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Abstract 
 

Quartic autocatalytic form of chemical reaction has valuable interference in catalysis, manufacturing of ceramics, and production of poly-

mers. Motivated by this, the present work examined the quartic autocalytic chemical reaction of an hybrid nanofluid in the presence of 

thermal stratification, radiation, porosity. Similarity transformation method was employed to convert the governing equations into ordinary 

differential equations. The existence and uniqueness of a solution was examined, and numerical solution thereafter obtained. Results ob-

tained were shown in figures. 
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1. Introduction 

The superior performance and better thermophysical properties demonstrated by nanofluids have make them the preferred choice of devel-

opers, researchers and manufacturers in cooling system, solar reactor, air conditioning, freezing system, solar reactor and so on. By 

nanofluid, this denotes a conventional fluid infused with a nanosized particle. The first popular work on nanofluid can be attributed to Choi 

[1] when he examined enhancing thermal conductivity with nanoparticles. Later, using the Buongiorno’s model, Xu et al. [2] stretched the 

work on nanofluid further by considering the homogeneous – heterogeneous reactions of a nanofluid flow within a region of stagnation 

point. Several other works on nanofluid in diverse geometry and forms have been conducted but they cannot all be mentioned. However, 

a few of such are listed here [2 – 7]. The nanofluids family recently witnessed the arrival of a new variant known as hybrid nanofluid. A 

notable subclass of this variant is the ternary hybrid nanofluid which has three distinct nanoparticles injected in a base fluid. The ternary 

hybrid nanofluid under the influence of chemical reaction and Arrhenius energy over a wedge was deliberated on by Sajid et al. [8]. The 

authors obtained a numerical solution by employing the Lobatto IIIA scheme. Algehyne et al [9], the authors conducted a numerical 

simulation on ternary the ternary hybrid nanofluid using variable diffusion and non-Fourier concept. Guedri et al [10] investigated a radi-

ative ternary hybrid nanofluid on a nonlinear sheet subject to Darchy-Forchheimer phenomenon. The impact of maragoni convection and 

radiation on the flow of ternary nanofluid in a porous medium in the presence of mass transpiration was discussed by Maranna et al [11]. 

They used silver, SWCNT and graphene nanoparticles and thereafter obtained an analytical solution based on Laplace transform.  

Many systems rely on chemical reactions (both homogeneous and heterogeneous) for their operations. Some of such systems include 

cooling towers, biological systems, catalysis, fog dispersion, manufacturing of ceramics, production of polymers and hydrometallurgical. 

By homogeneous reaction, this refers to a form of chemical reaction in which all constituents are in same state while the heterogeneous on 

the other involves substances of different state. Example of such is a reaction between a gas and a liquid. In order to successfully design 

systems that rely on this form of chemical reaction for their operation, it is necessary to have a good knowledge of how this chemical 

reaction works and this knowledge can only be obtained by experiment or theoretical simulation. One of the earliest notable work in this 

direction got to limelight in 1995, when Chaudhary and Merkin investigated the homogeneous heterogeneous reaction in boundary layer 

flow [12]. In [13], the investigation on homogeneous – heterogeneous reactions was extended to a nanofluid flowing on a porous sheet. 

The numerical solution to the problem was obtained and an analytical solution was also gotten for the momentum equation. In 2017, the 

effects of nonlinear thermal radiation and quartic autocatalytic chemical reaction on the flow of a three dimensional Eyring-Powell alumina 

water nanofluid was studied [14]. The stagnation flow of a SWCNT nanofluid towards a plane surface with heterogeneous-homogeneous 

reactions was examined by Sohail Ahmed [15]. Recently, the impact of homogeneous and heterogeneous reactions on the flow of hybrid 

nanofluid was examined on three different surfaces (cone, plate and wedge) by Haq et al [16]. 

