Some types of fuzzy open sets in fuzzy topological groups

Mohamad Thigeel Hmod*, Munir A. Al-khafaji, Taghreed Hur Majeed

Department of Mathematics, College of Education, AL-Mustinsiryah University, Baghdad, Iraq
*Corresponding author E-mail: mohamad.thijeel@yahoo.com

Abstract

The aim of this work is to introduce the definitions and study the concepts of fuzzy open (resp, fuzzy α-open, fuzzy semi-open, fuzzy pre-open, fuzzy regular-open, fuzzy b-open, fuzzy β-open) sets in fuzzy topological groups, and devote to study and discuss some of the basic concepts of some types of fuzzy continuous, fuzzy connected and fuzzy compact spaces in fuzzy topological groups with some theorems and Proposition are proved.

Keywords: Fuzzy continuous; Fuzzy Compact; Fuzzy Connected in Fuzzy Topological Groups.

1. Introduction

The concept of fuzzy sets was introduced by zadeh [1]. Chang [2] introduced the definition of fuzzy topological spaces and extended in a straight-forward manner some concepts of crisp topological spaces to fuzzy topological spaces. Rosenfeld [3] formulated the elements of a theory of fuzzy groups. A notion of a fuzzy topological group was proposed by foster [4]. In this paper, we introduce some types of fuzzy open sets in fuzzy topological groups, and study some relations between some types of fuzzy continuous, fuzzy connected and fuzzy compact spaces.

2. On fuzzy topological groups

Definition 2.1: [1] [7] [8] Let X be a non-empty set, a fuzzy set Â in X is characterized by a function $M_Â : X \rightarrow I$, where $I = [0,1]$ which is written as $Â = \{(x, M_Â(x)) : x \in X, 0 \leq M_Â(x) \leq 1\}$. The collection of all fuzzy sets in X will be denoted by I^X, that is $I^X = \{Â : Â is a fuzzy sets in X\}$ where $M_Â$ is called the membership function.

Definition 2.2: [3] [6] Let X be a group and let G_0 be fuzzy set of X. A fuzzy set G_0 is called a fuzzy group of X if

1) $M_{G_0(xy)} \geq \min\{M_{G_0(x)}, M_{G_0(y)}\}$ for all $x, y \in X$.

2) $M_{G_0(x^{-1})} \geq M_{G_0(x)}$ for all $x \in X$.

Definition 2.3: [2] [4] [5] A collection T_0 of a fuzzy subsets of Â, such that $T_0 \subseteq P(Â)$ is said to be fuzzy topology on Â if it satisfied the following conditions

1) $Â, \emptyset \in T_0$

2) If $B_0, C_0 \in T_0$ then $B_0 \cap C_0 \in T_0$

3) If $B_0, \alpha_0, \in T_0$ then $\bigcup_{a} B_0, \alpha \in T_0$, $\alpha \in \Lambda$

($Â, T_0$) is said to be Fuzzy topological space and every member of T_0 is called fuzzy open set in $Â$ and its complement is a fuzzy closed set.
Definition 2.4: [6] Let G be a fuzzy group and (G, \bar{T}) be a fuzzy topological space. (G, \bar{T}) is called a fuzzy topological group if the maps

g: (G, \bar{T}) \times (G, \bar{T}) \to (G, \bar{T}), \text{ defined by } g(x, y) = xy

and

$h: (G, \bar{T}) \to (G, \bar{T}), \text{ defined by } h(x) = x^{-1}$ are fuzzy continuous.

3. Some types of fuzzy open sets

Definition 3.1: A fuzzy set \tilde{A} in fuzzy topological group (G, \bar{T}) is called

1) Fuzzy α-open set if $\tilde{A} \subseteq \text{int}(\text{cl} (\tilde{A}))$.

2) Fuzzy semi-α-open set if $\tilde{A} \subseteq \text{cl}(\text{int} (\tilde{A}))$.

3) Fuzzy pre-α-open set if $\tilde{A} \subseteq \text{int}(\text{cl} (\tilde{A}))$.

4) Fuzzy regular-α-open set if $\tilde{A} = \text{cl}(\text{int} (\tilde{A}))$.

5) Fuzzy b-open set if $\tilde{A} \subseteq (\text{int cl}(\tilde{A}) \cup \text{cl int} (\tilde{A}))$.

6) Fuzzy β-open set if $\tilde{A} \subseteq (\text{cl}(\text{int}(\tilde{A})))$.

Proposition 3.2:

1) Every fuzzy open (resp, fuzzy closed) set is fuzzy b-open (resp, fuzzy b-closed) set.

2) Every fuzzy α-open (resp, fuzzy α-closed) set is fuzzy b-open (resp, fuzzy b-closed) set.

