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Abstract
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1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖.
Let C be a nonempty subset of H.
A mapping T : C −→ H is called k−strictly pseudocontractive if
there exists a constant k ∈ [0,1) such that

‖T x−Ty‖2 ≤ ‖x− y‖2 + k‖x−T x− (y−Ty)‖2, (1.1)

for all x,y ∈C. If k = 1 in (1.1), then T is called pseudocontractive
mapping.
A mapping T : C→ H is called Lipschitzian if there exists L ≥ 0
such that ||T x−Ty|| ≤ L||x−y||, ∀x,y∈C. If L = 1, then T is called
nonexpansive and if L ∈ [0,1) then T is called a contraction.
Observe that the class of pseudocontractive mappings includes the
class of strictly pseudocontractive mappings and hence the class of
nonexpansive and contraction mappings.

Let CB(C) denote the family of nonempty, closed and bounded
subsets of C. The Pompeiu-Hausdorff metric ([2]) on CB(C) is
defined by

D(A,B) = max{sup
x∈A

d(x,B),sup
y∈B

d(y,A)},

for all A,B ∈CB(C), where d(x,B) = inf{‖x−b‖ : b ∈ B}.
A multi-valued mapping T : C −→CB(C) is said to be k−strictly
pseudocontractive if there exists a constant k ∈ [0,1) such that

D2(T x,Ty)≤ ‖x− y‖2 + k‖(x−u)− (y− v)‖2, (1.2)

for all x,y ∈C and u ∈ T x,v ∈ Ty. If k = 1 in (1.2), then T is called
pseudocontractive mapping.
A multi-valued mapping T is called Lipschitzian if there exists L≥ 0
such that

D(T x,Ty)≤ L‖x− y‖, ∀x,y ∈C.

If L = 1, then T is called nonexpansive and if L ∈ [0,1) then T is
called a contraction mapping.
An element x ∈C is called a fixed point of T : C −→C (resp., T :
C −→CB(C)) if x = T x (resp., x ∈ T x). The set of fixed points of T
is denoted by F(T ). We write xn ⇀ x to indicate that the sequence
{xn} converges weakly to x and xn→ x to indicate that the sequence
{xn} converges strongly to x.
A mapping T : C −→ H is called quasi-nonexpansive if F(T ) is
nonempty and the inequality

‖T x− p‖ ≤ ‖x− p‖,

holds for all p ∈ F(T ), x ∈C.
The mapping T is called hemicontractive if F(T ) is nonempty and it
satisfies:

‖T x− p‖2 ≤ ‖x− p‖2 +‖x−T x‖2,

for all p ∈ F(T ), x ∈C.
A multi-valued mapping T : C −→ CB(C) is called quasi-
nonexpansive if F(T ) 6= /0 and for all p ∈ F(T ), x ∈C, we have

D(T x,T p)≤ ‖x− p‖.
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A multivalued mapping T : C −→ CB(C) is said to be
hemicontractive-type if F(T ) 6= /0 and for all p ∈ F(T ), x ∈C,

D2(T x,T p)≤ ‖x− p‖2 +‖x−u‖2, ∀u ∈ T x. (1.3)

We observe that every nonexpansive mapping with F(T ) 6= /0 is
quasi-nonexpansive mapping, and every pseudocontractive mapping
T with F(T ) 6= /0 and T (p) = {p},∀p ∈ F(T ) is hemicontractive-
type mapping. It is also easy to see that every quasi-nonexpansive
mapping is hemicontractive-type mapping. Next, we give an example
of a hemicontractive-type mapping which is not quasi-nonexpansive
and pseudocontractive mappings.

Example 1.1. Let T : R−→CB(R) be given by

T x = [−3x,−2x], if x≥ 0 and T x = [−2x,−3x], if x < 0.

Then, zero is the only fixed point of T , that is, F(T ) = {0} and for
all x ∈ R\{0}, we have

D(T x,T 0) = max{ sup
a∈T x

d(a,T 0), sup
b∈T 0

d(b,T x)}

= max{ sup
a∈T x
|a|,d(0,T x)}

= max{3|x|,2|x|)}= 3|x|> |x−0|, (1.4)

which shows that T is not quasi-nonexpansive. And for every x ∈ R,

d(x,T x) = inf
a∈T x
|a− x|= |x+2x|= 3|x|.

Thus, from (1.4), we have

D2(T x,T 0) = 9|x|2 = |x−0|2 +8|x|2

≤ |x−0|2 +9|x|2 = |x−0|2 +(d(x,T x))2

≤ |x−0|2 + |x−u|2, for all u ∈ T x.

This shows that T is hemicontractive-type mapping. However, it is
not a pseudocontractive. Indeed, for x = 1, y = 2, u =−3 ∈ T x and
v =−4 ∈ Ty, we have

D2(T x,Ty) = 9 > 1+4 = |x− y|2 + |x−u− (y− v)|2.