Thermal radiation is a very important process which is applicable in nuclear reactor, cooling systems, gas turbines, missiles, satellites, 

space vehicles, food processing and preservation, medical treatment of diseases and so on. These and many other applications caught the 

attention of researchers and developers which motivated the research on radiation. Cess [17] discussed the effects of radiation on the 

boundary layer flow of an absorbing gas. Radiation in a reacting boundary layer was studied by Goldmann and Heyt [18]. Smith et al. [19] 
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using numerical approach analyzed the evolution of boundary layer during a radiation fog event. Azeem Shehzard et al. [20] discussed the 

effect of radiation on the boundary layer flow of absorbing gas. The thermal radiation with viscous dissipation for a Williamson fluid flow 

due to a nonlinearly stretching sheet was analyzed by Megahed [21]. Dogonchi et al [22] examined the effects of thermal radiation in 

company of homogeneous heterogeneous reactions on an MHD Cu – water nanofluid over an expanding flat sheet.  

Motivated by the applications of this form of chemical reaction and hybrid nanofluids together with the fact that based on available literature 

no one have fully considered the quartic autocatalytic reaction of a thermally radiative ternary hybrid nanofluid in a stratified porous 

medium. Hence, the need to undertake the study. 

2. Mathematical formulation 

The present work assumed the steady, laminar flow of a ternary hybrid nanofluid with water base fluid through a stretching sheet. The 

ternary hybrid nanofluid is made up of Ag, Al2O3, SiO2 nanopaticles. It is further presumed that the base fluid together with the nanoparti-

cles are thermally balanced and the flow is irrotational and inviscid. Taking solace in the homogeneous-heterogeneous reaction model 

recommended in [12], [23], [24], the isothermal quartic autocatalytic reaction when chemical reactant B is of high concentration at the 

surface is given as  

 

A + 3B → 4B, rate of chemical reaction = k1al
3                                                                                                                                        (1) 

 

and on porous surface, in the presence of catalyst, it is assumed that there exist a single isothermal reaction of first order in the form  

 

A → B, rate of chemical reaction = ksa,                                                                                                                                                     (2) 

 

where ′a′ and ′b′ are the concentrations of chemical reactants A and B. The symbols k1 and ks stand for the reaction rate coefficients.  

 
Table 1: Thermophysical Properties of Some Nanofluids [10], [11], [25], [27] 

Material Density (kg/m3) 
Specific Heat Capacity Cp(J/

KgK) 
Electrical Conductivity σ ×
10−5(S/m) 

Thermal Conductivity K(W/
mk) 

Aluminium Oxide 

(Al2O3) 
3970 765 0.85 40 

Blood 1050 3617 0.18 0.52 

Copper (Cu) 8933 385 1.67 401 

Gold (Au) 19300 129 4.1 318 

Silver (Ag) 10500 235 18.9 429 

Water(H2O) 997.1 4179 0.05 0.613 

 

The flow is assumed to take place in the presence of radiation, hence, the radiative heat flux 𝑞𝑟 is incorporated into the energy equation. In 

the light of the above assumptions, together with the description in [8], [10], [24], [25], [27], the governing equations takes the form:  

 
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
= 0                                                                                                                                                                                                    (2) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌𝑡ℎ𝑛𝑓

𝜕

𝜕𝑦
(𝜇𝑡ℎ𝑛𝑓(𝑇)

𝜕𝑢

𝜕𝑦
) −

𝜇𝑡ℎ𝑛𝑓𝑢

𝜌𝑡ℎ𝑛𝑓𝐾𝑝
                                                                                                                                             (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝜕

𝜕𝑦
[𝑘𝑡ℎ𝑛𝑓(𝑇)

𝜕𝑇

𝜕𝑦
] + 𝜏 [𝐷𝐴

𝜕𝑎

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ (

𝜕𝑇

𝜕𝑦
)
2
(
𝐷𝑇

𝑇∞
)] −

1

(𝜌𝐶𝑝)𝑡ℎ𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
                                                                                   (4) 

 

𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
= 𝐷𝐴

𝜕2𝑎

𝜕𝑦2
−

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
− 𝑘1𝑎𝑏

3                                                                                                                                                        (5) 