3) Every fuzzy semi-α-open (resp, fuzzy semi-α-closed) set is fuzzy b-open (resp, fuzzy b-closed) set.

4) Every fuzzy pre-α-open (resp, fuzzy pre-α-closed) set is fuzzy b-open (resp, fuzzy b-closed) set.

5) Every fuzzy regular-α-open (resp, fuzzy regular-α-closed) set is fuzzy b-open (resp, fuzzy b-closed) set.

6) Every fuzzy b-open (resp, fuzzy b-closed) set is fuzzy β-open (resp, fuzzy β-closed) set.

Proof:

1) $M_{\tilde{A}}(x) \leq M_{\text{cl}\tilde{A}}(x)$

$M_{\text{int}\tilde{A}}(x) \leq M_{\text{int cl}\tilde{A}}(x)$.

$M_{\tilde{A}}(x) \leq M_{\text{int cl}\tilde{A}}(x)$.

$M_{\text{int}\tilde{A}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

$M_{\tilde{A}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

From (1) and (2) we get

$M_{\tilde{A}}(x) \leq \max\{M_{\text{int cl}\tilde{A}}(x), M_{\text{cl int}\tilde{A}}(x)\}$.

2) $M_{\tilde{A}}(x) \leq M_{\text{int cl}\tilde{A}}(x)$.

$M_{\tilde{A}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

$M_{\text{cl\tilde{A}}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

$M_{\text{int cl}\tilde{A}}(x) \leq M_{\text{int cl}\tilde{A}}(x)$.

$M_{\text{int cl}\tilde{A}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

$M_{\text{int cl\tilde{A}}}(x) \leq M_{\text{cl int}\tilde{A}}(x)$.

$max\{M_{\text{int cl}\tilde{A}}(x), M_{\text{cl int}\tilde{A}}(x)\} = M_{\text{cl int}\tilde{A}}(x)$.

Similarly we prove 2, 3, 4, 5 and 6.

Definition 3.3: Let \((G, T)\) be a fuzzy topological group and let \(\tilde{W} = \{\tilde{C}_\alpha, \alpha \in \mu\}\) be a collection of fuzzy open (resp, fuzzy \(\alpha\) – open, fuzzy semi – open, fuzzy pre – open, fuzzy regular – open, fuzzy \(\beta\) – open) sets in \(G\) is said to be fuzzy open (resp, fuzzy \(\alpha\) – open, fuzzy semi – open, fuzzy pre – open, fuzzy regular – open, fuzzy \(\beta\) – open) cover of fuzzy set \(\tilde{B}\) of \(G\) if and only if \(\tilde{M}_\alpha(x) = \sup\{M_{\tilde{C}_\alpha}(x): \alpha \in \mu\} \forall x \in S(\tilde{B})\). and fuzzy open (resp, fuzzy \(\alpha\) – open, fuzzy semi – open, fuzzy pre – open, fuzzy regular – open, fuzzy \(\beta\) – open) cover of fuzzy set \(\tilde{B}\) of \(G\) is said to have a finite sub cover if and only if finite cub collection \(\tilde{\mathcal{C}} = \{\tilde{C}_1, \ldots, \tilde{C}_n\}\) of \(\tilde{W}\) such that \(M_{\tilde{B}}(x) \leq \max\{M_{\tilde{C}_1}(x), \ldots, M_{\tilde{C}_n}(x)\}\) \(\forall x \in S(\tilde{B})\).

Theorem 3.4: Let \((G, T)\) be a fuzzy topological group

1) Every fuzzy open cover is fuzzy \(b\) – open cover.
2) Every fuzzy \(\alpha\) – open cover is fuzzy \(b\) – open cover.
3) Every fuzzy semi – open cover is fuzzy \(b\) – open cover.
4) Every fuzzy pre – open cover is fuzzy \(b\) – open cover.
5) Every fuzzy regular – open cover is fuzzy \(b\) – open cover.
6) Every fuzzy \(\beta\) – open cover is fuzzy \(\beta\) – open cover.

Proof:
3) Let \(\tilde{W} = \{\tilde{C}_\alpha, \alpha \in \mu\}\) be a collection of fuzzy semi – open sets of \(G\).
And fuzzy semi – open cover of fuzzy set \(\tilde{B}\) in \(G\).
\(\therefore\) \(\tilde{W} = \{\tilde{C}_\alpha, \alpha \in \mu\}\) be a collection of fuzzy semi – open sets in \(G\).

And every fuzzy semi – open set is Fuzzy \(b\) – open set.
\(\therefore\) \(\tilde{W}\) be a collection of fuzzy \(b\) – open sets of \(G\).
\(\therefore\) \(\tilde{W}\) is fuzzy semi – open cover of fuzzy set \(\tilde{B}\) in \(G\).
\(\therefore\) \(M_b(x) = \sup\{M_{\tilde{C}_\alpha}(x): \alpha \in \mu\} \forall x \in S(\tilde{B})\).

