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Abstract

This paper is concerned with the logarithmic convexity of the eigenfunction of the Hessian operator. It is proved
that the logarithm of the eigenfunction of the Hessian operator is strictly convex in the ball.
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1. Introduction

Convexity properties of solutions to partial differential equations are an interesting issue and have been investigated
for a long time. One interesting question in this realm is the following: Is there a monotone real function f , such
that f(u(x)) is concave or convex We recall here some results concerning this question. A classical example is that
in 1971, Makar-Limanov [1] considered the following elliptic boundary value problem{
4u = −1 in Ω,
u = 0 on ∂Ω.

in a bounded and convex planar domain. By an ingenious argument involving the maximum principle, he proved that
the square root u

1
2 of the solution u is strictly concave. Another well-known example is that in 1976, Brascamp-Lieb

[2] used a probabilistic approach to establish the log-concavity of the fundamental solution of diffusion equation
with convex potential in a bounded and convex domain in Rn. Consequently, they proved the log-concavity of the
first eigenfunction of Laplacian equation in convex domain.

Since logarithmic convexity holds for the first eigenfunction of the Laplace operator, people naturally asks the
question whether the same kind phenomena appears for the eigenfunctions of fully nonlinear operators. For the
Monge-Ampère operator, the solutions are naturally convex. However, for the logarithmic convexity of the Hessian
operator, there are only some works when the dimension of the domain is 3. One interesting and typical result is
that in 2010, Liu-Ma-Xu [3] considered the following eigenvalue problem for Hessian operator in a bounded and
strictly convex domain{
σ2(D

2u) = λ(−u)2 in Ω ⊂ R3,
u = 0 on ∂Ω.

where and in the following, D2u means the Hessian matrix of u and σ2(D
2u) denotes the Hessian operator which is

exactly the second elementary symmetric function of the eigenvalues of D2u. They obtained the strict logarithmic
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concavity of the first eigenfunction. As an application, they get Brunn-Minkowski inequality for the Hessian
eigenvalue and characterize the equality case.

It is an open question whether the logarithmic convexity property holds for the general Hessian operator σk and
for the domain being in general dimensions. We will answer this question when the domain is the ball BR(o) ⊂ Rn.
We believe that these results remain true for the general convex domain in Rn and can try to solve these open
question by using the macroscopic and microscopic methods.

In this paper, we consider the strict logarithmic convexity property of the admissible solutions of the following
Hessian eigenfunctions problems in the ball BR(o) ⊂ Rn:σk(D

2u) = λ(−u)k in BR(o) ⊂ Rn,
u < 0 on BR(o),
u = 0 on ∂BR(o),

(1)

where 1 ≤ k ≤ n.
For this eigenfunction, it has been proved in [4] that for 1 < k < n, up to a positive factor, for equation(1),

there exist a unique negative admissible solution u ∈ C∞(Ω)
⋂
C1,1(Ω̄). Furthermore, equation (1) exists exactly

one positive eigenvalue in a convex domain with smooth boundary. In this paper, we use Wang’s results to deal
with the case when the convex domain Ω are n-dimensional ball BR(o).

Our main results are stated as follows.

Theorem 1.1 Let BR(o) be the ball in Rn with radius R > 0 and origin o. Let u ∈ C∞(BR(o))
⋂

C1,1(B̄R(o)) be
the solutions to the Hessian eigenvalue problems of (1). Then v = −log(−u) is a strictly convex function in BR(o).

In the following sections, we will use two different methods to prove Theorem 1.1. In section 2, we will use
differential approach. In section 3, we will use integral approach. We will use some facts concerning the properties
of elementary symmetric function during the proving process. The definitions and the proof of these properties are
standard, the readers can consult them on other reference books, such as [5] or [6], etc..

2. Proof of Theorem 1.1 by differential approach

In this section, we use differential method to prove the logarithmic convexity of the eigenfunctions of the Hessian
operator σk in the ball BR(o).

Since the domain is the ball BR(o) with radius R and center o, then up to multiplying a constant, the problem (1)
has a unique negative admissible solution u ∈ C∞(BR)

⋂
C1,1(BR) and this unique solution is radially symmetric.