 

𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
= 𝐷𝐵

𝜕2𝑏

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
+ 𝑘1𝑎𝑏

3                                                                                                                                                        (6) 

 

Subject to the following boundary conditions  

 

𝑢 =  𝑈0𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇0 + 𝑑1𝑥, 𝐷𝐴
𝜕𝑎

𝜕𝑦
= 𝑘𝑠𝑎, 𝐷𝐵

𝜕𝑏

𝜕𝑦
= −𝑘𝑠𝑎 𝑎𝑡 𝑦 =  0   

 

𝑢 → 0 , 𝑇 →  𝑇∞ = 𝑇0 + 𝑑2𝑥, 𝑎 →  𝑎0, 𝑏 → 0 𝑎𝑠 𝑦 → ∞                                                                                                                          (7) 

 

where 𝑢, 𝑣 are velocity components in 𝑥 and 𝑦 directions, 𝐾𝑝is permeability of porous plate, 𝑘𝑡ℎ𝑛𝑓 ternary hybrid nanofluid thermal con-

ductivity, T is the fluid temperature,𝑇𝑤 represents the surface temperature, 𝑇∞ represents the ambient temperature, specific capacity at 

constant pressure, 𝜌 fluid density, 𝐷𝑇 stands for thermophoretic diffusion coefficient, 𝐷𝐵 stands for Brownian diffusion coefficient, 𝜏 =
(𝜌𝐶𝑝)𝑡ℎ𝑛𝑓

(𝜌𝐶𝑝)𝑓
 represents the ratio of heat capacity of ternary nanofluid to heat capacity of base fluid. 

The present study will invoke the variable viscosity and thermal conductivity models of the form specified [23], [26] below 

 

𝜇(𝑇) = 𝜇[𝑎1 + 𝑏(𝑇𝑤 − 𝑇)], 𝑘(𝑇) = 𝐾[𝑏1 + 𝛾(𝑇 − 𝑇∞)]                                                                                                                             (8) 

 

where 𝑎1, 𝑏1 and 𝛾 are constant. 
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Table 2: Model for Ternary Hybrid Nanofluid [9], [10], [27] 

𝜇𝑡ℎ𝑛𝑓 
𝜇𝑓

(1 − 𝜔1)
2.5(1 − 𝜔2)

2.5(1 − 𝜔3)
2.5

 

(𝜌𝐶𝑝)𝑡ℎ𝑛𝑓 (1 − 𝜔1) × {(1 − 𝜔2) [
(1 − 𝜔3)(𝜌𝐶𝑝)𝑓

+𝜔3(𝜌𝐶𝑝)𝑠3

] + 𝜔2(𝜌𝐶𝑝)𝑠2
} + 𝜔1(𝜌𝐶𝑝)𝑠1

 

𝑘𝑡ℎ𝑛𝑓

𝑘ℎ𝑛𝑓
 

𝑘1 + 2𝑘𝑛𝑓 − 2𝜔1(𝑘𝑛𝑓 − 𝑘1)

𝑘1 + 2𝑘𝑛𝑓 + 2𝜔1(𝑘𝑛𝑓 − 𝑘1)
 

𝑘ℎ𝑛𝑓

𝑘𝑛𝑓
 

𝑘2 + 2𝑘𝑛𝑓 − 2𝜔2(𝑘𝑛𝑓 − 𝑘2)

𝑘2 + 2𝑘𝑛𝑓 + 2𝜔2(𝑘𝑛𝑓 − 𝑘2)
 

𝑘𝑛𝑓

𝑘𝑓
 

𝑘3 + 2𝑘𝑛𝑓 − 2𝜔3(𝑘𝑛𝑓 − 𝑘3)

𝑘3 + 2𝑘𝑛𝑓 + 2𝜔3(𝑘𝑛𝑓 − 𝑘3)
 