Therefore, the class of multi-valued hemicontractive-type mappings
is more general in the sense that it includes properly the class of
multi-valued quasi-nonexpansive mappings and the class of pseudo-
contractive mappings T with F(T ) 6= /0 and T (p) = {p},∀p∈ F(T ).

Let T : C −→ CB(C) be a multi-valued mapping, I − T (where
I is the identity mapping on C) is said to be demiclosed at zero
if {xn} ⊂ C such that xn ⇀ x and limn→∞ d(xn,T xn) = 0 implies
x ∈ T x.

Several authors have studied iterative algorithms for approximating
fixed points of various classes of nonlinear mappings (including
hemicontractive mapping); see, for example, [5, 8, 14, 15, 21] and the
references cited therein. In 2007, Rafiq [13] introduced the following
Mann-type implicit iteration process and showed that the process
converges strongly to a fixed point of a continuous hemicontractive
mapping T from a compact and convex subset C of a real Hilbert
space into itself:{

x0 ∈C,
xn = αnxn−1 +(1−αn)T xn, ∀n≥ 1,

where {αn} ⊂ [0,1] satisfying some appropriate conditions.
Recently, Woldeamanuel et al.[19] extended the results of Rafiq [13]
from single-valued hemicontractive to multi-valued hemicontractive-
type mapping. More precisely, they studied the following three-step
iterative algorithm for finding a common point of fixed points of

a finite family of Lipschitz and hemicontractive-type multi-valued
mappings under mild assumption on the parameters:

zn = (1− γn)xn + γnwn, wn ∈ Tnyn,
yn = (1−βn)xn +βnun, un ∈ Tnxn,
xn+1 = αnw+(1−αn)zn, ∀n≥ 1.

(1.5)

They proved that the sequence {xn}, generated by (1.5), converges
strongly to some point p in ∩N

i=1F(Ti) nearest to w.
A mapping A : C −→ H is called α−inverse strongly monotone if
there exists a positive real number α such that

〈Ax−Ay,x− y〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈C.

Note that every α-inverse strongly monotone mapping is
1
α
−Lipschitz mapping. However, the converse may not hold. For ex-

ample, the mapping A : (0,1)−→R defined by Ax =−x is Lipschitz
but not α−inverse strongly monotone.
A mapping A : C −→ H is called monotone if

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

Clearly, the class of monotone mappings includes the class of α-
inverse strongly monotone and the inclusion is proper. To see this,
consider the mapping A : (0,1)−→ R given by Ax =− 1

x . Then, for
every x,y ∈C, we have

〈x− y,Ax−Ay〉= 〈x− y,−1
x
+

1
y
〉= 1

xy
||x− y||2 ≥ 0,

which shows that A is monotone mapping. However, since
|Ax−Ay| = |−1

x + 1
y | =

1
xy |x− y| and 1

xy → ∞ as xy→ 0, then we
can not find a constant L≥ 0 such that |Ax−Ay| ≤ L|x− y|, for all
x,y ∈ (0,1). Hence, A is not Lipschitz and so it is not α−inverse
strongly monotone mapping.

Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let F : C×C −→ R be a bifunction and A : C −→ H be a
nonlinear mapping. The generalized equilibrium problem is to find
z ∈C such that

F(z,y)+ 〈Az,y− z〉 ≥ 0, ∀y ∈C. (1.6)

In this paper, the set of solutions of problem (1.6) is denoted by
EP(F,A), i.e.,

EP(F,A) = {z ∈C : F(z,y)+ 〈Az,y− z〉 ≥ 0, ∀y ∈C}.

In the case of A≡ 0, then the problem (1.6) reduces to the equilibrium
problem:

Finding z ∈C such that F(z,y)≥ 0, ∀y ∈C. (1.7)

The set of solutions of problem (1.7) is denoted by EP(F). In the
case of F ≡ 0, then the problem (1.6) reduced to finding z ∈C such
that

〈Az,y− z〉 ≥ 0, ∀y ∈C, (1.8)

which is called the classical variational inequality problem. The set
of solutions of problem (1.8) is denoted by V I(C,A).
Clearly, if a point z∈V I(C,A)∩EP(F), then z∈ EP(F,A), however,
the converse may not hold as we can see from the following example.

