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Abstract 
 

In this paper, we consider a Cauchy problem for the nonlinear viscoelastic Petrovsky equation. We obtain the blow up 

of solutions by applying a lemma due to Zhou. 
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1. Introduction 

In [5], Li et al. considered the following nonlinear viscoelastic Petrovsky problem 
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where   is a bounded domain in  1nR n   with a smooth boundary ,  , 1;m p     is the unit outer normal on ;  

and g is a nonnegative memory term. They established some asymptotic behavior and blow up results for solutions with 

positive initial energy. 

Guesmia [3] studied the problem 

   2 0,u u q x u g utt t                                                                                                                                                 (2) 

where :q R  is a bounded function? Under some assumptions, he showed the solution of (2) decay results by 

using the semigroup method. In [7], Messaoudi investigated the semilinear Petrovsky equation 
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He showed that the solution blows up in finite time if p m  and while it exists globally if .p m  in [9], Wu and Tsai 

showed that the solution of (3) is global under some conditions. Also, Chen and Zhou [2] studied the blow up of the 

solution of (3). 

Recently, Li et al. [6] considered the following Petrovsky equation 
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The authors obtained global existence, decay and blow up of the solution. Very recently, Pişkin and Polat [8] studied 

the decay of the solution of the problem (4). 

In this paper, our aim is to extend the result of [5], established in bounded domains, to the problem in unbounded 

domains. Namely, we consider the following Cauchy problem 
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where , ,0 1g u u  are functions to be specified later. 

This paper is organized as follows. In section 2, we present some notations, lemmas, and the local existence theorem. In 

section 3, under suitable conditions on the initial data, we prove a finite time blow up result. 

2. Preliminary notes 

In this section, we give some assumptions and lemmas which will be used throughout this work. Hereafter we denote by 

.  and .
p

 the norm of  2 nL R  and  ,p nL R  respectively. First, we make the following assumptions 

(G) :g R R   is a nonincreasing differentiable function such that 

   1 0, ' 0, 0.0 g d l g t t       

Next, we state the local existence theorem of the problem (5), which can be established by combining the arguments of 

[1], [7]. 

 

Theorem 1: (Local existence). Suppose that (G) holds, and 1 p   if 1,2,3,4,n   and 1
4

n
p

n
 


 if 5.n   Then for 

any initial data      2 1, ,0 1
n nu u H R H R   with compact support, the problem (5) has a unique local solution 

       2 1 20, ; 0, ; ,n nu C T H R C T L R       
   

 

      2 1 20, ; 0,nu L T H R L Tt
    
 

 

for T  small enough. 

To obtain the result of this paper, we will introduce the modified energy functional 
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where 

         .0
tg v t g t v t v d    o  

The next lemma shows that our energy functional (6) is a nonincreasing function along the solution of (5). 

 

Lemma 2:  E t is a nonincreasing function for 0t   and 

  2 2
' 0.E t u ut t
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Proof: By multiplying the equation in (5) by ut  and integrating over ,nR  we obtain (7). 

3. Blow up of solutions 

In this section, we shall show that the solution of the problem (5) blow up in finite time, by the similar arguments as in 

[4]. For the purpose, we give the lemma. 

 

Lemma 3: [10] Suppose that  t  is a twice continuously differentiable function satisfying 
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where , 0, 1 0, 00C L        are constants. Then,  t  blow up in finite time. 

 

Theorem 4: Suppose that (G) holds, and 1 p   if 1,2,3,4,n   and 1
4

n
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 if 5.n   Assume further that 
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Then for any initial data      2 1, ,0 1
n nu u H R H R   with compact support, satisfying 

  2 2
0 0, 0, ,0 1 0 0nE u u dx u uR     

Then the corresponding solution blows up in finite time. In other words, there exists a positive constant *T  such that 
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Proof: By multiplying the equation in (5) by ut  and integrating over ,nR  using integrating by parts, we obtain 
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the last term on the left side of (9) can be estimated as follows 

               0 0 0
t t tn n ng t u u dxd g t u u t u t dxd g t u t u t dxdt t tR R R                         

                                                  
1 12 2

0 02 2

d dt tn ng t u u t dxd g t u t dx dR Rdt dt
    

 
              

 
 

                                                    
1 12 2

'0 02 2

d t tn ng t u u t dxd g t u u t dx dR Rdt
     

   
                       

 

                                                   
1 12 2

.02 2

d t n ng u t dxd g t u t dxR Rdt
 

 
       

                                                    (10) 

Inserting (10) into (9), to get 
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To apply Lemma 3, we define 

   1 2 2
.

2
nt u u dxR                                                                                                                                               (11) 

Therefore 

   ' ,nt uu u u dxt tR                                                                                                                                              (12) 

and 
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Then, eq (5) is used to estimate (13) as follows 
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On using 
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Eq. (14) becomes 
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We then use Young inequality to estimate the second term in (15). Namely, 
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By combining (15) and (16), we get 
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From (12), (13) and (17), we obtain 
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Now, we exploit (6) to substitute for   ;g u to  
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Thus (18) takes the form 
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At this point we choose 0   so that 
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This is, of course, possible by (8). We then conclude, from (19), that 
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Now, we use Hölder inequality to estimate 1
1

p
u

p



 as follows 
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where 0L   is such that 

      supp , ,0 1u x u x B L  

and  B t L  is the ball, with radius ,t L  centered at the origin. If we call W n  the volume of the unit ball then 
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From the definition of  ,t  we get 
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Combining (20)-(21), we have 
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From assumptions of Theorem, we deduce by continuity that there exists *T T  such that 
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Consequently, (22) implies that 
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It is easy to verify that the requirements of Lemma 3 are satisfied by 
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Therefore  t  blow up in finite. 
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