3. Method of solution 

The special form of similarity variable 𝜂, stream function 𝜓 and variables (𝜃, 𝑎, 𝑏, 𝑢, 𝑣) represented as [24], [26]: 

 

𝜂 = 𝑦√
𝑈0

𝜗
, 𝜓 = √𝜗𝑈0𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇0
, 𝑎 = 𝑎0𝑔(𝜂), 𝑏 = 𝑎0ℎ(𝜂),                                                                                                       (9) 

 

Are considered to obtain the similarity solutions to the problem at hand. Based on the terms in equation (9) and table 2, the continuity 

equation is satisfied. The remaining equations from the governing equations are reduced to the following nonlinear ordinary differential 

equations: 

 
𝐴1[1+𝜉[1−𝑠𝑡−𝜃]]

𝐴2

𝑑3𝑓

𝑑𝜂3
=

𝑑𝑓

𝑑𝜂

𝑑𝑓

𝑑𝜂
− 𝑓(𝜂)

𝑑2𝑓

𝑑𝜂2
+
𝜉𝐴1

𝐴2

𝑑2𝑓

𝑑𝜂2
𝑑𝜃

𝑑𝜂
+
𝐴1𝑃𝑜𝑟

𝐴2

𝑑𝑓

𝑑𝜂
,                                                                                                                   (10) 

 
{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}

3𝐴3𝑃𝑟

𝑑2𝜃

𝑑𝜂2
= −𝑓(𝜂)

𝑑𝜃

𝑑𝜂
− 𝐴3 (𝑁𝑏

𝑑𝜃

𝑑𝜂

𝑑𝑔

𝑑𝜂
+ 𝑁𝑡

𝑑𝜃

𝑑𝜂

𝑑𝜃

𝑑𝜂
) + [𝑆𝑡 + 𝜃]

𝑑𝑓

𝑑𝜂
−
𝐴4

𝐴3

𝜖

𝑃𝑟

𝑑𝜃

𝑑𝜂

𝑑𝜃

𝑑𝜂
,                                                                                                (11) 

 
𝑑2𝑔

𝑑𝜂2
=

𝑁𝑡

𝑁𝑏
 
𝑑2𝜃

𝜕𝜂2
+ 𝑆𝑐𝐴𝐾𝑟𝑔(𝜂)ℎ

3(𝜂) − 𝑆𝑐𝐴𝑓(𝜂)
𝑑𝑔

𝑑𝜂
  

 
𝑑2ℎ

𝑑𝜂2
= −𝑆𝑐𝐵𝑓(𝜂)

𝑑ℎ

𝑑𝜂
−

𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝐶𝐴

𝑑2𝜃

𝑑𝜂2
−
𝑆𝑐𝐵𝐾𝑟𝑔(𝜂)ℎ

3(𝜂)

𝑃
                                                                                                                                      (12) 

 

Subject to  

 
𝑑𝑓(0)

𝑑𝜂
= 1, 𝑓(0) = 0, 𝜃(0) = 1 − 𝑆𝑡,

𝑑𝑔(0)

𝑑𝜂
= ℵ𝑔(0),

𝑑ℎ(0)

𝑑𝜂
= −

ℵ𝑔(0)

𝑃
,   

 
𝑑𝑓(∞)

𝑑𝜂
→ 0, 𝜃(∞) → 0, 𝑔(∞) →  1, ℎ(∞)  → 0                                                                                                                                            (13) 

 

where thermal viscosity parameter 𝜉 = 𝑏𝑑1𝑥, thermal stratification parameter 𝑠𝑡 =
𝑑2

