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Abstract 
 

The present discourse delineates a rigorous examination of steady elastico–viscous boundary layer flow past a wedge embedded within a 

nanofluid environment under a uniform free-stream velocity. The framework imposes isothermal boundary conditions alongside a pre-

scribed homogeneous quantifiable measure of nanoparticle occupancy relative to the total fluidic domain at the stretching interface. The 

governing relations for the coupled mechanisms of momentum transfer, thermo-energetic diffusion, and nanoparticle volumetric stratifi-

cation are constructed via Walter’s liquid model B/ synergistically coupled with the Kuznetsov–Nield nanofluid formulation [27-28]. 

Through the application of similarity transformations, augmented by appropriate boundary constraints, the system is reformulated as a 

nonlinear system of ordinary differential relations, subsequently addressed via the bvp4c numerical integrator embedded within MATLAB. 

The outcomes underscore the decisive role of the elastico–viscous parameter in modulating velocity, thermal, and concentration distribu-

tions, while simultaneously elucidating the coupled dynamics of the conjoint modulation of hydrodynamic, thermo-diffusive, and concen-

tration stratified layers in shaping the overall transport phenomena of the system. 
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1. Introduction 

To exemplify the applicability of Prandtl’s boundary layer framework, Falkner and Skan [1] pioneered the analysis of continuous laminar 

flow past a stationary wedge. Within the evolving corpus of nanofluid investigations, Saidur et al. [2] synthesized an extensive review 

delineating diverse commercial, residential, industrial, and transportation-related utilizations. Complementarily, Mahian et al. [3] and Behar 

et al. [4] provided critical expositions of contemporary advancements in nanofluid-based heat transfer phenomena, whereas Bondareva et 

al. [5] specifically explored alumina–water nanofluid systems. Saidur et al. [6] further consolidated the discourse through a comprehensive 

examination of nanofluid technologies. Monographs [7–10] and review treatises [11–17] constitute significant repositories encompassing 

theoretical and empirical inquiries into nanofluid genesis, rheological traits (e.g., viscosity and thermal conductivity), and convective 

transport dynamics. Moreover, the emergent paradigm of hybrid nanofluids, as introduced by Sheikholeslami et al. [18], underscores a 

nascent trajectory of innovation.  

The mechanism of mitigating interfacial resistance between two contacting or mating surfaces when they roll against one another is referred 

to in this context as lubrication. The protective layer of nanoparticles found in nano-lubrication is present between surfaces that come into 

contact with one another, improving performance and efficiency. Taking into account the aforementioned considerations, the metal-cutting 

machining operation employs nano-lubrication to enhance tribological performance and thermal management at the tool–workpiece inter-

face. Nano-lubrication is the method of using a nanofluid as a cutting fluid to effectively cool and lubricate the cutting zone (metal working 

zone) during any machining operation. 

Metal cutting is the process of using a wedge-shaped tool to remove excess material from a workpiece in the shape of a chip. This process 

maintains the focus on several factors that affect the manufacturing class, including the tool's durability, the work surface's probity, the 

amount of material detached, the amount of heat generated when a workpiece comes into contact with a tool, and specific energy expendi-

ture [19-21]. By using CNC-CuO Nano lubricant in internal combustion engines, Hisham et al. [22] improved its stability for a sustainable 

environment. The stability of the entire system was assessed using zeta potential tests. 

Furthermore, in order to determine the friction coefficient and wear rate, fluid lubrication was employed in circumstances with the rapid 

kinematic escalation concomitant with minimal external resistance, and boundary lubrication was employed in circumstances with low 

acceleration and high load. In conjunction with SAE 40 base oil, nanolubricant formulations incorporating nanoparticle concentrations 

within the interval 0.1%–0.9% were systematically investigated. Zeta potential diagnostics revealed an enhancement in colloidal stability 

up to the 0.5% threshold, beyond which a decline was observed at 0.9%. The CNC–CuO nanolubricants exhibited pronounced tribological 

superiority, manifesting as substantial attenuation of the friction coefficient—quantified as reductions of approximately 33%–44% under 

blended lubrication regimes and 48%–50% under boundary lubrication conditions. 

