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Abstract

Nonidentical relations of skew-symmetric differential forms, which basis are non-integrable deforming manifolds follow from differential
equations. From nonidentical relations closed exterior forms are obtained. The process of obtaining closed exterior forms describes the
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the mathematical physics equations for material media such as the cosmologic systems, the systems of charged particles and others.
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1. Introduction

Nonidentical relations of skew-symmetric differential forms dis-
close unique capabilities of skew-symmetric ones and their role in
mathematics, mathematical physics and field theory. The properties
of closed exterior and dual forms, namely, invariance, covariance,
conjugace, and duality, either explicitly or implicitly appear in all in-
variant mathematical formalisms. This enables one to see an internal
connection between various branches of mathematics.
However, the theory of closed exterior forms cannot be completed
without an answer to a question of how the closed exterior forms
emerge.
It turns out that the closed inexact exterior forms are generated by
the skew-symmetric forms obtained from the differential equations
describing by any processes. These skew-symmetric forms possess
evolutionary properties since, in contrast to exterior forms, the non-
integrable deforming manifold is their basis.
In the paper it is shown that the process of generating closed ex-
terior forms, the tool of which are nonidentical relations, describe
the evolutionary processes and the processes of various structures
emergence, which is impossible to describe within the framework of
another mathematical formalisms.
In the paper, it is disclosed an unique physical sense of the noniden-
tical relations obtained from the equations of mathematical physics
that describe material media such as thermodynamic, gas-dynamic,
cosmic systems, the systems of charged particles and so on. From
these equations one can obtain the nonidentical evolutionary relation
for functionals such as entropy, action functional, Einstein’s func-
tion, and so on, which, as it is shown, possess a duality. They are

functionals of the material media state and (as it is well known) the
field-theory functionals. On one hand, such a nonidentical relation
describes the material media state, evolutionary processes in material
media and the processes of emergence of physical structures and
such formations like waves, vortices and turbulent pulsations. And
on other hand, this relation discloses the connection between the
field-theory equations and the equations of mathematical physics. It
is shown that the field theory equations (by Schroedinger, Maxwell,
Einstein and others) which solutions are differentials, namely, closed
inexact exterior differential forms, turns to be nonidentical relations
(relations, from which closed exterior forms are obtained) of the
equations of mathematical physics for material media.

In Section 1 we present some information (being necessary for fur-
ther outlining) concerning the properties of skew-symmetric exterior
and evolutionary forms. Specific features of nonidentical relations
and degenerate transformation of the evolutionary differential forms
are described. The process obtaining identical relations and the
process of generating closed inexact exterior differential forms are
described.
In Section 2 the unique properties of the nonidentical evolutionary
relation obtained from the equations of mathematical physics, which
describe material media are presented.
Such a relation reveals the hidden properties of the mathematical
physics equations that enables one to describe not only the variation
of physical quantities, but also to describe the evolutionary processes
in material media such as the emergence of various structures and
observable formations.
In Section 3 the connection between the field-theory equations and
the nonidentical relation of the mathematical physics equations is
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shown.

2. Some properties of skew-symmetric forms

(From papers [1-4] one can get more detail information concerning
the skew-symmetric differential forms).

2.1. Closed exterior differential forms

The exterior differential form of the degree p (p-form) can be written
as [3-5]:

θ
p = ∑

i1...ip

ai1...ip dxi1 ∧dxi2 ∧·· ·∧dxip 0≤ p≤ n (1)

Here ai1...ip is the function of independent variables x1, ...,xn, n is
the space dimension, and dxi, dxi ∧dx j, dxi ∧dx j ∧dxk, . . . is the
local basis subject to the condition of skew-symmetry:

dxi∧dxi = 0
dxi∧dx j =−dx j ∧dxi i 6= j

(2)

The exterior form differential θ p is expressed by the formula

dθ
p = ∑

i1...ip

dai1...ip ∧dxi1 ∧dxi2 · · ·∧dxip (3)

The form called as a closed one if its differential equals to zero:

dθ
p = 0 (4)

From condition (4) one can see that the closed form is a conserva-
tive quantity. This means that such a form can correspond to the
conservation law (for physical fields).
If the form be closed only on pseudostructure, i.e. this form is a
closed inexact one, the closure condition can be written as

dπ θ
p = 0 (5)

In this case the pseudostructure π obeys the condition

dπ
∗
θ

p = 0 (6)

here ∗θ p is the dual form.
From conditions (5) and (6) one can see that the dual form (pseu-
dostructure) and closed inexact form (conservative quantity) describe
a conservative object that can also correspond to some conservation
law. (It appears that the closed inexact exterior and dual forms de-
scribe a structure with conservative quantity. Such structures made
up physical fields and pseudometric and metric manifolds.)