𝑑1
, porous medium parameter 𝑃𝑜𝑟 =

𝜗

𝐾1𝑈0
 , thermal con-

ductivity parameter 𝜖 = 𝑏2(𝑇𝑤 − 𝑇∞), Radiation parameter 𝑅𝑎 =
4𝜎∗𝑇∞

3

𝑘𝑓𝑘1
, Prandtl number 𝑃𝑟 =

(𝜌𝐶𝑝)𝑓
𝜗

𝑘𝑓
, Brownian motion parameter 𝑁𝑏 =

𝐷𝐴𝑎0

𝜗
, Thermophoretic parameter 𝑁𝑡 =

𝐷𝑇

𝜗𝑇∞
𝑑1𝑥, Schmidt number for reactant A, 𝑆𝑐𝐴 =

𝜗

𝐷𝐴
, Schmidt number for reactant B, 𝑆𝑐𝐵 =

𝜗

𝐷𝐵
 , ho-

mogeneous reaction strength 𝐾𝑟 =
𝑘1𝑏0

3

𝑈0
 , 𝑃 =

𝑏0

𝑎0
, 𝑎 = 1, ℵ =

𝑘𝑠

𝐷𝐴
√
𝜗

𝑈0
 is the heterogeneous reaction strength,  

𝐴1 =
1

(1 − 𝜔1)
2.5(1 − 𝜔2)

2.5(1 − 𝜔3)
2.5  , 𝐴2 =

[
 
 
 
 (1 − 𝜔1) {(1 − 𝜔2) [(1 − 𝜔3) +

𝜌3𝜔3
𝜌𝑓

] +
𝜌2𝜔2
𝜌𝑓

}

+
𝜌1𝜔1
𝜌𝑓 ]

 
 
 
 

, 

𝐴3 = (1 − 𝜔1)

{
 
 

 
 (1 − 𝜔2) [(1 − 𝜔3) +

𝜔3(𝜌𝐶𝑝)𝑠3

(𝜌𝐶𝑝)𝑓
]

+
𝜔2(𝜌𝐶𝑝)𝑠2

(𝜌𝐶𝑝)𝑓 }
 
 

 
 

+
𝜔1(𝜌𝐶𝑝)𝑠1

(𝜌𝐶𝑝)𝑓
 , 𝐴4 =

𝑘𝑡ℎ𝑛𝑓

𝑘𝑓
=

𝑘1+2𝑘𝑛𝑓−2𝜔1(𝑘𝑛𝑓−𝑘1)

𝑘1+2𝑘𝑛𝑓+𝜔1(𝑘𝑛𝑓−𝑘1)
×
𝑘2+2𝑘𝑛𝑓−2𝜔2(𝑘𝑛𝑓−𝑘2)

𝑘2+2𝑘𝑛𝑓+𝜔2(𝑘𝑛𝑓−𝑘2)
  

 

×
𝑘3+2𝑘𝑓−2𝜔3(𝑘𝑛𝑓−𝑘3)

𝑘3+2𝑘𝑓+𝜔3(𝑘𝑛𝑓−𝑘3)
.  

3.1. Existence and uniqueness of solution 

Here, the coupled boundary value problem (10) – (12) subject to the boundary conditions (13) is to be examined for whether it has a 

solution and if it has, is the solution unique or not? 

The Existence and Uniqueness Theorem: Let 𝑓, 𝜃 and 𝜙 be continuous functions of 𝜂 at all points in some neighbourhood, and 𝜉 > 0, 𝑠𝑡 >
0,  𝑃𝑜𝑟 > 0,  𝜖 > 0, 𝑅𝑎 > 0,𝑃𝑟 > 0,𝑁𝑏 > 0,  𝑁𝑡 > 0 , 𝑆𝑐𝐴 > 0,  𝑆𝑐𝐵 > 0  , 𝐾𝑟 > 0, 𝑃 > 0,  𝑎 = 1, ℵ > 0,  𝜔2 > 0,𝜔1 > 0,𝜔3 > 0, 𝜌1 >
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0, 𝜌2 > 0, 𝜌3 > 0, (𝜌𝐶𝑝)𝑠2

