Fuzzy pre-continuous and fuzzy pre*-continuous function of fuzzy pre-compact space in fuzzy topological space

Munir Abdul Khalik Al-Khafaji*, Marwah Flayyih Hasan

Department of Mathematics, College of Education, Al-Mustansiriya University, Baghdad, Iraq
*Corresponding author E-mail: mnraziz@yahoo.com

Abstract

The aim of this paper is to introduce and study the notion of a fuzzy pre-continuous function, fuzzy pre*- continuous function, fuzzy pre-compact space and some properties, remarks related to them.

Keywords: Fuzzy Pre-Continuous; Fuzzy Pre*-Continuous; Fuzzy Compact Space in Fuzzy Topological Space.

1. Introduction

2. Fuzzy pre-compact space

In this section we study some definitions, remarks, Propositions and theorems about fuzzy Pre- compact space in fuzzy topological spaces.

Definition 2.1: [1] [2] A collection \mathcal{T} of a sub set of \tilde{A} that is $\tilde{A} \subseteq p(\tilde{A})$ is said to be fuzzy topology on \tilde{A} if satisfies the following condition:

1) $\emptyset, \tilde{A} \in \mathcal{T}$

2) If $\tilde{G}, \tilde{H} \in \mathcal{T}$, Then $\tilde{G} \cap \tilde{H} \in \mathcal{T}$

3) If $\tilde{G}_i \in \mathcal{T}$, Then $\bigcup \tilde{G}_i \in \mathcal{T}$

The pair (\tilde{A}, \mathcal{T}) is said to be fuzzy topological, every member of \mathcal{T} is called fuzzy open (\tilde{T}-open) set in \tilde{A} and the complement is called fuzzy (\tilde{T}-closed) set.

Definition 2.2: [8] Let (\tilde{A}, \mathcal{T}) be a fuzzy topological spaces a family W of fuzzy sets is pre - open cover of a fuzzy set \tilde{B} if and only if $\tilde{B} \subseteq \bigcup \{\tilde{C} : \tilde{C} \in \mathcal{W}\}$ and each member of W is a fuzzy pre- open set. A sub cover of W is a sub family which is also cover.

Definition 2.3: [8] A fuzzy topological spaces (\tilde{A}, \mathcal{T}) is fuzzy pre- compact if and only if every fuzzy pre- open cover of \tilde{A} has a finite sub cover.
Definition 2.4: [4] Let \tilde{B} is fuzzy sub set of a fuzzy topological space (\tilde{A}, \tilde{T}). \tilde{B} is said to be fuzzy pre-open relative to \tilde{A} if for every fuzzy pre-open cover $\{\tilde{N}_\lambda : \lambda \in \Lambda \}$ such that \tilde{N}_λ is fuzzy pre-open sets in (\tilde{A}, \tilde{T}) having finite subcover.

Definition 2.5: [10] A fuzzy topological space (\tilde{A}, \tilde{T}) is said to be fuzzy ((pre-T_2) i.e. (fuzzy pre-Housdorff) if for each pair of distinct point \tilde{x}, \tilde{y} of (\tilde{A}, \tilde{T}), there exists disjoint fuzzy pre-open sets \tilde{U} and \tilde{V} such that $\tilde{x} \in \tilde{U}$ and $\tilde{y} \in \tilde{V}$

Remark 2.6: [8] Every fuzzy open cover is a fuzzy pre-open cover.

Proposition 2.7: [4] Every fuzzy pre-compact is fuzzy compact space.

Proof:

Let (\tilde{A}, \tilde{T}) is fuzzy pre-compact space
And $\{\tilde{N}_\lambda : \lambda \in \Lambda \}$ is open cover to \tilde{A}
$\therefore \{\tilde{N}_\lambda : \lambda \in \Lambda \}$ is pre-open cover to \tilde{A}
$\therefore \tilde{A}$ is fuzzy pre-compact space.
Such that $\mu_\lambda (x) = \max \{ \mu_{N_\lambda_i} (x) : \lambda \in \Lambda \}$, $i=1, 2, 3... \infty$
$\therefore \tilde{A}$ is fuzzy compact space.