Therefore, we may assume the solution has the form

u(x) = φ(|x|) = φ(r), for |x| = r,

where r ∈ [0, R] and we see that φ(r) < 0 for r ∈ [0, R]. Then φ is an increasing function in (0, R) and satisfies
φ′(0) = φ(R) = 0.

For 1 ≤ i, j ≤ n, a calculation shows that

∂r

∂xi
=

xi

r
,

∂2r

∂xi∂xj
= −r−3xixj + r−1δij .

Then it follows that

uij = (φ
′′
r−2 − φ

′
r−3)xixj + φ′r−1δij .

Using the fact that the determinant of the matrix {Axixj + Bδij}1≤i,j≤k is ABk−1|x|2 + Bk, we have the radial
form of the σk operator

σk(D
2u) = Ck−1

n−1φ
′k−1φ

′′
r−k+1 + Ck

n−1(φ
′)kr−k, (2)

where Ck
n−1 and Ck−1

n−1 are the combinatorial constants.



100 International Journal of Advanced Mathematical Sciences

Since v = −log(−φ), we have

φ′ = e−vv′

φ′′ = e−v(v′′ − v′2).
(3)

Substituting (2) and (3) into the equation (1), we obtain

Ck−1
n−1rv

′k−1v
′′
− Ck−1

n−1rv
′k+1 + Ck

n−1v
′k = λrk for 0 < r < R. (4)

with conditions that

v
′
(0) = 0 and v

′
(r) > 0 for 0 < r < R.

From the above, we know that

v
′′
(0) ≥ 0.

To prove Theorem 1.1, we first prove that v is strictly convex in a neighborhood of the origin, we need to get a
positive lower bound estimate of v

′′
(0). We divide rk on the both sides of equation (4) to obtain that

Ck−1
n−1v

′′
(
v′

r
)k−1 − Ck−1

n−1(
v′

r
)k−1v′2 + Ck

n−1(
v′

r
)k = λ. (5)

Letting r → 0 in (5), we have

Ck
nv

′′
(0)k = λ,

where we have used the combinatorial identity Ck−1
n−1 + Ck

n−1 = Ck
n.

Therefore

v
′′
(0) = k

√
λ

Ck
n

> 0,

and v′′(r) is strictly positive in some neighborhood of the origin by smoothness of the solution.
We use a contradiction argument to show that v(r) is strictly convex in r ∈ [0, R]. If not, there exists a smallest

positive r0 such that v
′′
(r0) = 0. On one hand, we know v

′
(r) > 0 for 0 < r ≤ R and v

′′
(r) > 0 for 0 < r < r0 and

therefore

v
′′′
(r0) ≤ 0. (6)

On the other hand, we differentiate the equation (4) with respect to r and evaluate at r = r0 to obtain

Ck−1
n−1r0v

′(r0)
k−1v

′′′
(r0)− Ck−1

n−1v
′(r0)

k+1 = λkrk−1
0 .

From the above, we deduce that

v′′′(r0) =
λk

Ck−1
n−1

· rk−2
0

v′(r0)k−1
+

v′(r0)
2

r0
> 0. (7)

A contradiction follows from (6) and (7) which tell us that v
′′
(r) > 0 in [0, R) . Therefore v = − log(−u) is strictly

convex in BR(o).

3. Proof of Theorem 1.1 by integral approach

In this section, we use integral method to reprove Theorem 1.1.
We rewrite the equation (4) of section 2 into the following form

Ck−1
n−1(

v′

r
)k−1v

′′
+ Ck

n−1(
v′

r
)k = λ+ Ck−1

n−1(
v′

r
)k−1v′2,
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which is equivalent to

d

dr

(
rn−kv′k

)
=

krn−1

Ck−1
n−1

[
λ+ Ck−1

n−1(
v′

r
)k−1v′2

]
, for 0 ≤ r < R. (8)

Integrating the above equation (8) from 0 to r, we get

rn−kv′(r)k =
λk

nCk−1
n−1

rn + k

∫ r

0

v′(s)k+1sn−kds.