Then \(\tilde{W}\) is fuzzy \(b\) – open cover of fuzzy set \(\tilde{B}\) in \(G\).
Similarly we prove 1, 2, 4, 5 and 6.

Definition 3.5: Let \((G, T)\) be a fuzzy topological group is said to be fuzzy (resp, fuzzy \(\alpha\) – , fuzzy semi – , fuzzy pre – , fuzzy regular – , fuzzy \(\beta\) –) compact if each fuzzy open (resp, fuzzy \(\alpha\) – open, fuzzy semi – open, fuzzy pre – open, fuzzy regular – open, fuzzy \(\beta\) – open) cover has a finite sub cover.

Theorem 3.6: Let \((G, T)\) be a fuzzy topological group

1) Every fuzzy \(b\) – compact is fuzzy open compact.
2) Every fuzzy \(b\) – compact is fuzzy \(\alpha\) – compact.
3) Every fuzzy \(b\) – compact is fuzzy semi – compact.
4) Every fuzzy \(b\) – compact is fuzzy pre – compact.
5) Every fuzzy \(b\) – compact is fuzzy regular – compact.
6) Every fuzzy \(\beta\) – compact is fuzzy \(b\) – compact.

Proof:
4) Let \((G, T)\) be a fuzzy topological group and is said to be fuzzy – compact.
Let \(\tilde{C}\) be a fuzzy pre – open cover of \(G\).
\(\therefore\) \(\tilde{C}\) be a fuzzy \(b\) – open cover of \(G\).
\(\therefore\) \(\tilde{C}\) is fuzzy pre – compact.
\(\therefore\) \(\tilde{C}\) is fuzzy \(b\) – compact.
\(\therefore\) \(\tilde{C}\) is fuzzy \(\alpha\) – open cover of \(G\).
\(\therefore\) \(\forall \tilde{C}\) of fuzzy pre – open cover of \(G\) has a finite sub cover of \(G\).
Then \((G, T)\) is fuzzy pre – compact.
Similarly we prove 1, 2, 3 and 6.
Definition 3.7: A mapping \(f \in (x,y) \) where \((x,y) \in G \times K \) from fuzzy topological group \((G,T)\) to fuzzy topological group \((K,\tilde{\delta})\) is said to be fuzzy (resp, fuzzy \(\alpha \), fuzzy semi ~, fuzzy pre ~, fuzzy regular ~, fuzzy \(\beta \)) continuous if \(f^{-1}(\tilde{C}) \) is fuzzy open (resp, fuzzy \(\alpha \), fuzzy semi ~, fuzzy pre ~, fuzzy regular ~, fuzzy \(\beta \)) open, fuzzy b ~ open, fuzzy regular ~, fuzzy \(\beta \) open set in \(G \), for each fuzzy open set \(\tilde{C} \) in \(K \).

Theorem 3.8:

1) Every fuzzy continuous is fuzzy \(b \) ~ continuous.
2) Every fuzzy \(\alpha \) ~ continuous is fuzzy \(b \) ~ continuous.
3) Every fuzzy semi ~ continuous is fuzzy \(b \) ~ continuous.
4) Every fuzzy pre ~ continuous is fuzzy \(b \) ~ continuous.
5) Every fuzzy regular ~ continuous is fuzzy \(b \) ~ continuous.
6) Every fuzzy \(b \) ~ continuous is fuzzy \(\beta \) ~ continuous.

Proof:

5) Let \(f: (G,\tilde{T}) \rightarrow (K,\tilde{\delta}) \) is fuzzy regular ~ continuous.

Let \(\tilde{C} \) be a fuzzy open set in \(K \).

Then \(f^{-1}(\tilde{C}) \) is fuzzy regular ~ open set in \(G \).

\(\vdash \) Every fuzzy regular ~ open set is Fuzzy \(b \) ~ regular open set.

\(\vdash f^{-1}(\tilde{C}) \) is fuzzy \(b \) ~ open set in \(G \).

\(\vdash \forall \tilde{C} \) is fuzzy open in \(K \), \(f^{-1}(\tilde{C}) \) is fuzzy \(b \) ~ open set in \(G \).

Then \(f: (G,\tilde{T}) \rightarrow (K,\tilde{\delta}) \) is fuzzy \(b \) ~ continuous.

Similarly, we prove 1,2,3,4 and 6.