Remark 2.8: [4] Fuzzy compact space need not to be fuzzy pre-compact space Proposition (2.9) [7]
If every fuzzy pre-open subset of a fuzzy topological space (\tilde{A}, \tilde{T}) is a fuzzy pre-compact, then every subset of \tilde{A} is a fuzzy pre-compact.

Proof:

Obvious \blacksquare

Proposition (2.10) [4]
A fuzzy pre-closed subset of fuzzy pre-compact space is fuzzy pre-compact

Proof:

Suppose that (\tilde{A}, \tilde{T}) be a fuzzy pre-compact space
And \tilde{B} be a fuzzy pre-closed subset of (\tilde{A}, \tilde{T})
And $\{\mu_{\tilde{N}} (x) : \lambda \in \Lambda \}$ is pre-open cover to \tilde{B}
Since \tilde{B} is a fuzzy pre-open cover.
Such that $\max \{ \{\mu_{\tilde{N}_\lambda} (x) : \lambda \in \Lambda \}, \mu_{\tilde{B}} (x) \}$ is fuzzy pre-open cover of \tilde{B}.
Since (\tilde{A}, \tilde{T}) is fuzzy pre-compact space.
Hence \tilde{B} is fuzzy pre-compact space.\blacksquare

Corollary (2.11) [4]
A fuzzy closed subset of a fuzzy pre-compact is fuzzy compact.

Proof:

Suppose that $\mu_\tilde{C} (x) = \max \{ \mu_{\tilde{N}_\lambda} (x) : \lambda \in \Lambda \}$ be fuzzy pre-open cover to \tilde{B}
Suppose that $\mu_{\tilde{C}_1} (x) = \max \{ \mu_{\tilde{C}_1} (x), \mu_{\tilde{B}_1} (x) \}$
$\therefore \tilde{C}_1$ is fuzzy open cover to (\tilde{A}, \tilde{T})
$\therefore \tilde{A}$ is a fuzzy pre-compact.
Such that $\mu_\lambda (x) \leq \max \{ \mu_{\tilde{N}_\lambda} (x), \mu_{\tilde{B}_1} (x) \}$
$\therefore \mu_{\tilde{B}} (x) \leq \max \{ \mu_{\tilde{N}_\lambda} (x) \}$
Then \tilde{B} is fuzzy pre-compact.\blacksquare

Remark 2.12: [6] A fuzzy pre-closed subset of a fuzzy compact space is needed not to be fuzzy compact.

Theorem 2.13: [8] Let (\tilde{A}, \tilde{T}) be a fuzzy topological space if \tilde{B} and \tilde{C} are two Fuzzy pre-compact subsets of \tilde{A}, then $\tilde{B} \cup \tilde{C}$ is also fuzzy pre-compact.

Proof:

Suppose that $\{\tilde{N}_\lambda : \lambda \in \Lambda \}$ be a fuzzy pre-open cover of $\tilde{B} \cup \tilde{C}$
Then $\max \{ \mu_{\tilde{B}} (x), \mu_{\tilde{C}} (x) \} \leq \max \{ \mu_{\tilde{N}_\lambda} (x) : \lambda \in \Lambda \}$
Since $\mu_{\tilde{B}} (x) \leq \max \{ \mu_{\tilde{B}} (x), \mu_{\tilde{C}} (x) \}$
And $\mu_{\tilde{C}} (x) \leq \max \{ \mu_{\tilde{B}} (x), \mu_{\tilde{C}} (x) \}$
Also $\{\tilde{N}_\lambda : \lambda \in \Lambda \}$ is fuzzy pre-open cover of \tilde{B} and a fuzzy pre-open cover of \tilde{C}
Since, \tilde{B} and \tilde{C} are two pre-compact sets, then there exists a finite sub cover $(\tilde{N}_1, \tilde{N}_2, \ldots, \tilde{N}_m)$ and $\mu_{\tilde{B}}(x) \leq \max \{ \mu_{\tilde{N}_i}(x) \}, i = 1, 2, 3, \ldots, n$

Hence $\mu_{\tilde{B}}(x) \leq \max \{ \mu_{\tilde{N}_i}(x) \}$

And $\mu_{\tilde{B}}(x), \mu_{\tilde{C}}(x) \leq \max \{ \mu_{\tilde{N}_i}(x) \}, k = 1, 2, 3, \ldots, n+m$

Thus, $\tilde{A} \cup \tilde{B}$ is fuzzy pre compact.