> 0, (𝜌𝐶𝑝)𝑠1
> 0, (𝜌𝐶𝑝)𝑠3

> 0,then there exists a unique solution for the coupled nonlinear boundary value 

problem (10) – (13) on some interval ‖𝜂 − 𝜂0‖ ≤ 𝑎, ‖𝜂0 − 𝜂‖  ≤ 𝑏 provided there exist 𝑘 such that 𝑘 = 𝑚𝑎𝑥(0,1, 𝑃1, 𝑃2, … 𝑃12) and 0 <
𝑘 < ∞ 

Proof 

Imposing the identities similar to those of superimposition (shown in equation 24) on equations (10) – (12) and boundary conditions (13), 

then in compact form we have  

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑑𝑥1

𝑑𝜂

𝑑𝑥2

𝑑𝜂

𝑑𝑥3

𝑑𝜂

𝑑𝑥4

𝑑𝜂

𝑑𝑥5

𝑑𝜂

𝑑𝑥6

𝑑𝜂

𝑑𝑥7

𝑑𝜂

𝑑𝑥8

𝑑𝜂

𝑑𝑥9

𝑑𝜂)

 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 

𝑥2
𝑥3

𝐴2{𝑥2𝑥2−𝑥1𝑥3+
𝐴1𝜉𝑥3𝑥5

𝐴2
+
𝐴1𝑃𝑜𝑟𝑥2

𝐴2
}

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]

𝑥5

3𝐴3𝑃𝑟{−𝑥1𝑥5−𝐴3(𝑁𝑏𝑥5𝑥7+𝑁𝑡𝑥5𝑥5)+[𝑆𝑡+𝑥4]𝑥2−
𝐴4

𝜖
𝑃𝑟
𝑥5𝑥5

𝐴3
}

3𝐴4[1+𝜖𝑥4]+4𝑅𝑎
 

𝑥7
𝑁𝑡

𝑁𝑏

𝑑𝑥5

𝑑𝜂
+ 𝑆𝑐𝐴𝐾1𝑥6𝑥8

3 − 𝑆𝑐𝐴𝑥1𝑥7
𝑥9

−𝑆𝑐𝐵𝑥1𝑥9 −
𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝑐𝐴

𝑑𝑥5

𝑑𝜂
−
𝑆𝑐𝐵𝐾𝑟𝑥6𝑥8

3

𝑃 )

 
 
 
 
 
 
 
 
 
 
 

                                                                                                                            (14)  

 

Satisfying the boundary condition 

 

(

 
 
 
 
 

𝑥1(0)
𝑥2(0)
𝑥3(0)

𝑥4(0)
𝑥5(0)

𝑥7(0)
𝑥8(0))

 
 
 
 
 

=

(

 
 
 
 
 

0
1
𝛼

1 − 𝑠𝑡
𝛽
ℵ𝑥6 

−
ℵ𝑥6

𝑃 )

 
 
 
 
 

                                                                                                                                                                               (15) 

 

We shall consider 
𝜕𝑓1

𝜕𝑥𝑗 
 (such that 𝑖, 𝑗 = 1,2,… 7) to represent the nonlinear functions on the right hand side of equation (14). When 𝑖 = 1 

and 𝑗 =counts, we have  

 

𝑓1 = 𝑥2 then 

 

|
𝑑𝑓1

𝑑𝑥1
| = |

𝑑𝑓1

𝑑𝑥3
| = |

𝑑𝑓1

𝑑𝑥4
| = |

𝑑𝑓1

𝑑𝑥5
| = |

𝑑𝑓1

𝑑𝑥6
| = |

𝑑𝑓1

𝑑𝑥7
| = 0 < ∞, |

𝑑𝑓1

𝑑𝑥2
| = 1 < ∞                                                                                                    (16) 

 

When 𝑖 = 2 and 𝑗 =counts, we have 

 

𝑓2 = 𝑥3 

 

|
𝑑𝑓2

𝑑𝑥1
| = |

𝑑𝑓2

𝑑𝑥2
| = |

𝑑𝑓2

𝑑𝑥4
| = |

𝑑𝑓2

𝑑𝑥5
| = |

𝑑𝑓2

𝑑𝑥6
| = |

𝑑𝑓2

𝑑𝑥7
| = 0 < ∞, |

𝑑𝑓2

𝑑𝑥3
| = 1 < ∞.                                                                                                   (17) 