Example 1.2. Let H = R and C = [0,1]. Define F : C×C→ R by
F(x,y) = x+ y and A : C→ H by Ax = x

2 . Then, for x = 1, we have

F(x,y)+ 〈Ax,y− x〉= (1+ y)+
1
2
(y−1) =

1
2
(3y+1)≥ 0,

for all y ∈C, which implies that 1 ∈ EP(F,A). But, since 〈A1,y−
1〉 = 1

2 (y− 1) ≤ 0 for all y ∈ C, then 1 6∈ V I(C,A) and hence 1 6∈
EP(F)∩V I(C,A).
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Assumption 1.3. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. In the sequel, let F be a bifunction of C×C
into R satisfying the following conditions:

(A1) F(x,x) = 0, ∀x ∈C;
(A2) F is monotone, i.e., F(x,y)+F(y,x)≤ 0, ∀x,y ∈C;
(A3) limt↓0 F(tz+(1− t)x,y)≤ F(x,y), ∀x,y,z ∈C;
(A4) For each x ∈C, y 7→ F(x,y) is convex and lower semicontinu-

ous.

Remark 1.4. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. Let F be a bifunction from C×C into
R satisfying Assumption 1.3 and let A be a continuous monotone
mapping. Define G : C×C −→ R by

G(x,y) = F(x,y)+ 〈Ax,y− x〉,

then it is easy to see that the bifunction G satisfies Assumption 1.3.
Thus, the generalized equilibrium problem (1.6) is equivalent to the
following equilibrium problem:

Find z ∈C such that G(z,w)≥ 0, for all w ∈C.

Generalized equilibrium problem is more general in the sense that
it includes equilibrium problems and hence variational inequalitiy,
optimization problem, Nash equilibrium problem etc. Consequently,
many authors have shown their interest in constructing an iterative
algorithm for approximating common solution of generalized equi-
librium and fixed point problems. We describe some of them as
follows:
In 2008, Moudafi [11] introduced an iterative scheme for finding a
common element of the set of solutions of generalized equilibrium
problems and the set of fixed points of nonexpansive single-valued
mapping in a Hilbert space setting and then obtained the following
weak convergence theorem.

Theorem 1.5. [11] Let C be a nonempty, closed and convex subset of
a real Hilbert space H and F : C×C−→R be a bifunction satisfying
Assumption 1.3. Let A be an α−inverse strongly monotone mapping
of C into H, and let T be a nonexpansive mapping of C in to itself
such that F(T )∩EP(F,A) is nonempty. Let x0 ∈C and {yn}, {xn}
be sequences generated by

F(yn,y)+ 〈Axn,y− yn〉
+ 1

rn
〈y− yn,yn− xn〉 ≥ 0, ∀y ∈C

xn+1 = αnxn +(1−αn)Tyn, ∀n≥ 0,

where {rn} ⊂ [a,b] for some a,b ∈ (0,2α) and {αn} ⊂ [c,d] for
some c,d ∈ (0,1). Then, {xn} converges weakly to z ∈ F(T )∩
EP(F,A), where z = limn→∞ PF(T )∩EP(F,A)xn.

In [17], motivated by the result given by Moudafi [11], Takahashi and
Takahashi proposed an iterative scheme and proved the following
convergence theorem.

Theorem 1.6. [17] Let C be a nonempty, closed and convex subset
of a real Hilbert space H and F : C×C −→ R be a bifunction
satisfying Assumption 1.3. Let A be an α−inverse strongly monotone
mapping of C into H and T : C −→C be a nonexpansive mapping
such that F(T )∩EP(F,A) is nonempty. Let u,x1 ∈C and {zn}, {xn}
be sequences generated by

F(zn,y)+ 〈Axn,y− zn〉
+ 1

λn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C

yn = αnu+(1−αn)zn
xn+1 = βnxn +(1−βn)Tyn, ∀n≥ 1,

where {αn} ⊂ [0,1],{βn} ⊂ [0,1] and {λn} ⊂ [0,2α] satisfying:

i. 0 < a≤ λn ≤ b < 2α, 0 < c≤ βn ≤ d < 1;
ii. limn→∞ |λn−λn+1|= 0, limn→∞ αn = 0 and ∑

∞
n=1 αn = ∞.

Then, {xn} converges strongly to z0 = PF(T )∩EP(F,A)(u).

Recently, Wong et al.[4] introduced the following implicit viscosity
approximation method, starting from x0 ∈C, for finding common
point of the set of solutions of generalized equilibrium problem
(1.6) and the set of fixed points of a continuous pseudocontractive
mapping in Hilbert spaces:

F(zn−1,y)+ 〈Axn−1,y− zn−1〉
+ 1

λn
〈y− zn−1,zn−1− xn−1〉 ≥ 0, ∀y ∈C

yn = βn f (xn−1)+ γnSzn−1 +(1−βn− γn)xn−1
xn = αnyn +(1−αn)T xn, ∀n ∈ N,

(1.9)

where F : C×C −→ R is a bifunction, A : C −→ H is an α−inverse
strongly monotone mapping, f : C −→ C is a fixed contraction
mapping, S : C−→C is a nonexpansive mapping, and T : C−→C is
a continuous pseudocontractive mapping such that F(T )∩EP(F,A)
is nonempty. They proved that the sequence {xn}, generated by
(1.9), converges strongly to a point in F(T )∩EP(F,A) provided
that the sequences {αn},{βn},{γn} ⊂ (0,1] and {λn} ⊂ (0,2α]
satisfy some appropriate control conditions.