Remark 2.14: [8] If \tilde{B} and \tilde{C} are a fuzzy pre-compact subsets of a fuzzy topological space (\tilde{A}, \tilde{T}) then $\tilde{B} \cap \tilde{C}$ is need not to be fuzzy pre-compact space.

Theorem 2.15: [4] Every fuzzy pre-closed off (\tilde{A}, \tilde{T}) is fuzzy pre-compact if and only if (\tilde{A}, \tilde{T}) is fuzzy pre-compact.

Proof:

Let $\{ \tilde{N}_\lambda : \lambda \in \Lambda \}$ is fuzzy pre-open cover in \tilde{A}

Then $\mu_{\tilde{A}}(x) = \max \{ \mu_{\tilde{N}_\lambda}(x) : \lambda \in \Lambda \}$

Suppose that $\mu_{\tilde{G}}(x) = \max \{ \mu_{\tilde{N}_\lambda}(x) \cap \tilde{G} : \lambda \in \Lambda \}$

Then \tilde{K} is fuzzy closed.

And $\mu_{\tilde{G}}(x) \leq \max \{ \mu_{\tilde{N}_\lambda}(x) : \lambda \in \Lambda \}$

Then there exist Λ fuzzy subset finite on $\Lambda - \{ \lambda_0 \}$

Such that $\mu_{\tilde{G}}(x) \leq \max \{ \mu_{\tilde{N}_\lambda}(x) : \lambda \in \Lambda - \{ \lambda_0 \} \}$

Then \tilde{A} is fuzzy pre-compact.

Conversely \leftarrow

Let \tilde{B} is fuzzy pre-compact

Suppose that \tilde{K} is fuzzy closed set in \tilde{A}

Then \tilde{K} is fuzzy pre-compact.

Theorem 2.16: [3] A fuzzy topological space (\tilde{A}, \tilde{T}) is fuzzy pre-compact If and only if for every collection $\{ \tilde{N}_\lambda : \lambda \in \Lambda \}$ of fuzzy pre-closed set of (\tilde{A}, \tilde{T}) having the finite intersection property

$$\text{Min} \{ \mu_{\tilde{R}_A}(x) \} \neq \mu_{\tilde{B}}(x)$$

Proof:

Suppose that $\{ \tilde{N}_\lambda : \lambda \in \Lambda \}$ be a collection of fuzzy pre-closed with the finite intersection property

Let $\mu_{\tilde{R}_A}(x) = \tilde{B}(x)$ and $\mu_{\tilde{N}_\lambda}(x) \neq \mu_{\tilde{B}}(x)$

Since $\{ \tilde{N}_\lambda : \lambda \in \Lambda \}$ is a collection of fuzzy pre-open set cover of \tilde{A} it follows that there exists a finite subset $\mu \subseteq \Lambda$

Such that $\max \{ \mu_{\tilde{R}_A}(x) : \mu \in \Lambda \}$

Then min $\{ \mu_{\tilde{R}_A}(x) \} = \mu_{\tilde{B}}(x)$ where $\Lambda \in \mu$

Which the contradiction

And therefore min $\{ \mu_{\tilde{R}_A}(x) \} \neq \mu_{\tilde{B}}(x)$

Conversely

Obvious

Theorem 2.16: [4] Let \tilde{B} is fuzzy open subset of (\tilde{A}, \tilde{T}), then \tilde{B} is fuzzy pre-compact if and only if \tilde{B} sub space to \tilde{A}.