Zawawi et al. [23] conducted an experimental inquiry employing TiO₂/SiO₂ polyol-ester–based nanolubricants within automotive electrical 

compressor air-conditioning systems, with volumetric concentrations spanning 0.01%–1%. At an optimal concentration of 0.03%, the 
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nanolubricant augmented thermal absorption by as much as 44.2%. In a related vein, Khan and Pop [24] examined boundary layer transport 

phenomena over a wedge translating through a nanofluid medium, wherein the adopted thermal dispersion construct exhibits strong corre-

spondence with the formulations advanced by Nield and Kuznetsov [25] and subsequently refined by Kuznetsov and Nield [26]. 

 

 
Fig. 1.1: Flow Configuration. 

 

In light of this, it is important to emphasize that nanotechnology has been applied extensively in the industry, attributable to the distinctive 

physicochemical attributes inherent in materials with nanometers. 

2. Mathematical Formulation 

The present discourse is devoted to the analytical exploration of elastico-viscous boundary-layer phenomena engendered by an imperme-

able wedge subject to stretching dynamics within a Nano fluidic environment. The kinematic prescription at the solid boundary is charac-

terized by a stream-wise-dependent surface velocity, uw(x), counterpoised with an external inviscid flow velocity field, ue(x), wherein 

the spatial coordinate x signifies the longitudinal abscissa traced along the wedge contour, as schematically represented in Figure 1. The 

parametric sign of uw(x) delineates the morphokinematic regime, with uw(x) > 0 corresponding to wedge elongation (stretching) and 

uw(x) < 0 to wedge contraction. Thermo-physical boundary stipulations impose invariant wall conditions for temperature. Tw and nano-

particle concentration Cw, whereas the far-field asymptotic enforces convergence toward the ambient states T∞  and C∞  as y→ ∞.  

Subject to these constitutive and asymptotic constraints, the governing quasi-parabolic framework of steady-state boundary-layer governing 

relations—encompassing the continuity condition, the elastico–viscous momentum transport equation, the thermal energy diffusion relation, 

and the nanoparticle species conservation law—are articulated in the Cartesian coordinate framework (x, y), consistent with the founda-

tional formulations advanced by Nield and Kuznetsov [25] and later extended through the refinements introduced by Kuznetsov and Nield 

[26]. 
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Consistent with the enforcement of the designated boundary stipulations [24] 

 

v = 0, u = uw(x) = −λ ue(x) , T = Tw , C = Cw at y → 0                                                                                                                           (2.5) 

 

u = ue(x), T = T∞, C = C∞ at y→ ∞                                                                                                                                                           (2.6) 

 

The hydrodynamic field is characterized by the Cartesian-resolved velocity fields. u and v defining the flow kinematics, respectively, along 

the streamwise (x) and transverse (y). The material response incorporates the elastico-viscous parameter. k0 , while 𝞄 denotes the kine-

matic viscosity and α the thermal diffusivity of the carrier medium. Nanoparticle transport phenomena are parameterized through the 

Brownian diffusion coefficient. DB and the thermophoresis diffusion coefficient DT. The effective heat capacity ratio is expressed as τ = 
(ρc)ρ

(ρc)f
 , with ρ symbolizing the fluid density, c the volumetric heat capacity, and ρp the intrinsic density of the dispersed particulate phase. 

The foundational framework of differential relations governing the flow (2.1) – (2.6) is rendered amenable to analytical treatment via the 

invocation of an appropriate similarity transformation, wherein the functional dependencies of the wedge surface velocity are considered. 

uw(x) and the external free-stream velocity ue(x) are prescribed in the ensuing canonical form. 

The surface-driven kinematic prescription is parameterized as uw(x) = axm, while the corresponding external free-stream velocity distri-

bution is analogously represented by ue(x) = cxm, wherein the constants a and c serve as scaling coefficients and the exponent m embod-

ies the wedge-induced similarity index governing the stream-wise acceleration field [24]:  
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uw(x) = axm and ue(x) = cxm                                                                                                                                                                     (2.7) 

 

Let a, c and m be non-negative constants subject to the constraint 0 ≤ m ≤ 1. The kinematic motion parameter is introduced as λ =
c

a
, 

wherein the regimes λ < 0, λ > 0 and λ = 0 respectively characterize a stretching wedge, a contracting (shrinking) wedge, and a station-

ary wedge configuration. Invoking the boundary prescriptions (2.5) – (2.6), a self-similar reduction of the governing system (2.1) – (2.4) 

is pursued to secure an invariant similarity solution [24]: 

 

𝞇 = (
2uexν

1+m
)

1

2 f(ζ), θ(ζ) = 
T −T∞

Tw −T∞
, 𝟇(ζ) = 

C −C∞

Cw −C∞
, ζ = {

(1+m)ue

2xυ
}

1

2 y, u = 
∂ψ

∂y
, v =− 

∂ψ

∂x
                                                                                 (2.8) 