In this paper, motivated and inspired by the idea of Iiduka and
Takahashi [7], Takahashi and Takahashi [16, 17], Wong et al.[4], we
introduce an iterative algorithm for finding a common element of
the solution set of a generalized equilibrium problem (1.6) and the
set of fixed points of a multi-valved Lipschitz hemicontractive-type
mapping. We also establish a strong convergence theorem in the
framework of Hilbert spaces. The results presented in this paper
improve and extend the corresponding results announced by Meche
et al.[10], Moudafi [11], Takahashi and Takahashi [16, 17], Wong
et.al.[4] and some other results that have been obtained previously
in this research area.

2. Preliminaries

Throughout this section unless otherwise stated, let C be a nonempty,
closed and convex subset of a real Hilbert space H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that

‖x−PCx‖= inf{‖x− y‖ : y ∈C}.

PC is called the metric projection of H onto C. We note that the
metric projection PC is a nonexpansive mapping from H onto C. It
also satisfies the following property: for any x ∈ H and z ∈C,

z = PCx if and only if 〈x− z,z− y〉 ≥ 0, for all y ∈C. (2.1)

Furthermore, for any x,y ∈ H, we have

‖x− y‖2 = ‖x‖2 +‖y‖2−2〈x,y〉. (2.2)

We note that (I−T ) is demiclosed at zero whenever T : C −→C is
a nonexpansive mapping, (see [1]).
We need the following lemmas for the proof of our main results.

Lemma 2.1. [22] Let H be a real Hilbert space. Then for all xi ∈H
and αi ∈ [0,1] for i = 1,2, · · · ,n such that α1 +α2 + · · ·+αn = 1
the following equality holds:

‖α1x1 +α2x2 + · · ·+αnxn‖2 =
n

∑
i=1

αi‖xi‖2− ∑
1≤i, j≤n

αiα j‖xi− x j‖2.

Lemma 2.2. Let H be a real Hilbert space. Then, for any given
x,y ∈ H, we have the following inequality:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉.
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Lemma 2.3. [3, 6] Let F be a bifunction from C×C into R satisfy-
ing Assumption 1.3. For r > 0 and for all x ∈ H, define a mapping
Tr : H −→C as follows:

Trx = {z ∈C : F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0,∀y ∈C}.

Then, the following hold:

(1) Tr is nonempty and single valued;
(2) Tr is firmly nonexpansive, i.e., ‖Trx−Try‖2 ≤ 〈Trx−Try,x−y〉,
∀x,y ∈ H;

(3) F(Tr) = EP(F);
(4) EP(F) is closed and convex.

From Lemma 2.3 we observe that for each given x ∈ H, there exists
a unique element z ∈C such that z = Trx.

Lemma 2.4. [12] Let H be a Hilbert space. Let A,B ∈ CB(H)
and a ∈ A. Then, for ε > 0, there exists a point b ∈ B such that
||a−b|| ≤D(A,B)+ε . As a consequence of this, taking ε =D(A,B),
we obtain that ||a−b|| ≤ 2D(A,B).

Lemma 2.5. [20] Let {bn} be a sequence of nonnegative real num-
bers satisfying the following relation:

bn+1 ≤ (1−αn)bn +αnδn, for n≥ n0,

where {αn} ⊂ (0,1) and δn ⊂ R satisfying the following conditions:

lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞, and limsup
n→∞

δn ≤ 0.

Then, limn→∞ bn = 0.

Lemma 2.6. [9] Let {an} be a sequence of real numbers such that
there exist a subsequence {ni} of {n} such that ani < ani+1, for
all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N
such that mk → ∞ and the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j ≤ a j+1}.

3. Main Result

In this section, we prove strong convergence theorems for a gener-
alized equilibrium problem and a fixed point problem for a multi-
valued Lipschitz hemicontractive-type mapping.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a
real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and F : C×C −→ R be a bifunction satisfying Assump-
tion 1.3. Let T : C −→CB(C) be a Lipschitz hemicontractive-type
mapping with Lipschitz constant L such that Ω = F(T )∩EP(F,A)
is nonempty and T p = {p} for all p ∈Ω. Let x1,u ∈C be arbitrary
and {xn} be a sequence generated by

F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnun,
xn+1 = αnu+βnvn + γnzn,

(3.1)

for all n ≥ 1, where un ∈ T zn,vn ∈ Tyn such that ‖un − vn‖ ≤
2D(T zn,Tyn) and {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn+βn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn} is bounded.