Proof:

Suppose that \tilde{B} is fuzzy pre-compact to \tilde{A}

Suppose that $\{ \tilde{N}_\lambda(x) : \lambda \in \Lambda \}$ is covering to \tilde{B}

Such that \tilde{N}_λ is fuzzy pre-open set in \tilde{A}

Thus min $\{ \mu_{\tilde{B}}(x), \mu_{\tilde{R}_A}(x) \}$ is fuzzy pre-open set in \tilde{A}

Then $\{ \tilde{N}_\lambda(x) : \lambda \in \Lambda \}$ is fuzzy pre-open cover to \tilde{B}

$\cap \tilde{B}$ is fuzzy pre-compact

Then $\mu_{\tilde{B}}(x) < \max \{ \min \{ \mu_{\tilde{B}}(x), \mu_{\tilde{R}_A}(x) : \lambda \in \Lambda \} \}$ such that $\lambda \subseteq \Lambda$

And $\mu_{\tilde{B}}(x) < \max \{ \mu_{\tilde{R}_A}(x) : \lambda \in \Lambda \}$
\[\therefore \tilde{B} \text{ is fuzzy pre-compact sub space to } \tilde{A} \]

Theorem 2.17: [4] *Every fuzzy pre-compact space in fuzzy Hausdorff space is fuzzy pre-closed*

Proof:

Suppose that \((\tilde{B}, \tilde{T})\) is fuzzy pre-compact in fuzzy Hausdorff space.
\[\therefore \tilde{B} \text{ is fuzzy compact space} \]
\[\therefore \tilde{A} \text{ is fuzzy Hausdorff space} \]
\[\therefore \tilde{B} \text{ is fuzzy closed} \]
\[\therefore \tilde{B} \text{ is fuzzy pre-closed in } \tilde{A} \]

Proposition 2.18: [4] Let \(\tilde{B}, \tilde{C}\) be two fuzzy subset of \((\tilde{A}, \tilde{T}), \tilde{B}\subseteq \tilde{C}\) and \(\tilde{C}\) is fuzzy open set of \(\tilde{A}\), then \(\tilde{B}\) is fuzzy pre-compact relative to subspace \(\tilde{C}\) if and only if \(\tilde{B}\) is fuzzy pre-compact relative to \(\tilde{A}\).

Proof:

Suppose that \(\tilde{B}\) is fuzzy pre-compact subspace in \(\tilde{C}\)
\[\therefore \tilde{B} \text{ is fuzzy pre-compact relative to } \tilde{C} \]
And \(\tilde{B}\) is fuzzy pre-compact relative to \(\tilde{A}\)
Hence \(\tilde{B}\) is fuzzy pre-compact in \(\tilde{A}\)

Conversely

Let \(\tilde{B}\) is fuzzy pre-compact in \(\tilde{A}\)
\[\therefore \tilde{B} \text{ is fuzzy pre-compact relative to } \tilde{A} \]
Then \(\tilde{B}\) is fuzzy pre-compact relative to \(\tilde{C}\)
Hence \(\tilde{B}\) is fuzzy pre-compact in \(\tilde{C}\)

3. Fuzzy pre-continuous and fuzzy pre*-continuous

Definition 3.1: [3] A function \(f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T})\) is fuzzy continuous (f-continuous) if and only if the inverse image of any fuzzy open set in \(\tilde{T}\) is fuzzy open set in \(\tilde{T}\).

Definition 3.2: A function \(f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T})\) is said to be a fuzzy pre-continuous if and only if the inverse image of any fuzzy open set in \(\tilde{T}\) is fuzzy pre-open set in \(\tilde{T}\).

Definition 3.3: A function \(f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T})\) is said to be a fuzzy pre*-continuous if and only if the inverse image of any fuzzy pre-open set in \(\tilde{T}\) is fuzzy pre-open set in \(\tilde{T}\).

Proposition 3.5: [3] If \(f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T})\) is fuzzy continuous function, then \(f\) is fuzzy pre*-continuous

Proof:

Suppose that \((\tilde{C})\) is a fuzzy pre-open fuzzy in \(\tilde{B}\)

Then \(\mu_{\tilde{C}}(x) \leq \mu_{int\tilde{C}}(x)\) and \(\mu_{f^{-1}\tilde{C}}(x) \leq \mu_{f^{-1}int\tilde{C}}(x) \leq \mu_{f^{-1}int\tilde{C}}(x)\)

Since \(f\) is fuzzy continuous

Then \(\mu_{f^{-1}int\tilde{C}}(x) \leq \mu_{int\tilde{f^{-1}\tilde{C}}}(x) \leq \mu_{int\tilde{f^{-1}\tilde{C}}}(x)\)