 

When 𝑖 = 3 and 𝑗 = counts, we have 

 

𝑓3 =
𝐴2{𝑥2𝑥2−𝑥1𝑥3+

𝐴1𝜉𝑥3𝑥5
𝐴2

+
𝐴1𝑃𝑜𝑟𝑥2

𝐴2
}

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
  then  

 

Following the properties of absolute values of real numbers according to Wrede and Spiegel [29] which states that |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, 
thus 

 

|
𝑑𝑓3

𝑑𝑥1
| = |

|−𝐴2|{𝑥3}

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
| ≤

|−𝐴2||𝑥3|

|𝐴1|[1+𝜉|1−𝑠𝑡−𝑥4|]
= 𝑃1 < ∞,  

 

|
𝑑𝑓3

𝑑𝑥2
| ≤ |

𝐴2{2𝑥2+
𝐴1𝑃𝑜𝑟
𝐴2

}

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
| ≤

𝐴2|2𝐴2||𝑥2|+|𝐴1𝑃𝑜𝑟|

|𝐴1|[1+𝜉|1−𝑠𝑡−𝑥4|]
= 𝑃2 < ∞,  

 

|
𝑑𝑓3

𝑑𝑥3
| ≤ |

{−𝐴2𝑥1+
𝐴1𝐴2𝜉𝑥5

𝐴2
}

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
| ≤

|−𝐴2||𝑥1|+𝐴1|𝜉𝑥5|

|𝐴1|[1+𝜉|1−𝑠𝑡−𝑥4|]
= 𝑃3 < ∞,  

|
𝑑𝑓3

𝑑𝑥4
| = |

𝐴2{𝑥2𝑥2−𝑥1𝑥3+
𝐴1𝜉𝑥3𝑥5

𝐴2
+
𝐴1𝑃𝑜𝑟𝑥2

𝐴2
}

{𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]}
2 |,  

 



International Journal of Advanced Mathematical Sciences 5 

 

|
𝑑𝑓3

𝑑𝑥4
| ≤

|𝐴2||𝑥2||𝑥2|

|{𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]}
2
|
+

|−𝐴2||𝑥1||𝑥3|

|{𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]}
2
|
+

𝐴1𝐴2𝜉|𝑥3||𝑥5|

|{𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]}
2
|
+

|𝐴1𝑃𝑜𝑟||𝑥2|

|{𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]}
2
|
= 𝑃4 < ∞,  

 

|
𝑑𝑓3

𝑑𝑥5
| = |

𝐴1𝜉𝑥3

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
| ≤

|𝐴1𝜉||𝑥3|

|𝐴1|[1+𝜉|1−𝑠𝑡−𝑥4|]
= 𝑃5 < ∞,  

 

|
𝑑𝑓3

𝑑𝑥6
| = |

𝑑𝑓3

𝑑𝑥7
| = |

𝑑𝑓3

𝑑𝑥8
| = |

𝑑𝑓3

𝑑𝑥9`
| = 0 < ∞                                                                                                                                                       (18) 

 

When 𝑖 = 4 and 𝑗 = counts, we have 

 

𝑓4 = 𝑥5 

 

|
𝑑𝑓4

𝑑𝑥1
| = |

𝑑𝑓4

𝑑𝑥2
| = |

𝑑𝑓4

𝑑𝑥3
| = |

𝑑𝑓4

𝑑𝑥4
| = |

𝑑𝑓4

𝑑𝑥6
| = |

𝑑𝑓4

𝑑𝑥7
| = |

𝑑𝑓4

𝑑𝑥8
| = |

𝑑𝑓4

𝑑𝑥9
| = 0 < ∞, |

𝑑𝑓4

𝑑𝑥5
| = 1 < ∞                                                                           (19) 

 