Properties of closed exterior forms

Invariance of closed exterior forms. Non-degenerate transfor-
mations
The fundamental properties of exterior differential forms are con-
nected with the fact that any closed form is a differential. An exact
form is, by definition, a differential. In this case the differential is
total. A closed inexact form is a differential too. The closed inexact
form is an interior (on pseudostructure) differential, that is

θ
p
π = dπ θ

p−1

Since a closed form is a differential, it is obvious that a closed form
will turn out to be invariant under all non-degenerate transformations
that conserve a differential.
The non-degenerate transformations that conserve the differential
are one of fundamental methods in the theory of exterior differential
forms (below it will be shown that degenerate transformations appear
in the mathematical apparatus of the evolutionary forms). Unitary

transformations (0-forms), the tangent and canonical transforma-
tions (1-forms), gradient and gauge transformations (2-forms), and
so on are examples of such transformations. These are the gauge
transformations for spinor, scalar, vector and tensor (3-form) fields.
Covariance of a dual form is directly connected with the invariance
of an exterior closed form.
Invariant properties of closed exterior forms and covariance of a dual
form explicitly or implicitly manifest themselves essentially in all
invariant mathematical formalisms and formalisms of field theory,
such as the Hamilton formalism, tensor calculus, group theory, Yang-
Mills theory and others.

Identical relations of exterior differential forms
Closure of exterior differential forms and dual forms, and hence
their invariance and covariance, results from the conjugace of the
elements of exterior or dual forms, elements of the form differential,
exterior and dual forms and others.
Since the conjugace represents a certain connection between two
operators or mathematical objects, it is evident that relations can be
used to express conjugace mathematically. A relation may be either
identical or nonidentical.
The basis of the mathematical apparatus of exterior differential forms
comprises identical relations. (Below the nonidentical relations will
be discussed, and it will be shown that identical relations for exterior
differential forms are obtained from nonidentical relations by the
degenerate transformations.)
The identical relations express the fact that the differential of exterior
form is a closed exterior form of any degree p.
In general form such an identical relation can be written as

dπ φ = θ
p
π (7)

In this relation the form in the right-hand side has to be a closed one.
(As it will be shown below, the identical relations are satisfied on
pseudostructures).
[The importance of the identical relations for exterior differential forms is manifested by

the fact that practically in all invariant branches of physics, mechanics and thermodynam-

ics one faces such identical relations. One can present the following examples: (a) the

Poincare invariant ds = −H dt + p j dq j , (b) the second principle of thermodynamics

dS = (dE + pdV )/T , (c) the conditions on characteristics in the theory of differential

equations, and so on. The relations expressed in terms of integral, tensor and derivatives

analogues to differential forms are also identical relations of exterior skew-symmetric

forms forms [3].

Differential-geometrical structures and their physical meaning
The closed dual form and associated closed inexact exterior form
made up a differential-geometrical structure that describes a pseu-
dostructure with conservative quantity. (A closed dual form describes
a pseudostructure. And a closed exterior form, as it is known, de-
scribes a conservative quantity, since the differential of closed form
is equal to zero).
Such a differential-geometrical structure describes a conservative
object (a pseudostructure with conservative quantity). As it will
be shown below such differential-geometrical structures describe
physical structures on which conservation laws are fulfilled.

The properties of closed exterior forms (invariance, conjugace, dual-
ity, and so on) manifest themselves in various branches of mathemat-
ics such as algebra, differential geometry, the theory of functions of
complex variables, tensor analysis, differential and integral calculus.
This discloses an internal connection between various mathematical
formalisms.
However, the theory of closed exterior forms cannot be completed
without an answer to a question of how the closed exterior forms
emerge.
It turns out that closed exterior forms are obtained from differential
equations describing any processes.
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However, here there is a certain peculiarity. Closed exterior skew-
symmetric forms cannot be directly obtained from differential equa-
tions. They are realized only in evolutionary process.
When studying the integrability of differential equations it follows
an nonidentical relation that contains the skew-symmetric differen-
tial forms which possess the evolutionary properties since they are
defined on deforming manifold. As the result of the process made
up by nonidentical relation the closed inexact exterior forms are
obtained from such evolutionary skew-symmetric differential forms.
As it will be shown, the process of extracting closed exterior forms
from evolutionary forms describes the generation of various invariant
structures, discrete transitions, emergence of physical structures, and
so on.

2.2. Evolutionary skew-symmetric differential forms

The evolutionary skew-symmetric differential forms are obtained
from differential equations that describe any processes.
A radical distinction between the evolutionary forms and the exte-
rior ones consists in the fact that evolutionary differential forms,
in distinction from the exterior differential form, are defined on
deforming non-integrable manifolds. Examples of non-integrable
manifolds, on which the evolutionary skew-symmetric differential
forms are defined, are the tangent manifolds of differential equations,
the Lagrangian manifolds, the manifolds made up by trajectories
of material medium particles, and so on. These are manifolds with
unclosed metric forms. The metric form differential, and correspond-
ingly its commutator, are nonzero. (The commutators of metric
forms of such manifolds describe the manifold deformation, namely,
torsion, curvature and others). (In Appendix 1 some properties of
such manifolds are presented and it is shown the distinction between
exterior and evolutionary forms that depends on the properties of
metric forms of the manifold on which these skew-symmetric forms
are defined.)