Thus \(\mu_{f^{-1}\tilde{C}}(x) \leq \mu_{int\tilde{f^{-1}\tilde{C}}}(x) \leq \mu_{int\tilde{f^{-1}\tilde{C}}}(x)\)

Then \(f\) is fuzzy pre*-continuous

Theorem 3.6: [3] Let \(f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T})\) be a function, and then the following are equivalent

1. \(f\) is fuzzy pre*-continuous
2. \(f(p-cl\tilde{C}) \subseteq p(cl\tilde{f\tilde{C}})\) for every fuzzy set \(\tilde{C}\) in \(\tilde{A}\)

Proof:

2 → 1. Suppose that \(\tilde{C}\) be a fuzzy set of \(\tilde{A}\)
Then \(p-cl\tilde{f\tilde{C}}\) is fuzzy pre-closed
By the (1) f^{-1} (p-cl (\tilde{C})) is pre-closed
And (μ_f^{-1} p-cl($f(\tilde{C})$)(x) = ($\mu_{p-cl(f^{-1}(p-cl(f(\tilde{C}))))}$)$x$)
Since $\mu_{f(\tilde{C})}(x) \leq \mu_{f^{-1}(\tilde{C})}(x)$
And $\mu_{p-cl(\tilde{C})}(x) \leq (\mu_{p-cl(f^{-1}(\tilde{C})))}(x) = \mu_{p-cl(f^{-1}(p-cl(f(\tilde{C}))))}(x)$
Hence $\mu_{f^{-1}(\tilde{C})}(x) \leq \mu_{p-cl(f(\tilde{C}))}(x)$, f^{-1}

2←1 Suppose that \tilde{D} be a fuzzy pre-closed set in \tilde{B}
And If $\mu_{f^{-1}(\tilde{D})}(x) \geq \mu_{f^{-1}(\tilde{D})}(x)$
Then $\mu_{p-cl(\tilde{D})}(x) \leq \mu_{f^{-1}(p-cl(f(\tilde{D})))}(x)$
$\leq \mu_{f^{-1}(p-cl(f(\tilde{D})))}(x) = \mu_{f^{-1}(\tilde{D})}(x)$
Since $\mu_{f^{-1}(\tilde{D})}(x) \leq \mu_{p-cl(f^{-1}(\tilde{D}))}(x)$
Then $\mu_{f^{-1}(\tilde{D})}(x) = \mu_{p-cl(f^{-1}(\tilde{D}))}(x)$

Hence $f^{-1}(\tilde{D})$ is fuzzy pre-closed set in \tilde{B} and f is fuzzy pre*-continuous

Corollary 3.7: [3] Let f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}') be a function, then the following are equivalent
1) f is fuzzy pre-continuous
2) f (p-cl (\tilde{C}) \subseteq cl(ƒ (\tilde{C})), for every fuzzy set \tilde{C} in \tilde{A}

Proof:
Obvious

Proposition 3.8: [3] If f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}') is fuzzy open and fuzzy continuous function and \tilde{A} is a fuzzy pre-compact
Then f (\tilde{A}) is fuzzy pre-compact space.

Proof:
Obvious

Theorem 3.9: [8] The fuzzy pre-continuous image of a fuzzy pre-compact space is fuzzy compact space.

Proof:

Suppose that (\tilde{A}, \tilde{T}) be a fuzzy pre-compact space
And f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}') be a fuzzy pre-continuous function
To prove (\tilde{B}, \tilde{T}') is a fuzzy compact space
Let {\tilde{N}_i: $\lambda \in A$} is a fuzzy open cover of \tilde{B}.
Then { $f^{-1}(\tilde{N}_i)$ (x): $\lambda \in A$} is fuzzy pre-open cover of \tilde{A}
Since f is fuzzy pre-continuous function a finite sub cover {$f^{-1}(\tilde{N}_{i1}$) (x), $i = 1, 2, 3... n$} which covering \tilde{A}
Then \tilde{B} is a fuzzy compact space

Remark 3.10: [4] The fuzzy continuous image of fuzzy pre-compact need not be a fuzzy pre-compact space.