Since v′ > 0, solving the above equation, we obtain

v′(r) = k

√
λk

nCk−1
n−1

rk +
k

rn−k

∫ r

0

v′(s)k+1sn−kds. (9)

Taking the derivative with respect to r in equation (9), we get

v′′(r) =

λk

nCk−1
n−1

rk−1 + v′(r)k+1 − n−k
rn+1−k

∫ r

0
v′(s)k+1sn−kds(

λk

nCk−1
n−1

rk + k
rn−k

∫ r

0
v′(s)k+1sn−kds

) k−1
k

=

λk

nCk−1
n−1

+ [ v
′(r)
r ]k−1v′(r)2 − n−k

rn

∫ r

0
v′(s)k+1sn−kds(

λk

nCk−1
n−1

+ k
rn

∫ r

0
v′(s)k+1sn−kds

) k−1
k

.

(10)

To prove v is strictly convex, we need to prove v′′(r) > 0 for 0 ≤ r < R.
Since v′(r) > 0 and v′(0) = 0, it is easy to see that v′′(0) ≥ 0. We then prove v′′(r) > 0 holds at the origin. We

analyze the integral term in (10). By L’Hospital rule, we have

lim
r→0

1

rn

∫ r

0

v′(s)k+1sn−kds = lim
r→0

v′(r)k+1rn−k

nrn−1

= lim
r→0

v′(r)k+1

nrk−1
=

1

n
(lim
r→0

v′(r)

r
)k−1 lim

r→0
v′(r)2 =

1

n
v′′(0)k−1v′(0)2 = 0,

where we used the fact v′(0) = 0.
Therefore from (10) and by letting r → 0, we obtain

v′′(0) =
[ λk

nCk−1
n−1

] 1
k > 0.

By smoothness of the solution, we know that v′′(r) > 0 in a neighborhood of the origin. In the following, we will
prove v′′(r) will not change sign in the interval (0,R), then we finish the proof of v′′(r) > 0 in [0, R). We will use
a contradiction argument. We assume the set S = {r|v′′(s) > 0, ∀s ∈ (0, r)}. The set S is nonempty since it
contains at least a neighborhood of the origin.

Let r̄ = supS, then we know 0 < r̄ ≤ R and v′′(r) > 0 in [0, r̄). We also know

v′(r̄) > v′(s) for s < r̄. (11)

We now prove r̄ = R. Indeed, if we assume on the contrary that r̄ < R. On one hand, by the definition of r̄, we
know

v′′(r̄) = 0. (12)

On the other hand, by equation (10), we have

v′′(r̄) =

λk

nCk−1
n−1

+ [ v
′(r̄)
r̄ ]k−1v′(r̄)2 − n−k

r̄n

∫ r̄

0
v′(s)k+1sn−kds(

λk

nCk−1
n−1

+ k
r̄n

∫ r̄

0
v′(s)k+1sn−kds

) k−1
k

(13)
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Noting that

[
v′(r̄)

r̄
]k−1v′(r̄)2 − n− k

r̄n

∫ r̄

0

v′(s)k+1sn−kds

=

∫ r̄

0

[
(n− k + 1)v′(r̄)k+1 − (n− k)v′(s)k+1

]
sn−kds

r̄n

>
(n− k)

∫ r̄

0

[
v′(r̄)k+1 − v′(s)k+1

]
sn−kds

r̄n
≥ 0,

(14)

where we have used (11).
Combining (13) and (14), we conclude that v′′(r̄) > 0, which is a contradiction with (12). Therefore r̄ = R.

Consequently, v is strictly convex for all r ∈ [0, R) and Theorem 1.1 is proven again.

4. Conclusion

In this paper, we consider logarithmic convexity of the eigenfunction of the Hessian operator in the n-dimensional
ball. For the corresponding result in general domain, we meet some technical difficulties, but we believe that the
same kind result still holds true. These kind of convexities are of great interest in the study of fully-nonlinear
elliptic equations. Finding their various applications of the convexities will help us understanding of the geometry
of the solution surfaces.
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