The evolutionary form can be written in a way similar that for exterior
differential form. However, in distinction from the exterior form
differential, an additional term will appear in the evolutionary form
differential. This is due to the fact that the evolutionary form basis
changes since such a form is defined on deforming manifold.
The evolutionary form differential takes the form

dθ
p= ∑

i1...ip

dai1...ip∧dxi1∧dxi2 · · ·∧dxip+ ∑
i1...ip

ai1...ip d(dxi1∧dxi2 · · ·∧dxip)

(8)
where the second term is connected with the basis differential of
nonzero value: d(dxi1 ∧dxi2 ∧·· ·∧dxip) 6= 0. (For the exterior form
defined on integrable manifold one has d(dxi1 ∧dxi2 ∧·· ·∧dxip) =
0).

The specific feature and properties of evolutionary forms

Nonclosure of the evolutionary differential forms
The specific feature of evolutionary forms, i.e. skew-symmetric
forms defined on deforming manifolds, consists in the fact that
evolutionary forms are unclosed ones. Since the basis of evolution-
ary form changes, the evolutionary form differential includes the
nonvanishing differential of manifold metric form emerged when
differentiating the basis. Therefore, the evolutionary form differ-
ential cannot be equal to zero. Hence, the evolutionary form, in
contrast to the case of exterior form, cannot be closed. (In Appendix
1 the peculiarity of skew-symmetric forms defined on nonintegrable
manifold are demonstrated by the example of a skew-symmetric
form of first-degree.)
Since the evolutionary differential forms are unclosed, the theory
of evolutionary differential forms includes some unconventional

elements, such as nonidentical relations, self-variation and degener-
ate transformations that allow to describe the generation of closed
inexact exterior forms.

Nonidentical relations of evolutionary differential forms
Above it was shown that the identical relations lie at the basis of the
mathematical apparatus of exterior differential forms.
In contrast to this, nonidentical relations lie at the basis of the mathe-
matical apparatus of evolutionary differential forms.
The identical relations establish exact correspondence between the
quantities (or objects) involved into this relation. This is possible in
the case when the quantities involved into the relation are measurable
ones.
In the nonidentical relations one of the quantities is unmeasurable.
The nonidentical relations of evolutionary forms can be written as

dφ = ω
p (9)

Here ω p is the p-degree evolutionary form.
In the left-hand side of this relation it stands the form differential, i.e.
the closed form, which is an invariant and measurable quantity. In
the right-hand side it stands the unclosed evolutionary form, which
is not a measurable quantity. Such a relation cannot be identical.
Nonidentical relations are evolutionary relations because they in-
clude the evolutionary form.
One can see the difference of relations for exterior forms and evolu-
tionary ones. In the right-hand side of identical relation (see relation
(7)) it stands a closed exterior form, whereas the form in the right-
hand side of nonidentical relation (9) is an unclosed one.
Nonidentical relations are obtained when describing any processes.
[A relation of such type is obtained, for example, when analyzing the integrability of

the partial differential equation. The equation is integrable if it can be reduced to the

form dφ = dU . However, it turns out that, if the equation is not subject to an additional

condition (the integrability condition), it is reduced to the form (9), where ω p is an

unclosed form and it cannot be written as a differential. Here it should be emphasized

that the nonidentity of relation (9) does not mean that the mathematical description of

the process is not sufficiently accurate. The nonidentity of the relation means that the

function derivatives, which values correspond to the real values in physical processes,

cannot be consistent. For physical processes the expressions for these derivatives are

usually obtained independently of one another. And they are not conjugated, that is,

they do not made up a differential.]

Selfvariation of the evolutionary nonidentical relation
The evolutionary nonidentical relation is self-varying, because,
firstly, it is nonidentical, namely, it contains two objects one of
which appears to be unmeasurable, and, secondly, it is an evolution-
ary relation, namely, a variation of any object of the relation in some
process leads to variation of another object and, in turn, a variation
of the latter leads to variation of the former. Since one of the objects
is an unmeasurable quantity, the other cannot be compared with the
first one, and hence, the process of mutual variation cannot end.
This process is governed by the evolutionary form commutator.
The significance of the evolutionary relation selfvariation consists in
the fact that in such a process it can be realized the conditions under
which the closed inexact forms can be obtained from the evolutionary
form. These are conditions of degenerate transformation.

Degenerate transformations.
Unique significance of the evolutionary skew-symmetric forms con-
sists in the fact that they can generate closed exterior forms, which
lie at the basis of many invariant mathematical formalisms.
This proceeds with the help of degenerate transformation.
From the evolutionary unclosed skew-symmetric form, which dif-
ferential is nonzero, one can obtain a closed exterior form with
a differential being equal to zero only under degenerate transfor-
mation, namely, under a transformation that does not conserve the
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differential. (The Legendre transformation is an example of such a
transformation.)
Degenerate transformations can take place under additional condi-
tions, which are caused by degrees of freedom. The vanishing of such
functional expressions as determinants, Jacobians, Poisson’s brack-
ets, residues, and others corresponds to these additional conditions.
Vanishing of these functional expressions is a closure condition for a
dual form. (It can be noted that, when solving many problems, the condition that the

above listed functional expressions must be nonzero is imposed. This leads to that the

solutions, which are not invariant but have physical meaning, are not accounted for, that

is, the solutions, which describe evolutionary processes, are ignored.)