Proof. Let p ∈ Ω. Then, T p = {p} and F(p,y)+ 〈Ap,y− p〉 ≥ 0.
Define G(x,y) = F(x,y)+ 〈Ax,y− x〉 for all x,y ∈C. Then, by re-
mark 1.4, G satisfies Assumption 1.3 and p ∈ EP(F,A) is equivalent
to G(p,y) ≥ 0 for all y ∈ C. Thus, using the definition, zn can be

rewritten as zn = Trn xn := {F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn−

xn〉 ≥ 0, ∀y ∈C,} and hence we have p = Trn p. From the fact that
Trn is nonexpansive, we obtain that

‖zn− p‖= ‖Trn xn−Trn p‖ ≤ ‖xn− p‖. (3.2)

Since T is hemicontractive-type mapping and un ∈ T zn, from (3.1),
(3.2) and Lemma 2.1, we get

‖yn− p‖2 = ‖(1−λn)zn +λnun− p‖2

= (1−λn)‖zn− p‖2 +λn‖un− p‖2

−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− p‖2 +λnD2(T zn,T p)

−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− p‖2 +λn

(
‖zn− p‖2 +‖zn−un‖2

)
−λn(1−λn)‖zn−un‖2

= ‖zn− p‖2 +λn‖zn−un‖2−λn(1−λn)‖zn−un‖2

≤ ‖xn− p‖2 +λ
2
n ‖zn−un‖2. (3.3)

On the other hand, since T is hemicontractive-type mapping and
vn ∈ Tyn, from (3.1) and (3.3), we have that

‖vn− p‖2 = (d(vn,T p))2 ≤ D2(Tyn,T p)

≤ ‖yn− p‖2 +‖yn− vn‖2

≤ ‖xn− p‖2 +λ
2
n ‖zn−un‖2

+‖yn− vn‖2. (3.4)

It follows from (3.1) that

‖zn− yn‖2 = ‖zn− ((1−λn)zn +λnun)‖2

= λ 2
n ‖zn−un‖2. (3.5)

Since T is L−Lipschitzian mapping and ‖un− vn‖ ≤ 2D(T zn,Tyn) ,
using (3.5) and Lemma 2.1, we get that

‖yn− vn‖2 = ‖(1−λn)(zn− vn)+λn(un− vn)‖2

= (1−λn)‖zn− vn‖2 +λn‖un− vn‖2

−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− vn‖2 +4λnD2(T zn,Tyn)

−λn(1−λn)‖zn−un‖2

≤ (1−λn)‖zn− vn‖2 +4λnL2‖zn− yn‖2

−λn(1−λn)‖zn−un‖2

= (1−λn)‖zn− vn‖2 +4λ
3
n L2‖zn−un‖2

−λn(1−λn)‖zn−un‖2

= (1−λn)‖zn− vn‖2

+λn(4L2
λ

2
n +λn−1)‖zn−un‖2. (3.6)

Hence, substituting (3.6) into (3.4), we obtain that

‖vn− p‖2 ≤ ‖xn− p‖2 +λ
2
n ‖zn−un‖2 +(1−λn)‖zn− vn‖2

+λn(4L2
λ

2
n +λn−1)‖zn−un‖2

= ‖xn− p‖2 +(1−λn)‖zn− vn‖2

+λn(4L2
λ

2
n +2λn−1)‖zn−un‖2. (3.7)
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Thus, from (3.2), (3.7) and Lemma 2.1, we have that

‖xn+1− p‖2 = ‖αnu+βnvn + γnzn− p‖2

≤ αn‖u− p‖2 +βn‖vn− p‖2 + γn‖zn− p‖2

−βnγn‖zn− vn‖2

≤ αn‖u− p‖2

+βn

(
‖xn− p‖2 +(1−λn)‖zn− vn‖2

+λn(4L2
λ

2
n +2λn−1)‖zn−un‖2

)
+ γn‖zn− p‖2−βnγn‖zn− vn‖2

= αn‖u− p‖2 +(1−αn)‖xn− p‖2

+βn(1− γn−λn)‖zn− vn‖2

−βnλn(1−4L2
λ

2
n −2λn)‖zn−un‖2.

Then, by assumption (i), we have

‖xn+1− p‖2 ≤ αn‖u− p‖2 +(1−αn)‖xn− p‖2

−βnλn(1−4L2
λ

2
n −2λn)‖zn−un‖2

+βn(αn +βn−λn)‖zn− vn‖2, (3.8)

and from assumption (iii), we get

1−4L2
λ

2
n −2λn ≥ 1−4L2

λ
2−2λ > 0

and (αn +βn)−λn ≤ 0, (3.9)

for all n≥ 1. Therefore, from (3.8) and (3.9), we infer that

‖xn+1− p‖2 ≤ αn‖u− p‖2 +(1−αn)‖xn− p‖2

≤ max{‖u− p‖2,‖xn− p‖2}.