 

In this formulation, 𝞇 and ζ denote the stream function and the similarity variable, respectively. Upon the substitution of relation (2.8) into 

the governing system (2.1) – (2.4), the equations reduce to their corresponding autonomous ordinary differential forms. 
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With reference to the imposed boundary constraints 

 

f(0) = 0, f ′(0) = −λ, θ(0)  = 1, ϕ(0)  = 1 as ζ → 0                                                                                                                                   (2.12) 

 

𝑓′(∞) = 1, 𝜃(∞) = 0, 𝜙(∞) = 0 as 𝜁 → ∞                                                                                                                                                (2.13) 

 

Here, the prime notation signifies differentiation relative to the similarity transformed. 𝜁, and the dynamical framework is governed by 

seven dimensionless control parameters, delineated as follows: 
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The pressure gradient, the modified elastico-viscous parameter associated with it, the pressure-gradient–related parameter, the Prandtl and 

Lewis numbers, along with the stochastic nanoparticle transport induced by Brownian agitation and the thermally driven migratory flux 

arising from thermophoresis forces, are quantified by 𝛽, 𝑘1, 𝐴, 𝑃𝑟, 𝐿𝑒, 𝑁𝑏 , 𝑎𝑛𝑑 𝑁𝑡 respectively. Notably, setting 𝜆 = 0, 𝑁𝑏 = 0 𝑎𝑛𝑑 𝑁𝑡 =
0. (2.10) – (2.11) reduces the formulation to the classical Falkner–Skan [1] boundary-layer problem for a hydro-dynamically viscous, 

incompressible continuum flow field interacting with a quiescent wedge-shaped geometry.  

3. Solution Scheme 

The self-similar nonlinear differential relations (2.9) – (2.11) are recast into an equivalent canonical representation comprising a linked 

ensemble of first-order ordinary differential constructs: 

 

𝑓 = 𝑦1, 𝑓′ = 𝑦2,  𝑓′′ = 𝑦3, 𝑓′′′ = 𝑦4 , 𝜃 = 𝑦5, 𝜃′ = 𝑦6, 𝜙 = 𝑦7, 𝜙′ = 𝑦8                                                                                                  (3.1) 

 

(3.1) enables the formulation of 
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Equations (2.9), (2.10), and (2.11) may be reformulated in terms of (3.1) and (3.2) as given below: 
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And the following are the reduction of the pertinent boundary conditions (2.12) and (2.13): 

 

𝑦1(0) = 0, 𝑦2(0) = − λ, 𝑦5(0) = 1, 𝑦7(0) = 1                                                                                                                                               (3.7) 

 

𝑦2(∞) = 1, 𝑦3(∞) = 0, 𝑦5(∞) = 0, 𝑦7(∞) = 0                                                                                                                                             (3.8) 

 



International Journal of Advanced Mathematical Sciences 71 

 
MATLAB’s bvp4c algorithm for the numerical treatment of boundary-value differential systems is utilized to obtain numerical realizations 

of equations (3.3), (3.5), and (3.6), constrained by boundary prescriptions (3.7) – (3.8), across a spectrum of flow-governing parameter 

regimes. 

4. Results and Discussion 

The MATLAB intrinsic boundary-value solver bvp4c is invoked to compute the stratified distributions of momentum, thermal energy, and 

nano-particle concentration, thereby elucidating the dynamical implications of the governing similarity parameters. The parametric sensi-

tivities of the flow fields are exhibited in Figures 4.2–4.17. To establish the credibility of the formulation, the numerically obtained quan-

tities—namely, the surface shear stress induced by viscous effects 𝑓′′(0) as well as the thermal gradient at the bounding surface−𝜃′(0) 

are systematically benchmarked against reference data from the literature, with the comparative results (Tables 4.1–4.2) demonstrating 

close concordance. 

Table 4.1 furnishes a comparative assessment of the computed values of 𝑓′′(0) with those reported in equation (3.3) for different 𝑚 under 

the condition 𝑘1 = 𝜆 = 0. Similarly, Table 4.2 contrasts the surface temperature gradients −𝜃′(0), computed from equations (3.3) and (3.5) 

for 𝑚 = 0 and varying 𝑃𝑟, with benchmark results from (3.3) and (3.5), assuming 𝜆 = 𝑁𝑏 = 𝑁𝑡 = 0 [32,33]. The close agreement ob-

served across these comparisons substantiates both the correctness and the high precision of the present numerical findings. 