As it was already noted, the additional conditions can be realized
under a selfvariation of nonidentical evolutionary relation.

2.3. Generation of closed inexact exterior differential
forms

A distinction of the evolutionary form from the closed exterior form
consists in the fact that the evolutionary differential form is defined
on deforming non-integrable manifold, i.e., on the manifold with
unclosed metric forms, but the closed exterior form can be defined
only on integrable manifold, namely, on the manifold with closed
metric forms.
Hence, it follows that a closed exterior form can be obtained from
the evolutionary form only under degenerate transformation, when
the transition from the manifold with unclosed metric forms (whose
differential is nonzero) to integrable structures with closed metric
forms (for which the differential is zero) takes place.
For this reason the transition from an evolutionary form to a closed
exterior form proceeds only when the differential or commutator of
the metric form manifold, on which the evolutionary form is defined,
becomes equal to zero.
The realization of closure of the manifold metric form is a realization
of the dual form closure. And this leads to realization of pseudostruc-
ture and the skew-symmetric form closure on pseudostructure, i.e.,
the realization of closed inexact exterior form.
As it was already noted, the conditions of degenerate transformation
are realized when the functional expressions such as Jacobians, de-
terminants, the Poisson brackets, residues, and others vanish. The
conditions of degenerate transformation specify the integral struc-
tures (pseudostructures), namely, the characteristics of differential
equations (the determinant of coefficients at the normal derivatives
vanishes), the singular points (Jacobian is equal to zero) and so
on. [The Cauchy-Riemann conditions, the characteristic relations, the canonical rela-

tions, the Bianchi identities, and others are examples of the conditions of degenerate

transformations (vanishing the dual form differential).]

Conditions of degenerate transformation can be realized under self-
variation of a nonidentical relation, for example, if there exist any
symmetries of the evolutionary or dual form coefficients or their
derivatives. (When describing material media this can be caused by
an availability of any degrees of freedom of material system.) This
can take place only discretely rather than identically.
Under degenerate transformation the following transition proceeds:
dω p 6= 0→ (a degenerate transformation)→ dπ ω p = 0, dπ

∗ω p = 0
The realization of the conditions dπ

∗ω p = 0 and dπ ω p = 0 means
that it is realized the closed dual form ∗ω p, which describes some
structure π (which is a pseudostructure with respect to its metric
properties), and the closed exterior (inexact) form ω

p
π , which basis

is a pseudostructure, is obtained.
Thus, if the conditions for degenerate transformation are realized,
from an unclosed evolutionary form one can obtain the differential
form closed on pseudostructure, which is a closed inexact exterior
form.

On the pseudostructure π nonidentical evolutionary relation (9) trans-

forms into the relation
dπ φ = ω

p
π (10)

which appears to be an identical relation. Indeed, since the form ω
p
π

is a closed one, on the pseudostructure this form turns out to be a
differential of some differential form. In other words, this form can
be written as ω

p
π = dπ θ . Relation (9) is now written as dπ φ = dπ θ .

There are differentials in the left-hand and right-hand sides of this
relation. This means that the relation (10) is an identical one.
It can be shown that all identical relations of the exterior differential
form theory are obtained from nonidentical relations (that contain
the evolutionary forms) by applying degenerate transformations. In
this case the evolutionary relation itself remains to be nonidentical
one, since the evolutionary form remains to be unclosed.

Under degenerate transformation the transition from non-integrable
manifold to integral stricture occurs. Mathematically, the degen-
erate transformation is realized as a transition from one frame of
reference to another (nonequivalent) frame of reference. This is a
transition from the frame of reference connected with the manifold
with unclosed metric forms to the frame of reference connected with
pseudostructure. [An example of a degenerate transformation is a transition from

the Lagrange function to the Hamilton function. The transition from the Lagrange

function L to the Hamilton function H (the transition from variables q j , q̇ j to vari-

ables q j , p j = ∂L/∂ q̇ j) is the transition from the tangent (Lagrangian) non-integrable

manifold to integral structures forming the cotangent (Hamiltonian) manifold.]

3. Nonidentical relation of the mathematical
physics equations. Description of evolutionary
processes in material media

In the present Section the nonidentical relation will be obtained from
the mathematical physics equations that describe material media
such as thermodynamic, gas-dynamic, cosmic systems, the systems
of charged particles and so on. It will be shown an unique role of non-
identical relations and degenerate transformations when describing
evolutionary processes in material media.

