2

(
1
4
− 1

3

)
+

c3

w3

(
1
5
− 1

4

)
+

c4

w4

(
1
6
− 1

5

)
+ · · · (25)

according to (24) and (25), we have

β̂EBL1 − β̂EBL2 = β̂EBL2 − β̂EBL3 < 0

that is

β̂EBL1 < β̂EBL2 < β̂EBL3

(ii) From (24) and (25) we get

lim
w→∞

(
β̂EBL1 − β̂EBL2

)
= lim

w→∞

(
β̂EBL2 − β̂EBL3

)

=
m + 1

2

k
lim

w→∞

[
c

k − w

(
1
3
− 1

2

)
+

c2

(k − w)2

(
1
3
− 1

4

)
+

c3

(k − w)3

(
1
5
− 1

4

)
+ · · ·

]

+
m + 1

2

k
lim

w→∞

[
c

w

(
1
3
− 1

2

)
+

c2

w2

(
1
4
− 1

3

)
+

c3

w3

(
1
5
− 1

4

)
+

c4

w4

(
1
6
− 1

5

)
+ · · ·

]

That is,

lim
w→∞

β̂EBL1 = lim
w→∞

β̂EBL2 = lim
w→∞

β̂EBL3

Thus, the proof is complete.

5 Simulation study

• We generate a and b from (12)

• For given values of (a, b) we generate β from the gamma prior density (5).

Applying the algorithm of Balakrishnan and Aggarwala [4], we used the following steps to generate a progressive
Type II censored sample from the Generalized Half Logistic distribution.

1. Simulate m independent exponential random variables Z1, Z2, ..., Zm.
This can be done using inverse transformation Zi = − ln(1 − Ui) where Ui are independent uniform(0, 1)
random variables.

2. Set

Xi =
Z1

n
+

Z2

n−R1 − 1
+

Z3

n−R1 −R2 − 2
+ · · ·+ Zi

n−R1 −R2 − · · · −Ri−1 − i + 1

for i = 1, 2, ..., m. This is the required progressively type-II censored sample from the standard exponential
distribution.

3. Finally, we set Yi = F−1(1−exp(−Xi)), for i = 1, 2, ...,m, where F−1(.) is the inverse cumulative distribution
function of the generalized half logistic distribution. Then Y1, Y2, · · · , Ym is the required progressively type-II
censored sample from the distribution F (.).
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4. We compute the the Bayes estimates β̂S ,β̂L, respectively using (7), (9), and compute the the E-Bayesian
estimates of parameter β, respectively using, (13), (14), (15), (18), (19), (20).

5. We repeat the above steps 5000 times. We then obtain the means and the MSEs (Mean Squared Error) for
different censoring sizes n, m and censoring schemes where

MSE =
1

5000

5000∑

i=1

(φ− φ̂i)2

and φ̂ is the estimator of φ.

Our computational results for the MSE is computed in the above steps, where the values of the parameters
used are a = 0.6711976, b = 2.539000 and c = 4 yielding β = 0.3906595 (as true values). For different progressive
censoring scheme R and various values of n and m, the E-Bayesian and Bayesian estimates for the parameters β
are as in the following Table 1.

6 Conclusions

This paper introduces a new method, called E-Bayesian estimation(see Han [6]), to estimate parameter and reliability
function of Generalized Half Logistic distribution when progressive Type II censoring is performed. Based on the
results shown in Table-1, one can conclude, Generally, the MSE of the E-Bayesian estimates of β are the smallest
MSE as the as compared with the Bayesian estimates. The MSE of E-Bayesian estimates under LINEX loss
function have smallest MSE as the as compared with the E-Bayesian estimates under squared error loss function.
It is immediate to note that MSE of Bayesian and E-Bayesian estimates decrease as n,m increases.
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Table 1: Averaged values of MSEs for estimates of the parameter β.
n m R = (R1, ..., Rm) MSE(β̂S) MSE(β̂L)(k=3) MSE(β̂EBS1) MSE(β̂EBL1)

MSE(β̂EBS2) MSE(β̂EBL2)

MSE(β̂EBS3) MSE(β̂EBL3)

10 5 (5,0,0,0,0) 0.03585 0.01913 0.06742 0.03131
0.04797 0.02361
0.03250 0.01775

10 (0,...,0) 0.01757 0.01306 0.02281 0.01609
0.01942 0.01415
0.01651 0.01255

20 10 (5,5,0,...,0) 0.01711 0.01254 0.02235 0.01557
0.01894 0.01361
0.01600 0.01199

15 (5,0,...,0) 0.01126 0.00916 0.01329 0.01051
0.01192 0.00962
0.01072 0.00886

30 20 (4,4,2,0,...,0) 0.00813 0.00703 0.00912 0.00772
0.00844 0.00726
0.00784 0.00686

30 (0,...,0) 0.00540 0.00490 0.00582 0.00521
0.00553 0.00500
0.00527 0.00482

40 25 (5,5,5,0,...,0) 0.00640 0.00568 0.00702 0.00613
0.00659 0.00583
0.00621 0.00556

35 (1*5,0*30) 0.00440 0.00405 0.00468 0.00426
0.00448 0.00412
0.00430 0.00399

50 40 (5*2,0*38) 0.00414 0.00385 0.00438 0.00403
0.00421 0.00391
0.00406 0.00380

50 (0*50) 0.00306 0.00289 0.00319 0.00300
0.00310 0.00293
0.00302 0.00287