 
Table 4.1: The Tabulated Magnitudes of 𝑓′′(0) Are Delineated Across A Spectrum of the Wedge-Geometry Index 𝑚, Subject to the Parametric Restriction 

𝑘1= Λ = 0 

m Yih[29] Yacob et al.[30] White[31] Khan and Pop[24] Present Study 

0 0.4696 0.4696 0.4696 0.4696 0.4901 

1/11 0.6550 0.6550 0.6550 0.6550 0.6623 

1/5 0.8021 0.8021 0.8021 0.8021 0.8052 
1/3 0.9276 0.9276 0.9277 0.9277 0.9292 

1/2 − − 1.0389 1.0389 1.0397 

1  1.2326 1.2326 1.2326 1.2328 

 
Table 4.2: A Comparative Assessment of −𝜃′(0) Across Varying 𝑚 Values Under the Constraints 𝑘1= Λ =𝑁𝑏 = 𝑁𝑡 = 0 and 𝑃𝑟 = 6 

m Kuo[32] Blasius[33] Khan and Pop[24] Present Study 

0 0.8673 0.8673 0.8769 0.8771 

1.0 1.1147 1.1152 1.1279 1.1276 

 

In the present investigation, the dimensionless profiles of velocity, temperature, and concentration are examined under the influence of 

prescribed fluid-flow parameters. The analysis is carried out for selective parameter sets, namely. 𝑘1= 0.1, 𝑚 = 0.1 & 0.4, λ = 0.1 & 0.5, 

𝑃𝑟 = 1 & 5, 𝐿𝑒 = 1 & 3, 𝑁𝑏 = 0.1 & 0.5, 𝑁𝑡 = 0.1, to elucidate the parametric sensitivity of the flow, heat, and mass transfer characteristics. 

Figs:4.1-4.2 illustrate the shrinking and stretching velocity distribution for assorted 𝑘1 with 𝑚. It is observed that the velocity exhibits a 

pronounced increase as 𝒌𝟏 Rises for both 𝒎 = 0.1 & 𝒎 = 0.4, under prescribed flow conditions. Moreover, the momentum boundary layer 

thickness contracts noticeably when 𝒎 = 0.1 while for 𝒎 = 0.4, it shows a slight expansion before stabilizing. In both scenarios, the 

boundary layer ultimately attains an asymptotic state at a finite distance from the surface. This indicates that beyond a certain normal 

distance, momentum diffusion becomes negligible and the flow achieves a fully developed state, consistent with classical boundary-layer 

behaviour modified by elastico-viscous effects. 

Figs. 4.3-4.4 illustrate the shrinking and stretching velocity distribution for assorted 𝒎 with λ. The velocity exhibits an initial rise, yet as 

the parameter m intensifies, it undergoes a decline, and a further augmentation of λ amplifies this diminishing effect in both scenarios. 

Correspondingly, the momentum boundary layer thickness contracts sharply. This is due to the stronger wall shear and augmented viscous 

effects confining the momentum transport to a thinner region adjacent to the surface, yielding a steeper velocity gradient and a contracted 

boundary layer in both shrinking and stretching cases. 

Figs:4.5-4.6 illustrate the shrinking and stretching velocity distribution for assorted 𝜆 with 𝑚. For the shrinking flow, the velocity weakens 

at 𝑚 = 0.1 but intensifies at 𝑚 = 0.4, whereas an opposite trend emerges in the stretching flow. In both situations, the velocity eventually 

stabilizes at the sheet surface. 𝜁= 5. Moreover, the velocity boundary layer thickness expands noticeably for 𝑚 = 0.1 but exhibits a slight 

contraction when 𝑚 = 0.4, reflects the balance between nonlinear viscous effects and the imposed shrinking or stretching of the surface. 

Figs:4.7-4.8 illustrate the shrinking and stretching temperature distribution for assorted 𝜆 with 𝑃𝑟. The temperature within the shrinking 

flow intensifies with the rise of 𝜆, whereas in the stretching flow, the temperature exhibits a rapid decline for both 𝑃𝑟 = 1 & 𝑃𝑟 = 5. The 

𝑃𝑟 characterizes the relative transport rates of momentum and heat, being expressed as the ratio of momentum diffusivity to thermal 

diffusivity. For 𝑃𝑟 = 1, the momentum and thermal diffusion processes proceed at comparable rates. However, when 𝑃𝑟 > 1, momentum 

diffusion predominates over thermal diffusion, leading to a reduction in the thermal boundary layer thickness as the 𝑃𝑟 increases. This 

phenomenon can be noticed in both cases. 