3.1. Nonidentical relation of the mathematical physics
equations

It is known that the equations of mathematical physics for mate-
rial systems (material media) such as the thermodynamical, gas-
dynamical, cosmologic systems, the systems of charged particles
and others consist of the equations of conservation laws for energy,
linear momentum, angular momentum, and mass [6,7, 8] (In Ap-
pendix 2 some examples of such equations are presented.)
The nonidentical relation of the mathematical physics equations is
obtained when studying the integrability of these equations. (This
studying was carried out in a series of author’s papers[4, 9, 10]. In
present paper the accent will be made on a role of nonidentical rela-
tions and degenerate transformations in description of evolutionary
processes.
The integrability of the mathematical physics equations depends on
the consistency of conservation law equations. (It should be noted
that the integrability of differential equations also depends on the
consistency of derivatives along different directions. But here this
problem will be not considered.)

Analysis of consistency of the conservation law equations. Non-
identical relation for the state functionals
Let us analyze the correlation of the equations that describe the
conservation laws for energy and linear momentum.
We introduce two frames of reference: the first is an inertial one
(this frame of reference is not connected with the material system),
and the second is an accompanying one (this frame of reference is
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connected with the manifold made up by trajectories of the material
system elements).
In the inertial frame of reference the energy equation can be reduced
to the form:

Dψ

Dt
= A1

here D/Dt is the total derivative with respect to time, ψ is the func-
tional of the state that specifies the material system, A1 is the quantity
that depends on specific features of material system and on external
energy actions onto the system. [The action functional, entropy can be regarded

as examples of the functional ψ . Thus, the equation for energy presented in terms of

the action functional S has a similar form: DS/Dt = L, where ψ = S, A1 = L is the

Lagrange function. In mechanics of continuous media the equation for energy of ideal

gas can be presented in the form [9]: Ds/Dt = 0, where s is the entropy.]

In the accompanying frame of reference the total derivative with
respect to time is transformed into the derivative along the trajectory.
Equation of energy is now written in the form

∂ψ

∂ξ 1 = A1 (11)

Here ξ 1 is the coordinate along the trajectory.
In a similar manner, in the accompanying reference system the
equation for linear momentum appears to be reduced to the equation
of the form

∂ψ

∂ξ ν
= Aν , ν = 2, ... (12)

where ξ ν are the coordinates in the direction normal to the trajectory,
Aν are the quantities that depend on specific features of material
system and on external force actions.
Eqs. (11) and (12) can be convoluted into the relation

dψ = Aµ dξ
µ , (µ = 1, ν) (13)

where dψ is the differential expression dψ = (∂ψ/∂ξ µ )dξ µ .
Relation (13) can be written as

dψ = ω (14)

here ω = Aµ dξ µ is the skew-symmetric differential form of the
first degree. (A summing over repeated indices is carried out.) (In
Appendix 3 examples of the quantities Aµ of nonidentical relation
for the Euler and Navier-Stokes equations equations are presented.)
Relation (14) has been obtained from the equation of the conservation
laws for energy and linear momentum. In this relation the form ω is
that of the first degree. If the equations of the conservation laws for
angular momentum be added to the equations for energy and linear
momentum, this form will be a form of the second degree. And in
combination with the equation of the conservation law for mass this
form will be a form of degree 3. In general case the evolutionary
relation can be written as

dψ = ω
p (15)

where the form degree p takes the values p = 0,1,2,3. (The relation

for p = 0 is an analog to that in the differential forms, and it was obtained from the

interaction of energy and time.) [A concrete form of relation (15) and its properties

in the case of the Euler and Navier-Stokes equations were considered in paper [9].

Relation (15) for p = 2 were considered for electromagnetic field in paper [4] and in

paper http://arxiv.org/pdf/math-ph/0310050v1.pdf]

Since the conservation law equations are evolutionary ones, the
relation obtained is also evolutionary relation.

The evolutionary relation (15) was obtained with respect to the
accompanying frame of reference, which is connected with the man-
ifold made up by the trajectories of the material system elements.
This means that the skew-symmetric form in the evolutionary relation
is defined on the manifold made up by trajectories of the material
system elements, which is a deforming manifold. In Section 1 it was

shown that the skew-symmetric form defined on such a manifold is
evolutionary form which appears to be unclosed. Hence, the obtained
evolutionary relation, which contains unclosed evolutionary form,
proves to be nonidentical relation. In the next Subsection it will be
shown a role of nonidentical evolutionary relation in description of
evolutionary processes in material media and its mathematical and
physical meaning will be disclosed.
[I should be emphasize that the nonidentical relation was obtained from the analysis of

consistency of the conservation law equations. It may be noted that in papers by Pauli

and Einstein [8,12] the conservation law equations for energy and momentum, as well

as the continuity equation, were studied, but only the properties of invariance of these

equation were investigated. However, they didn’t put a question on consistency of the

conservation law equations. The presence of the energy-momentum tensor in Einstein’s

equation supposes that the conservation law equations for energy and momentum are

consistent identically. However, the consistence of conservation law equations (due to

non-commutativity of conservation laws) is fulfilled only discretely. In particular, this

means that the energy-momentum tensor is fulfilled only discretely. And this imposes

restrictions on Einstein’s equation.]