Definition 3.9: Let \((G,\tilde{T})\) be a fuzzy topological group and \(\tilde{A} \) is a fuzzy set in \(G \) then

1) \(cl(\tilde{A}) \cap \{ \tilde{F} : \tilde{F} \) is closed fuzzy set \}, \(\tilde{A} \subseteq \tilde{F} \} \).
2) \(acl(\tilde{A}) = \{ \tilde{F} : F \) is closed fuzzy set \}, \(\tilde{A} \subseteq \tilde{F} \} \).
3) fuzzy semi ~ \(cl(\tilde{A}) \cap \{ \tilde{F} : \tilde{F} \) is semi ~ closed fuzzy set \}, \(\tilde{A} \subseteq \tilde{F} \} \).
4) fuzzy pre ~ \(cl(\tilde{A}) \cap \{ \tilde{F} : \tilde{F} \) is pre ~ closed fuzzy set \}, \(\tilde{A} \subseteq \tilde{F} \} \).
5) fuzzy \(\beta cl(\tilde{A}) = \{ \tilde{F} : \tilde{F} \) is \(\beta \) ~ closed fuzzy set \}, \(\tilde{A} \subseteq \tilde{F} \} \).

Definition 3.10: Let \((G,\tilde{T})\) be a fuzzy topological group and \(\tilde{B}, \tilde{C} \) are fuzzy set in \(G \) then \(\tilde{B} \) and \(\tilde{C} \) are said to be

1) Fuzzy separated iff \(\{ cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
2) Fuzzy \(\alpha \) ~ separated if \(\{ acl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ acl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
3) Fuzzy semi ~ separated iff \(\{ semi cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ semi cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
4) Fuzzy pre ~ separated iff \(\{ pre cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ pre cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
5) Fuzzy regular ~ separated iff \(\{ regular cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ regular cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
6) Fuzzy \(\beta \) ~ separated iff \(\{ \beta cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ \beta cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).
7) Fuzzy \(\beta \) ~ separated iff \(\{ \beta cl(\tilde{B}) \cap \tilde{C} \} = \emptyset \) and \(\{ \beta cl(\tilde{C}) \cap \tilde{B} \} = \emptyset \) \(\forall x \in G \).

Theorem 3.11: Let \((G,\tilde{T})\) be a fuzzy topological group

1) Every fuzzy separated is fuzzy \(b \) ~ separated.
2) Every fuzzy \(\alpha \) ~ separated is fuzzy \(b \) ~ separated.
3) Every fuzzy semi ~ separated is fuzzy \(b \) ~ separated.
4) Every fuzzy pre ~ separated is fuzzy \(b \) ~ separated.
5) Every fuzzy regular ~ separated is fuzzy \(b \) ~ separated.
6) Every fuzzy \(b \) ~ separated is fuzzy \(\beta \) ~ separated.

Proof:

Obviously.

Definition 3.12: Let \((G,\tilde{T})\) be a fuzzy topological group is said to be fuzzy (resp, fuzzy \(\alpha \), fuzzy semi ~, fuzzy pre ~, fuzzy regular ~, fuzzy \(\beta \)) connected, if \(\tilde{A} \) cannot be expressed as the union of two maximal fuzzy (resp, fuzzy \(\alpha \), fuzzy semi ~, fuzzy pre ~, fuzzy regular ~, fuzzy \(\beta \)) separated sets. Other wise \((G,\tilde{T})\) is fuzzy (resp, fuzzy \(\alpha \), fuzzy semi ~, fuzzy pre ~, fuzzy regular ~, fuzzy \(\beta \)) disconnected.
Theorem 3.13: Let \((G, \hat{T})\) be a fuzzy topological group

1) Every fuzzy \(b\) – connected is fuzzy open connected.
2) Every fuzzy \(b\) – connected is fuzzy \(a\) – connected.
3) Every fuzzy \(b\) – connected is fuzzy semi – connected.
4) Every fuzzy \(b\) – connected is fuzzy pre – connected.
5) Every fuzzy \(b\) – connected is fuzzy regular – connected.
6) Every fuzzy \(\beta\) – connected is fuzzy \(b\) – connected.

Proof:
6) Let \((G, \hat{T})\) be a fuzzy topological group and \(\hat{A}\) is fuzzy \(\beta\) – connected.
Let \(\hat{A}\) is fuzzy \(b\) – disconnected space.
Then there exists non-empty maximal fuzzy \(b\) – separated \(\hat{B}\) and \(\hat{C}\) in \(G\) such that \(M_G(x) = \max\{M_B(x), M_C(x)\}\).
By theorem (3.11) there exists non-empty maximal fuzzy \(\beta\) – separated \(\hat{B}\) and \(\hat{C}\) in \(G\) such that \(M_G(x) = \max\{M_B(x), M_C(x)\}\).
Then \(\hat{A}\) is fuzzy \(\beta\) – disconnected space, contradiction
Hence \(\hat{A}\) is fuzzy \(b\) – connected space.
Similarly we prove 1, 2, 3, 4 and 5.

References