Figs:4.9-4.10 illustrate the shrinking and stretching temperature distribution for assorted. 𝑁𝑡 𝑤𝑖𝑡ℎ 𝑁𝑏. For both cases, the fluid temperature 

rises with increasing. 𝑁𝑡 at fixed values of 𝑁𝑏 = 0.1 & 𝑁𝑏 = 0.5. The thermal boundary layer exhibits a marked thickening under shrinking 

flow, whereas in the stretching flow, it undergoes a slight reduction in thickness. This contrasting behavior highlights the dominant role of 

flow kinematics in modulating nanoparticle-induced heat transfer mechanisms. 

Figs:4.11-4.12 illustrate the shrinking and stretching concentration distribution for assorted. 𝑁𝑡  𝑤𝑖𝑡ℎ 𝑁𝑏. The concentration of the fluid 

declines markedly with increasing. 𝑁𝑡 for both 𝑁𝑏 = 0.2 & 𝑁𝑏 = 0.5. Correspondingly, the concentration boundary layer thickness expands 

considerably with rising 𝑁𝑏 at 𝑁𝑏 = 0.2, while at 𝑁𝑏 = 0.5, it contracts sharply as 𝑁𝑡 increases in both scenarios. Increasing 𝑁𝑡 consistently 

suppresses the concentration field due to stronger thermophoretic transport, whereas the influence of 𝑁𝑏 governs whether the concentration 

boundary layer expands or contracts by modulating the balance between random diffusion and thermophoretic drift. 

Figs:4.13 illustrate the concentration distribution for assorted. 𝑚 with 𝐿𝑒 for the fixed wedge. The concentration boundary layer thickness 

diminishes with increasing. 𝐿𝑒 and 𝑚, signifying that within this layer, the dimensionless nanoparticle volume fraction attains compara-

tively higher values for the horizontal flat plate configuration. This explains the observed concentration distribution behavior for a fixed 

wedge, with more pronounced effects in the horizontal flat plate configuration. 
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Fig. 4.1: Shrinking Velocity with k1 and m. 

 

 
Fig. 4.2: Stretching Velocity with k1 and m. 

 

 
Fig. 4.3: Shrinking Velocity with m and 𝝀. 
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Fig. 4.4: Stretching Velocity with m and 𝝀. 

 

 
Fig. 4.5: Shrinking Velocity with 𝝀 and m. 

 

 
Fig. 4.6: Stretching Velocity with 𝝀 and m. 
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Fig. 4.7: Shrinking Temperature with 𝝀 and Pr. 

 

 
Fig. 4.8: Stretching Temperature with 𝝀 and Pr. 

 

 
Fig. 4.9: Shrinking Temperature with 𝑵𝒕 and 𝑵𝒃. 
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Fig. 4.10: Stretching Temperature with 𝑵𝒕 and 𝑵𝒃. 

 

 
Fig. 4.11: Shrinking Concentration with 𝑵𝒕and 𝑵𝒃. 

 

 
Fig. 4.12: Stretching Concentration with 𝑵𝒕 and 𝑵𝒃. 
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Fig. 4.13: Fixed Wedge Concentration with m and Le 

5. Conclusion 

The numerical exploration of the steady hydrodynamic boundary-layer configuration engendered by the motion of a wedge immersed in 

an aqueous nanofluid medium has been executed through the application of MATLAB’s intrinsic boundary-value solver bvp4c across 

diverse parametric regimes characterized by 𝑚, 𝑘1, 𝐴, 𝜆, Pr, Le, 𝑁𝑏 and 𝑁𝑡. The mathematical structure seamlessly collapses to the arche-

typal Falkner–Skan formulation of elastico-viscous (non-Newtonian) fluid flow past a stationary wedge when the slip-related and nano-

particle-induced modulating coefficients. 𝑘1, 𝜆, 𝑁𝑏 and 𝑁𝑡 asymptotically vanish. The ramifications of these dimensionless groups upon 

the velocity field, thermal distribution, and nanoparticle concentration profiles are meticulously delineated and exhibited in graphical form. 