3.2. Mathematical and physical meaning of nonidenti-
cal relation obtained from the equations for material
medium

The nonidentical evolutionary relation obtained from the mathe-
matical physics equations, which describe material media, firstly,
discloses the properties of the solutions to the mathematical physics
equations, and, secondly, describes the material system state.

Properties of the solutions to mathematical physics equa-
tions

The nonidentity of the evolutionary relation points to the fact that the
conservation law equations turn out to be inconsistent. This means
that the initial set of equations of mathematical physics proves to
be nonintegrable (it cannot be convoluted into identical relation
for differentials and be integrated). That is, the solutions to the
mathematical physics equations are not functions (they will depend
on the commutator of the form ω p). This also points to the fact
that the tangent manifold, on which the solutions are defined, is not
integrable.

As it follows from the properties of nonidentical relation, the closed
dual form is obtained under degenerate transformation, and this
points out to the realization of integral structure (pseudostructure)
and closed inexact (only on pseudostructure) exterior form. In this
case the identical relation is obtained from the nonidentical relation.
This will point out to a consistency of the conservation law equations
and an integrability of the mathematical physics equations. This
points out to the fact that there are realized the solutions to the initial
mathematical physics equations which are functions. These are so
called generalized solutions, which are discrete functions. (The real-
ization of integral structure (pseudostructure) with a closed exterior
form points to emergence of a differential-geometrical structure. The
physical structures, on which the conservation laws are fulfilled, are
just such structures.)
Thus, from the nonidentical relation it follows that the mathematical
physics equation have a double solution [10]. Below it will be shown
a physical meaning of such double solutions.

Physical meaning of nonidentical evolutionary relation.
Description of the state of material medium

Physical meaning of nonidentical evolutionary relation consists in
the fact that it can describe the state of material medium since this
relation contains the state functional, which specifies the material
system state. [It should be noted that to every material medium its own state
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functional corresponds [11]. Thus, for thermodynamic system its state functional is

the entropy, nonidentical which depends on thermodynamic variables, whereas for gas-

dynamic system its functional is the entropy, which depends on space-time variables [9].

It was shown above that for Lagrange system the action functional is a state functional.

For the system of charged particles and cosmological system a role of state functionals

play, respectively, the Pointing vector [4] (in this case p = 2) and Einstein’s function.]

But here there is some delicate matter.

Although the evolutionary relation includes the state functional
(which specifies the material medium state), but, since this relation
is nonidentical one, from this relation one cannot get the differen-
tial of the state functional dψ . This points out to the absence of
the state function and means that the material medium is in the
non-equilibrium state.

Such non-equilibrium state is described by the solution to the mathe-
matical physics equations, which is not a function.

The non-equilibrium means that some internal force acts in material
medium. It is evident that the internal force is described by the
commutator of skew-symmetric form ω p. (Everything that gives a
contribution into the commutator of evolutionary form ω p leads to
emergence of internal forces that causes the non-equilibrium state of
material medium (see [9]).)

Another property of the nonidentical evolutionary relation, namely,
its self-variation, points out to the fact that the non-equilibrium state
of material medium turns out to be self-varying. State of material
medium changes but in this case it remains to be non-equilibrium
during this process, since the evolutionary relation remains to be
nonidentical during the process of self-variation.

The realization of identical relation from the evolutionary one points
out to the transition of material medium to a localli-equilibrium state.

The solution to initial equations, which is a generalized one, i.e.,
a discrete function, just describes such localli-equilibrium state of
material medium.

From identical relation one can define the differential of the state
functional, and this points out to a presence of the state function
and the transition of material medium from non-equilibrium state
into equilibrium one. However, such a state of material medium
turns out to be realized only locally due to the fact that differential
of the state functional obtained is an interior differential (only on
pseudostructure). And yet the total state of material medium remains
to be non-equilibrium state because the evolutionary relation, which
describes the material medium state, remains nonidentical one. (That
is, there exists a duality. Nonidentical evolutionary relation acts
simultaneously with identical relation.)

[It may be noted that these results show that the functionals of evolutionary relation are

actually state functionals.]

The transition from non-equilibrium state to locally-equilibrium
state means that nonmeasurable quantity, which is described by the
commutator and act as internal force, converts into a measurable
quantity of material medium.

This reveals in the emergence of some observed formations in mate-
rial medium. Waves, vortices, fluctuations, turbulent pulsations, and
so on are examples of such formations. The intensity of such for-
mations is controlled by a quantity accumulated by the evolutionary
form commutator. (This discloses a mechanism of such processes
like an origin of vortices and turbulence [9,10].)

Thus it is evident that the nonidentical evolutionary relation, firstly,
discloses the properties of the solutions to the mathematical physics
equations, namely, their double, and, secondly, describes the material
medium state and the transition from non-equilibrium state to localli-
equilibrium one, and this process is accompanied by by emergence
of physical structures and observable formations.