Thus, by induction, we have that

‖xn− p‖2 ≤max{‖u− p‖2,‖x1− p‖2},

which implies that {xn} is bounded. This completes the proof.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a
real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and F : C×C −→ R be a bifunction satisfying Assump-
tion 1.3. Let T : C −→CB(C) be a Lipschitz hemicontractive-type
mapping with Lipschitz constant L such that Ω = F(T )∩EP(F,A)
is nonempty, closed and convex. Assume that (I−T ) is demiclosed
at zero and T p = {p} for all p ∈Ω. Let x1,u ∈C be arbitrary and
{xn} be a sequence generated by

F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnun,
xn+1 = αnu+βnvn + γnzn,

(3.10)

for all n ≥ 1, where un ∈ T zn,vn ∈ Tyn such that ‖un − vn‖ ≤
2D(T zn,Tyn) and {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn +βn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn} converges

strongly to the point z = PΩ(u).

Proof. Since Ω is nonempty, closed and convex subset of C, we get
that PΩ is well defined. Clearly, from Theorem 3.1 the sequence {xn}
and hence {yn},{zn} are bounded. As in Theorem 3.1, let p ∈ Ω.
Then, using (3.10), Lemma 2.1 and Lemma 2.2, we obtain

‖xn+1− p‖2 = ‖αnu+βnvn + γnzn− p‖2

≤ ‖βn(vn− p)+ γn(zn− p)‖2

+2αn〈u− p,xn+1− p〉
≤ βn‖vn− p‖2 + γn‖zn− p‖2−βnγn‖zn− vn‖2

+2αn〈u− p,xn+1− p〉. (3.11)

Since Trn is firmly nonexpansive, from (2.2) we have that

‖zn− p‖2 = ‖Trn xn−Trn p‖2

≤ 〈zn− p,xn− p〉

=
1
2

(
‖zn− p‖2 +‖xn− p‖2−‖xn− zn‖2

)
,

which gives that

‖zn− p‖2 ≤ ‖xn− p‖2−‖xn− zn‖2. (3.12)

Thus, substituting (3.7) and (3.12) into (3.11), we obtain that

‖xn+1− p‖2 ≤ βn

(
‖xn− p‖2 +λn(4L2

λ
2
n +2λn−1)

×‖zn−un‖2 +(1−λn)‖zn− vn‖2
)

+γn(‖xn− p‖2−‖xn− zn‖2)

−βnγn‖zn− vn‖2 +2αn〈u− p,xn+1− p〉
= (1−αn)‖xn− p‖2−βnλn(1−4L2

λ
2
n −2λn)

×‖zn−un‖2 +βn(αn +βn−λn)‖zn− vn‖2

− γn‖zn− xn‖2 +2αn〈u− p,xn+1− p〉. (3.13)

It follows from (3.9) that

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2

+2αn〈u− p,xn+1− p〉. (3.14)

Next, we consider two cases:
Case 1. Suppose that there exists n0 ∈ N such that {‖xn− p‖} is
decreasing for all n≥ n0. Then, we get that, {‖xn− p‖} is convergent.
Thus, from (3.13) and (3.9), we have that

βnλn

(
1−4L2

λ
2
n −2λn

)
‖zn−un‖2 ≤ (1−αn)‖xn− p‖2

−‖xn+1− p‖2

+2αn〈u− p,xn+1− p〉.

Hence, from (3.9) and the fact that αn→ 0 as n→ ∞, we have that

‖zn−un‖→ 0 as n→ ∞, (3.15)

which implies that

d(zn,T zn)≤ ‖zn−un‖→ 0 as n→ ∞. (3.16)

In addition, from (3.9) and (3.13), we find that

γn‖zn− xn‖2 ≤ (1−αn)‖xn− p‖2−‖xn+1− p‖2

+2αn〈u− p,xn+1− p〉.

Thus, since αn → 0 as n→ ∞, it follows from the assumption of
{γn} that

lim
n→∞
‖zn− xn‖= 0. (3.17)

And using the Lipschitz continuity of T , (3.5) and (3.15), we get that

‖zn− vn‖ ≤ ‖zn−un‖+‖un− vn‖
≤ ‖zn−un‖+2L‖zn− yn‖
= ‖zn−un‖+2Lλn‖zn−un‖→ 0 as n→ ∞. (3.18)

Therefore, from (3.17), (3.18), definition of {xn+1} and the fact that
αn→ 0 as n→ ∞, we get

‖xn+1− xn‖ ≤ ‖xn+1− zn‖+‖zn− xn‖
= ‖αn(u− zn)+βn(vn− zn)‖+‖zn− xn‖
≤ αn‖u− zn‖+βn‖vn− zn‖+‖zn− xn‖→ 0 as n→ ∞.