Water-based nanofluids—engineered suspensions of nano-sized particulates such as 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2CuO, etc., or carbonaceous allotropes 

within a water matrix, are renowned for their amplified thermal transport capabilities. A further augmentation arises when such nanofluids 

are amalgamated with elastico-viscous bases, culminating in elastico-viscous nanofluids or hybrid nanofluids. These novel constructs ex-

hibit pronounced heat-transfer enhancement, albeit concomitant with challenges encompassing elevated effective viscosity and possible 

colloidal instabilities. 

The following are the main conclusions drawn from this research 

• The velocity characteristics of both shrinking and stretching flows are strongly influenced by the governing parameters. An increase in 

𝑘1 augments the velocity profiles, whereas a rise in 𝑚 leads to their attenuation. Interestingly, the shrinking velocity declines with the 

growth of 𝜆, yet intensifies significantly with larger 𝑚; in contrast, the stretching velocity exhibits an opposite trend under the same 

parametric variations. 

• The thermal behavior of the flow reveals contrasting trends; the shrinking temperature elevates while the stretching temperature di-

minishes with increasing 𝜆 under the influence of 𝑃𝑟. Conversely, for both shrinking and stretching cases, the temperature profiles 

intensify as 𝑁𝑡 increases in the presence of 𝑁𝑏. 

• The concentration in both shrinking and stretching flows exhibits a decline with the increase of 𝑁𝑡 in the presence of 𝑁𝑏. 

• The boundary layer dynamics reveal distinct behaviors under varying flow conditions. The momentum boundary layer consistently 

contracts in both shrinking and stretching cases, and the thermal boundary layer thickness either amplifies or attenuates with variations 

in 𝑃𝑟, while the concentration boundary layer exhibits rapid growth, it undergoes a marked reduction as 𝑁𝑏 increases in both configu-

rations. 

Future Scope 

Future investigations may extend elastico–viscous boundary layer flow over a wedge by incorporating hybrid or ternary nanofluids, variable 

thermos-physical properties, and non-Newtonian nanoparticle suspensions. The inclusion of thermal radiation, chemical reactions, Joule 

heating, and magnetic field modulation can enhance physical realism. Stability analysis, entropy generation, and validation through exper-

iments or high-fidelity numerical simulations also offer promising directions. 
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Nomenclature 

Greek Letters  

 
β  Pressure-gradient index (N/m3) 

λ  Wedge parameter (m) 

𝞄 Kinematic viscosity (m2/s) 

α  Thermal diffusivity (m2/s) 

τ  Heat capacity ratio 

ρ  Fluid density (Kg/m3) 

𝞇 Stream function (Kg/(m.s)) 

ζ  Similarity variable 

θ  Nanoparticles temperature fraction 

∅  Nanoparticles concentration fraction 

 
m Non-negative constant 

Pr  Prandtl number 

𝐿𝑒  Lewis number 

𝑁𝑏  Brownian diffusion coefficient (𝑚/𝑠) 

𝑁𝑡  Thermophoresis coefficient (𝑚/𝑠) 
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(𝑢, 𝑣)  Velocity Component (𝑚/𝑠) 

(𝑥, 𝑦)  Cartesian Coordinate (m) 

𝑢𝑤(𝑥)  Wedge surface velocity (m/s) 

𝑢𝑒(𝑥)  External free stream velocity (m/s) 

𝑇  Temperature (K) 

𝑇𝑤  Surface temperature (K) 

𝑇∞  Free-Stream temperature (K) 

𝐶  Concentration (mol/𝑚3) 

𝐶𝑤  Surface concentration (particles/𝑚2) 

𝐶∞  Free Stream Concentration (mol/𝑚3) 

𝑘0 Elastico-viscous parameter (Pa.s) 

𝑘1  Modified elastico-viscous parameter (Pa.s) 

𝐷𝐵 Brownian diffusion coefficient (𝑚2/𝑠) 

𝐷𝑇 Thermophoresis diffusion coefficient (𝑚2/𝑠) 

𝑐  Volumetric heat capacity (J.𝐾−1𝑚−3) 

𝜌𝑝 Intrinsic density (𝑚−3) 

𝑎  Non-negative constant 

𝑐  Non-negative constant 

A Pressure-gradient–related parameter (N/𝑚3) 

𝜙𝑤  Concentration at the surface (Kg/m3) 

ϕ∞  Concentration at the far-field (Kg/m3) 
(ρc)p  volumetric heat capacity at constant pressure (J/m3K) 

(ρc)f  volumetric heat capacity of the base fluid (J/m3K) 

 