4. Connection between the field-theory equa-
tions and nonidentical relations obtained from
the mathematical physics equations, which de-
scribe material media.

The nonidentical relations, from which closed exterior forms, i.e.,
differentials, are obtained, in essence, are the equations for obtaining
differentials. (For differential equations the nonidentical relations, in essence, are

equations for obtaining generalized solutions (eigenfunctions) to initial differential

equations, and this corresponds to a realization of integrability of these equations.)

Below it will be shown that the field-theory equations are noniden-
tical relations obtained from the mathematical physics equations,
which describe material media.

Correspondence between the nonidentical relations of the math-
ematical physics equations and the field-theory equations
Specific feature of the field-theory equations consists in the fact that
the field-theory equations are equations for functionals such as a
wave function, action functional, Einstein’s tensor and so on. The
Pointing vector is such a functional for the equations of electromag-
netic field. (Entropy is such a functional for the fields generated by
thermodynamical and gas-dynamical systems.)
As has been shown, the nonidentical evolutionary relation obtained
from the mathematical physics equations for material media is a
nonidentical relation for all these functionals.

Above it was shown that the nonidentical relations generate closed
inexact exterior forms.
As it is known, the closed inexact exterior or dual forms (correspond-
ing to the conservation laws) are also the solutions to the field-theory
equations.

To the connection between the field-theory equations and nonidenti-
cal relations it also points out the fact that the field-theory equations
are nonidentical relations. This is explained by the statement that
only the equations that have the form of relations (nonidentical) may
have the solutions which are differentials rather then functions. (As
it is known, unlike the differential equations the solutions of which
are functions, the field-theory equations have the solutions that are
closed exterior forms, namely, differentials.)
One can verify that all equations of field theories, as well as the
evolutionary relation, are nonidentical relations in differential forms
or in the forms of their tensor or differential (i.e. expressed in terms
of derivatives) analogs. For example,
- the Einstein equation is a relation in differential forms;
- the Dirac equation relates Dirac’s bra- and cket- vectors, which
made up a differential form of zero degree;
- the Maxwell equations have the form of tensor relations;
- the Schrődinger’s equations have the form of relations expressed in
terms of derivatives and their analogs.
From the field-theory equations, as well as from the nonidentical
evolutionary relation, the identical relation, which contains the closed
exterior form, is obtained. As one can see, from the field-theory
equations it follows such identical relations as the Poincare invariant,
which connects closed exterior forms of first degree; the relations
dθ 2 = 0, d∗θ 2 = 0 are those for closed exterior forms of second
degree obtained from Maxwell equations; the Bianchi identity for
gravitational field.

Thus, one can see that there exists a correspondence between the
field-theory equations, which describe physical fields, and the non-
identical evolutionary relation obtained from the equations of mathe-
matical physics for a material medium.

Connection between the field-theory equations and the equa-
tions of mathematical physics which describe material media
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A correspondence between the nonidentical relation and the field-
theory equations points out to a connection between the field-theory
equations and the equations of mathematical physics which describe
material media.
Such a connection, which is common to all field theories, discloses
the general foundations of field theories. This connection has to be
taken into account when building a general field theory.
It should be emphasized that a possibility to clarify the problems of
field theories is based on the properties of conservation laws.
As it is known (and was noted above) the equations of mathematical
physics, which describe material media, consist of the equations of
conservation laws for energy, linear momentum, angular momentum,
and mass, which are conservation laws for material media. The
conservation laws for material systems establish a balance between
the change of physical quantities and the external action. Such
conservation laws are described by differential equations.
In field theory ”the conservation laws” are those that claim an exis-
tence of conservative quantities or objects. The conservation laws
for physical fields are such conservation laws. They are described
by closed exterior skew-symmetric forms. (The Noether theorem is
an example.)
Generating closed exterior forms, which correspond to conservation
laws for physical fields, by nonidentical relations obtained from
the conservation law equations for material media, discloses the
connection between the conservation laws for physical fields and for
material systems and their controlling role in evolutionary processes.

Conclusion
In the paper it was shown an unique role of nonidentical relations of
skew-symmetric differential forms in mathematics and mathematical
physics. This relates to the fact that nonidentical relations generate
closed exterior forms which are differentials. Nonidentical rela-
tions discloses hidden properties of the equations of mathematical
physics that enables one to describe discrete transitions, processes of
emergence of physical structures and observable formations (waves,
vortices, turbulent pulsations, and so on) and gives a possibility to
understand the foundations of the field-theory equations, namely,
their connection to the mathematical physics equations for material
media.