(3.19)



International Journal of Advanced Mathematical Sciences 25

Now, let z = PΩ(u). We claim that limsupn→∞〈u− z,xn+1− z〉 ≤ 0.
Since {xn+1} is a bounded sequence in a real Hilbert space H, which
is reflexive Banach space, there exists a subsequence {xni+1} of
{xn+1} and an element in H, say q, such that

xni+1 ⇀ q and limsup
n→∞

〈u− z,xn+1− z〉= lim
i→∞
〈u− z,xni+1− z〉.

Since, C is weakly closed, we have q ∈C and from (3.19) it follows
that xni ⇀ q as i→ ∞. From (3.17), we obtain that zni ⇀ q as i→ ∞

and hence using the assumption that (I−T ) is demiclosed at zero
and (3.16), we conclude that

q ∈ F(T ).

In addition, from (3.1) and replacing n by ni in (3.17), we have that

‖xni −Trni
xni‖= ‖xni − zni‖→ 0 as i→ ∞.

Thus, since Trni
is nonexpansive, then (I−Trni

) is demiclosed at zero
and hence since xni ⇀ q as i→ ∞, we obtain that q = Trni

q, that is,
F(q,y)+ 〈Aq,y−q〉 ≥ 0 for all y ∈C. Hence, we have

q ∈ EP(F,A),

which implies that q ∈Ω. Hence, since z = PΩ(u) and xni ⇀ q, from
(2.1) we get that

limsup
n→∞

〈u− z,xn+1− z〉 = lim
i→∞
〈u− z,xni+1− z〉

= 〈u− z,q− z〉 ≤ 0 (3.20)

Thus, since z ∈ Ω, from (3.14), (3.20), assumptions of {αn} and
Lemma 2.5, we get that

‖xn− z‖→ 0 as n→ ∞ .

Hence, xn→ z = PΩ(u).
Case 2. Suppose that there exists a subsequence {n j} of {n} such
that

‖xn j − p‖< ‖xn j+1− p‖,

for all j ∈ N. Then, by Lemma 2.6, there exist a nondecreasing
sequence {mk} ⊂ N such that mk→ ∞, and

‖xmk − p‖ ≤ ‖xmk+1− p‖ and ‖xk− p‖ ≤ ‖xmk+1− p‖, (3.21)

for all k ∈ N. Thus, from (3.13), (3.9) and the fact that αn→ 0, we
get that

||zmk −umk || → 0 and ||zmk − xmk || → 0 as k→ ∞ .

Hence, since z = PΩ(u), following the method in Case 1, we obtain
that

limsup
k→∞

〈u− z,xmk+1− z〉 ≤ 0. (3.22)

Now, Because z ∈Ω, from (3.14), we have that

‖xmk+1− z‖2 ≤ (1−αmk )‖xmk − z‖2

+2αmk 〈u− z,xmk+1− z〉, (3.23)

and hence, since z ∈Ω, (3.21) and (3.23) imply that

αmk‖xmk − z‖2 ≤ ‖xmk − z‖2−‖xmk+1− z‖2

+2αmk 〈u− z,xmk+1− z〉
≤ 2αmk 〈u− z,xmk+1− z〉.

Hence, the fact that αmk > 0 imply that

‖xmk − z‖2 ≤ 2〈u− z,xmk+1− z〉.

Thus, using (3.22) we get that ‖xmk−z‖→ 0 as k→∞. This together
with (3.23) and (3.22) implies that ‖xmk+1− z‖→ 0 as k→∞. Since
z ∈Ω, we obtain ‖xk− z‖ ≤ ‖xmk+1− z‖, for all k ∈N. Thus, we get
that xk→ z as k→ ∞. Consequently, from both the above cases, we
deduce that {xn} converges strongly to z = PΩ(u). This completes
the proof.

As a direct consequence of our main result, we obtain the following
results:

Corollary 3.3. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and F : C×C −→ R be a bifunction satisfying Assumption
1.3. Let T : C −→ CB(C) be a Lipschitz pseudocontractive map-
ping with Lipschitz constant L such that Ω = F(T )∩EP(F,A) is
nonempty, closed and convex. Assume that (I−T ) is demiclosed at
zero and T p = {p} for all p ∈ F(T ). Let x1,u ∈C be arbitrary and
{xn} be a sequence generated by

F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnun,
xn+1 = αnu+βnvn + γnzn,

for all n ≥ 1, where un ∈ T zn,vn ∈ Tyn such that ‖un − vn‖ ≤
2D(T zn,Tyn) and {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn +βn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn} converges

strongly to the point z = PΩ(u).

