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Abstract

We find all solutions to the Diophantine equations 2x + 3y2 = 4z and 2x + 7y2 = 4z. Also, we give solutions to
2x + dy2 = 4z in non-negative integers for d = (2k − 1)/9, where k is a natural number ≡ 0 (mod 6).
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1 Introduction

Different examples of Diophantine equations have been studied (see for instance [1, 2]). In [3], Acu studied some
Diophantine equations of type ax + by = cz. Moreover, Acu [4] considered the equation 2x + 5y = z2. Cenberci
and Senay [5] had studied the Diophantine equation x2 + B2 = y4 and gave a conjecture, an analogue of Terai’s
conjecture. Furthermore, they proved in [5] that if y ≡ 5 (mod 8) is a prime power then their conjecture holds.
If B is a prime power, y2 = Y ≡ 1 (mod 8) then Terai’s and their conjecture holds. Cenberci, Peker and Coskun
[6] determined all solutions to the equation xa + yb = zc, (a, b, c) ∈ {(2, 8, 6), (2, 6, 8), (8, 6, 2)} in coprime integers
x, y, z. Suvarnamani [7] studied the Diophantine equation 2x +py = z2 where p is a prime number and x, y and z are
non-negative integers. Rabago [8] have studied the two Diophantine equations 4x − 7y = 3z2 and 4x − 19y = 3z2,
and in [9], Rabago considered the Diophantine equation 4x − py = 3z2, p an odd prime ≡ 3 (mod 4).

In this short note, we find all solutions to the Diophantine equations 2x + 3y2 = 4z and 2x + 7y2 = 4z in
non-negative integers. Also, we give solutions to 2x + dy2 = 4z for d = (2k − 1)/9 in non-negative integers, where
k a natural number ≡ 0 (mod 6).

2 Main results

Theorem 2.1. The solutions to the Diophantine equation 2x + 3y2 = 4z in non-negative integers are given by

(x, y, z) ∈ {(2(n− 1), 0, n− 1) : n ∈ N} ∪ {(2(n− 1), 2n−1, n) : n ∈ N}.

Proof. We first consider the case when z = 0, obtaining 2x + 3y2 = 1 in which we may deduce immediately that
x = 0 and y = 0. For the case x = 0, we have 4z − 3y2 = 1. This is true only when z = 0, y = 0 and y = 1, z = 1.
On the other hand, if y = 0, we have 2x = 22z, or equivalently x = 2z. Now for the general case, x, y, z > 0, we
have 22z − 2x = 3y2. Then, 2x(22z−x − 1) = 3y2. Hence, 2x = y2 and 22z−x − 1 = 3. The latter equation is true
for x = 2(z − 1), and 2x = y2 is satisfied for all x = 2(n− 1) and y = 2n−1, where n is a natural number. Also, it
follows that z = n. This proves the theorem.



24 International Journal of Advanced Mathematical Sciences

Theorem 2.2. The solutions to the Diophantine equation 2x + 7y2 = 4z in non-negative integers are given by

(x, y, z) ∈ {(2(n− 1), 0, n− 1) : n ∈ N} ∪ {(2(n− 1), 3(2n−1), n + 2) : n ∈ N}.

Proof. It can be shown easily that (x, y, z) = (2(n − 1), 0, n − 1) is a solution for all natural number n. Now, if
x, y, z > 0, we have 22z − 2x = 7y2. Then, 2x(22z−x − 1) = 7y2. Hence, x is even so 7y2 ≡ 4z − 2x ≡ 0 (mod 3). It
follows that y is divisible by three, i.e. y = 3k for some k ∈ N. Letting y = 3k, we obtain 2x(22z−x − 1) = 63k2,
implying 2x = k2 and 22z−x − 1 = 63. The solution to 2x = k2 is then given by x = 2(n − 1) and k = 2n−1. For
22z−x − 1 = 63 we have the solution 2z − x = 6 or x = 2(z − 3). Furthermore, we see that 2(n− 1) = 2(z − 3), that
is z = n + 2. This completes the proof of the theorem.

Lemma 2.3. If k is a natural number and k ≡ 0 (mod 6), then 2k − 1 ≡ 0 (mod 9).

Proof. Let k ≡ 0 (mod 6) hence k = 6m, m ∈ N. For m = 1, we have 26 − 1 = 64 − 1 = 63 which is divisible
by 9. Suppose 2k − 1 ≡ 0 (mod 9). Then, 2k − 1 = 9l, where l a natural number. So, for m > 1, we have
2k+1 − 1 = 26m+1 − 1 = 64m+1 − 1. It follows that 2k+1 − 1 = 64(64m − 1) + 63 = 64(9l) + 63 = 9(64l + 63). Thus,
2k+1 − 1 ≡ 0 (mod 9). By the principle of mathematical induction, conclusion follows.

In Theorem 2.2, it is interesting to note that 7 = (26 − 1)/9. This observation provides us a motivation to
generalize the given theorem. Our generalization is stated in the following result.

Theorem 2.4. Let d = (2k − 1)/9, where k is a natural number such that k ≡ 0 (mod 6). Then the solutions to
the Diophantine equation 2x + dy2 = 4z in non-negative integers are given by

(x, y, z) ∈ {(2(n− 1), 0, n− 1) : n ∈ N} ∪ {(2(n− 1), 3(2n−1), n− 1 + k/2 : n ∈ N}.

Proof. The proof is very similar to Theorem 2.2. It is clear that (x, y, z) = (2(n − 1), 0, n − 1) are solutions
to 2x = 4z. Now, for positive integers x, y and z, we have 2x(22z−x − 1) = dy2. It follows that x is even so
dy2 ≡ 4z − 2x ≡ 0 (mod 3). This implies that y is divisible by 3. Letting y = 3m, m a natural number, we have
2x(22z−x−1) = (2k−1)m2. That is, 2x = m2 and 22z−x−1 = 2k−1. Thus, x = 2(n−1) and m = 2n−1 which implies
that y = 3(2n−1). Furthermore, we see that 2z − x = k = 6l, for some l ∈ N. Therefore, x = 2(z − 3l) = 2(z − k/2).
Here we conclude that 2(n− 1) = 2(z − k/2) or z = n− 1 + k/2. The theorem is proved.

3 Conclusion

In the paper, we have found all solutions to the Diophantine equation 2x + 3y2 = 4z in non-negative integers. The
solutions are given by (x, y, z) ∈ {(2(n− 1), 0, n− 1) : n ∈ N} ∪ {(2(n− 1), 2n−1, n) : n ∈ N}. Also, we have shown
that for d = (2k−1)/9 and natural number k ≡ 0 (mod 6), the solutions to the Diophantine equation 2x +dy2 = 4z

in non-negative integers are (x, y, z) ∈ {(2(n− 1), 0, n− 1) : n ∈ N} ∪ {(2(n− 1), 3(2n−1), n− 1 + k/2 : n ∈ N}.
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