Appendix 1
Some properties of manifolds
Assume that on a manifold one can place a coordinate system with base vectors eµ and
define the metric forms for a manifold [13]: (eµ eν ), (eµ dxµ ), (deµ ).
If a metric form is closed (i.e., its commutators equal zero), then this metric is defined by
gµν = (eµ eν ) and the results of a translation over a manifold of the point dM = (eµ dxµ )
and of the unit frame dA = (deµ ) prove to be independent of the the path of integration.
Such a manifold is integrable. [On the integrability of manifolds, see[13]]. If metric
forms are nonclosed (the commutators of metric forms are nonzero), this points to the
fact that this manifold is nonintegrable. Metric forms and their commutators define
the metric and differential characteristics of a manifold. Closed metric forms define
a manifold structure, i.e. the internal characteristics of a manifold. And, nonclosed
metric forms define the differential characteristics of a manifold. The commutators of
nonclosed metric forms define the manifold differential characteristics that specify the
manifold deformations: bending, torsion, rotation, twist. Thus, the final result is, that
nonintegrable manifolds, i.e. the manifolds with nonclosed metric forms, are deformed
manifolds.
To describe manifold differential characteristics and, correspondingly, metric form
commutators, one can use connectedness. If the components of a metric form can be
expressed in terms of connectedness Γ

ρ

µν [13], the expressions Γ
ρ

µν , (Γρ

µν −Γ
ρ

νµ ) and
Rµ

νρσ are components of the commutators of metric forms of zeroth- first- and third
degrees. As is known, a commutator of the zeroth degree metric form Γ

ρ

µν characterizes
the bend, while that of the first degree form (Γ

ρ

µν −Γ
ρ

νµ ) characterizes the torsion, the
commutator of the third degree metric form Rµ

νρσ determines the curvature. In the
case of nonintegrable manifolds, the components of the metric form commutators are
nonzero. In particular, the connectednesses Γ

ρ

µν are not symmetric. (For manifolds with
a closed metric form of the first degree, the connectednesses are symmetric.)
The difference between exterior and evolutionary forms depends on the properties of
metric forms of the manifold on which these skew-symmetric forms are defined.
The peculiarity of skew-symmetric forms defined on nonintegrable manifold can be
demonstrated by the example of a skew-symmetric form of first-degree. Let us consider
the first-degree form ω = aα dxα . The differential of this form can be written as dω =
Kαβ dxα dxβ , where Kαβ = aβ ;α−aα;β are components of the commutator of the form ω ,
and aβ ;α , aα;β are covariant derivatives. If we express the covariant derivatives in terms
of connectedness (if it is possible), they can be written as aβ ;α = ∂aβ /∂xα +Γσ

βα
aσ ,

where the first term results from differentiating the form coefficients, and the second
term results from differentiating the basis. If we substitute the expressions for covariant
derivatives into the formula for commutator components, we obtain the following
expression for commutator components of the form ω:

Kαβ =

(
∂aβ

∂xα
− ∂aα

∂xβ

)
+(Γσ

βα
−Γ

σ

αβ
)aσ

Here the expressions (Γσ

βα
−Γσ

αβ
) entered into the second term are just components of

the commutator of the first-degree metric form that specifies the manifold deformation
and hence is nonzero. (In the commutator of exterior form, which is defined on integrable
manifold, the second term absents: the connectednesses are symmetric, that is, the
expression (Γσ

βα
−Γσ

αβ
) vanishes).

The evolutionary differential form commutator, in contrast to that of the exterior one,

cannot be equal to zero because it involves the metric form commutator being nonzero.

Since the commutator, and hence the differential, of skew-symmetric form defined on

nonintegrable manifold are nonzero, this means that such a form, in contrast to the case

of the exterior form, cannot be closed one.
Appendix 2

The equations of mathematical physics describing material media.
Such equations are presented for example in paper [8] (paragraphs 30,37). The equations
of gas-dynamics, which describe the flow of ideal gas, are the example of such equations.
They can be written in the form [6]:
The conservation law equations for energy (see 5.3.21)

ρ
D
Dt

(e+
1
2

u2) = f1

The conservation law equations linear momentum (see 5.3.15):

ρ
∂u j

∂ t
+ρuk

∂u j

∂xk
= f j

The conservation law equations for mass (see 5.3.12)

∂ρ

∂ t
+

∂

∂xk
(ρuk) = 0

Appendix 3
Examples of the quantities Aµ of nonidentical relation for the Euler and Navier-
Stokes equations
In the case of viscous heat-conducting gas described the Navier-Stokes equations the
expression A1 can be written as (see [6], Chapter 6, formula (6.2.4))

A1 =
1
ρ

∂

∂xi

(
− qi

T

)
− qi

ρT
∂T
∂xi

+
τki

ρ

∂ui

∂xk

Here qi is the heat flux and τki is the viscous stress tensor.
In the case of ideal gas described by the Euler equations we have A1 = 0.
In the case of two-dimensional flow of ideal gas one can obtain the following expression
for the coefficient Aν (see [6], Chapter 6, formula (6.7.12)):

Aν =
∂h0

∂ν
+(u1

2 +u2
2)

1/2
ζ −Fν +

∂Uν

∂ t

where ζ = ∂u2/∂x−∂u1/∂y.

In the case of viscous gas the expression Aν includes additional terms related to viscosity

and heat-conductivity.]
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