Proof. Since a Lipschitz pseudocontractive multi-valued map-
ping T with F(T ) 6= /0 and T (p) = {p},∀p ∈ F(T ) is Lipschitz
hemicontractive-type, we obtain that the desired result from Theo-
rem 3.2. This completes the proof.

If, in Theorem 3.2, we assume that A≡ 0, then we obtain the follow-
ing corollary:

Corollary 3.4. Let C be a nonempty, closed and convex subset of a
real Hilbert space H. Let F : C×C −→ R be a bifunction satisfying
Assumption 1.3 and T : C−→CB(C) be a Lipschitz hemicontractive-
type mapping with Lipschitz constant L such that Ω = F(T )∩EP(F)
is nonempty, closed and convex. Assume that (I−T ) is demiclosed
at zero and T p = {p} for all p ∈Ω. Let x1,u ∈C be arbitrary and
{xn} be a sequence generated by

F(zn,y)+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnun,
xn+1 = αnu+βnvn + γnzn,

for all n ≥ 1, where un ∈ T zn,vn ∈ Tyn such that ‖un − vn‖ ≤
2D(T zn,Tyn) and {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn +βn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn} converges

strongly to the point z = PΩ(u).

If, in Theorem 3.2, we assume that F(x,y) = 0 for all x,y ∈C, then
we obtain the following corollary.

Corollary 3.5. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and T : C −→CB(C) be a Lipschitz hemicontractive-type
mapping with Lipschitz constant L such that Ω = F(T )∩V I(C,A)
is nonempty, closed and convex. Assume that (I−T ) is demiclosed
at zero and T p = {p} for all p ∈Ω. Let x1,u ∈C be arbitrary and
{xn} be a sequence generated by

〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnun,
xn+1 = αnu+βnvn + γnzn,

for all n ≥ 1, where un ∈ T zn,vn ∈ Tyn such that ‖un − vn‖ ≤
2D(T zn,Tyn) and {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn +βn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn} converges

strongly to the point z = PΩ(u).
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If, in Theorem 3.2, we assume that T is a single-valued hemicon-
tractive mapping from C into itself, then we obtain the following
corollary.

Corollary 3.6. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and F : C×C −→ R be a bifunction satisfying Assumption
1.3. Let T : C −→C be a Lipschitz hemicontractive mapping with
Lipschitz constant L such that Ω = F(T )∩EP(F,A) is nonempty,
closed and convex. Assume that (I−T ) is demiclosed at zero. Let
x1,u ∈C be arbitrary and {xn} be a sequence generated by

F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

yn = (1−λn)zn +λnT zn,
xn+1 = αnu+βnTyn + γnzn,

for all n≥ 1, where {rn} ⊂ [r,∞) for some r > 0, {βn},{γn} ⊂ [a,b],
and {αn} ⊂ (0,c) for some a,b,c ∈ (0,1) satisfying the following
conditions: (i) αn +βn + γn = 1; (ii) limn→∞ αn = 0, ∑αn = ∞; (iii)
αn +βn ≤ λn ≤ λ < 1√

1+L2+1
. Then, the sequence {xn} converges

strongly to the point z = PΩ(u).

If, in Theorem 3.2, we assume that T = I, where I is the identity
mapping on C, then we obtain the following corollary.

Corollary 3.7. Let C be a nonempty, closed and convex subset of
a real Hilbert space H. Let A : C −→ H be a continuous monotone
mapping and F : C×C −→ R be a bifunction satisfying Assumption
1.3 such that EP(F,A) is nonempty. Let x1,u ∈C be arbitrary and
{xn} be a sequence generated by{

F(zn,y)+ 〈Azn,y− zn〉+ 1
rn
〈y− zn,zn− xn〉 ≥ 0, ∀y ∈C,

xn+1 = αnu+(1−αn)zn,

for all n≥ 1, where {rn} ⊂ [r,∞) for some r > 0 and {αn} ⊂ (0,c)
for some c ∈ (0,1) such that limn→∞ αn = 0 and ∑αn = ∞. Then,
the sequence {xn} converges strongly to the point z = PEP(F,A)(u).

Remark 3.8. Theorem 3.2 extends the results of Iiduka and Taka-
hashi [7], Meche et al.[10], Takahashi and Takahashi [16, 17], Wang
et al.[18], Wong et al.[4] in the sense that our algorithm scheme pro-
vides strong convergence to a common element of the set of solutions
of a generalized equilibrium problem for continuous monotone map-
ping and the set of fixed points of a Lipschitz hemicontractive-type
multi-valued mapping. We have used the demiclosedness principle
to show that q ∈ EP(F,A) in Theorem 3.2, which is a little simpler
than using Assumption 1.3.
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