Theorem 3.11: [3] If a function f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}') is fuzzy pre*-continuous and \tilde{C} is a fuzzy pre-compact relative to \tilde{A} then so is f (\tilde{C}) is fuzzy pre-compact.

Proof:

Suppose that {\tilde{N}_i: $\lambda \in A$} be a fuzzy pre-open cover of
Since f is fuzzy pre*-continuous and {$\mu_{f^{-1}(\tilde{N}_{i1}$) ($x$): $\lambda \in A$} is a fuzzy pre-open set cover of S (\tilde{C}) in \tilde{A}
Since \tilde{C} is a fuzzy pre-open compact relative to \tilde{A}
There is a finite subfamily {$\mu_{f^{-1}(\tilde{N}_{i1}$) ($x$): $\lambda \in A$}.
Such that $\mu_{f(\tilde{C})}(x) \leq \mu_{f^{-1}(\tilde{N}_{i1}$) ($x$) f^{-1}max {$\mu_{f^{-1}(\tilde{N}_{i1}$) ($x$): $\lambda \in A$}} $\leq \mu_{f^{-1}(\tilde{N}_{i1}$) ($x$) f^{-1}max {$\mu_{f^{-1}(\tilde{N}_{i1}$) ($x$): $\lambda \in A$}} $\leq \mu_{f^{-1}(\tilde{N}_{i1}$) ($x$) f^{-1}max {$\mu_{f^{-1}(\tilde{N}_{i1}$) ($x$): $\lambda \in A$}}
Therefore f (\tilde{C}) is a fuzzy pre-compact relative to \tilde{B}
Propositions 3.12: [3]

1) If f: (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}') is a fuzzy pre*-open and bijective function and \tilde{B} be fuzzy pre-compact then \tilde{A} is a fuzzy pre-compact.
Proof:

Suppose that $\{\tilde{N}_A : \lambda \in \Lambda \}$ be a family of a fuzzy pre-open covering of A
Let $\{\mu_f(\tilde{N}_A)(x) : \lambda \in \Lambda \}$ be a fuzzy pre-open set covering of B
Since B is fuzzy pre-compact then there exist a finite family $\lambda' \subseteq \Lambda$ covers B
Such that $\{\mu_f(\tilde{N}_A)(x) : \lambda \in \lambda' \}$ covers B
Since f is bijective
Then $\mu_f^{-1}(\tilde{B})(x) = \mu_f(\tilde{A})(x) = \mu_f(\tilde{A}) \max \{\tilde{N}_A(x) : \lambda \in \Lambda \}$
Hence \tilde{A} is a fuzzy pre-compact \blacksquare

2) Let $f : (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}^*)$ be a fuzzy pre-continuous surjective function and \tilde{A} is a fuzzy pre-closed compact
then \tilde{B} is a fuzzy pre-closed compact.

Proof:

Obvious \blacksquare

3) Let if $f : (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}^*)$ be a fuzzy pre-continues surjective function of a fuzzy pre-compact a space \tilde{A} onto
a space \tilde{B} then \tilde{B} is fuzzy pre-compact.

Proof:

Obvious \blacksquare

4) Let if $f : (\tilde{A}, \tilde{T}) \rightarrow (\tilde{B}, \tilde{T}^*)$ be a fuzzy pre-continues bijective function and \tilde{B} be a fuzzy pre-compact space \tilde{A}
then \tilde{B} is fuzzy Pre-compact.

Proof

Obvious \blacksquare

Remark 3.13: [7] The following diagram explains the relationships among the different types of fuzzy continuous function.

4. Conclusion

It is an interesting exercise to work on fuzzy, pre-continuous and fuzzy pre*-continuous; function of fuzzy pre-compact space in fuzzy topological space similarly other forms of fuzzy pre-open set can be applied to define different forms of fuzzy pre-compact space.

Acknowledgements

The authors are grateful to the colleges’ education department of mathematics. Al- Mustansiriya University, Baghdad, Iraq for its financial support.

References

[8] Saleem yaseen mageed “on fuzzy compact space” AL Mustansiriya University (2012)