When 𝑖 = 5 and 𝑗 = counts, we have 

 

𝑓5 = {−
3𝐴3𝑃𝑟𝑥1𝑥5

{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
−
3𝐴3𝑃𝑟𝐴3(𝑁𝑏𝑥5𝑥7 + 𝑁𝑡𝑥5𝑥5)

{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
+

3𝐴3𝑃𝑟[𝑆𝑡 + 𝑥4]𝑥2
{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

−
3𝐴4𝜖𝑥5𝑥5

{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
} , then  

 

|
𝑑𝑓5

𝑑𝑥1
| = |−

3𝐴3𝑃𝑟𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

|−3|𝐴3𝑃𝑟|𝑥5|

3𝑅𝑎(1+𝜖|𝑥4|)+4𝑅𝑎
= 𝑃6 < ∞,  

 

|
𝑑𝑓5

𝑑𝑥2
| = |

3𝐴3𝑃𝑟[𝑆𝑡+𝑥4]

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

3𝐴3𝑃𝑟[𝑆𝑡+|𝑥4|]

{3𝐴4[1+𝜖|𝑥4|]+4𝑅𝑎}
= 𝑃7 < ∞,  

 

|
𝑑𝑓5

𝑑𝑥3
| = |

𝑑𝑓5

𝑑𝑥6
| = |

𝑑𝑓5

𝑑𝑥8
| = |

𝑑𝑓5

𝑑𝑥9
| = 0,  

 

|
𝑑𝑓5

𝑑𝑥4
| = |

9𝐴3𝐴4𝜖𝑃𝑟𝑥1𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
2 +

9𝐴3𝑃𝑟𝐴3𝐴4𝜖(𝑁𝑏𝑥5𝑥7+𝑁𝑡𝑥5𝑥5)

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
2

+
{9𝐴4𝐴3𝑃𝑟𝑥2(1−𝜖𝑆𝑡)+4𝑅𝑎𝑥2}

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
2 +

9𝐴4𝐴4𝜖
2𝑥5𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
2

|  

 

|
𝑑𝑓5

𝑑𝑥4
| ≤

9𝐴3𝐴4𝑃𝑟𝜖|𝑥1||𝑥5|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

|9|𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑏|𝑥5||𝑥7|+9𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑡|𝑥5||𝑥5|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

9𝐴4𝐴3𝑃𝑟|𝑥2|(1−𝜖𝑆𝑡)+4𝑅𝑎|𝑥2|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

9𝐴4𝐴4𝜖
2|𝑥5||𝑥5|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 = 𝑃8 < ∞,  

 

|
𝑑𝑓5

𝑑𝑥5
| = |−

3𝐴3𝑃𝑟𝑥1

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−
3𝐴3𝑃𝑟𝐴3(𝑁𝑏𝑥7+2𝑁𝑡𝑥5)

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−

6𝐴4𝜖𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
 |,  

 

|
𝑑𝑓5

𝑑𝑥5
| ≤

|−3|𝐴3𝑃𝑟|𝑥1|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+
|−3|𝐴3𝐴3𝑃𝑟(𝑁𝑏|𝑥7|+2𝑁𝑡|𝑥5|)

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+

|−6|𝐴4𝜖|𝑥5|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
  

 

= 𝑃9 < ∞, |
𝑑𝑓5

𝑑𝑥7
| = |−

3𝐴3𝑃𝑟𝐴3𝑁𝑏𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

|−3|𝐴3𝐴3𝑃𝑟𝑁𝑏|𝑥5|

(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
= 𝑃10 < ∞                                                                                                   (20) 

 

When 𝑖 = 6 and 𝑗 = counts, we have 

 

𝑓6 = 𝑥7, 
 

|
𝑑𝑓6

𝑑𝑥1
| = |

𝑑𝑓6

𝑑𝑥2
| = |

𝑑𝑓6

𝑑𝑥3
| = |

𝑑𝑓6

𝑑𝑥4
| = |

𝑑𝑓6

𝑑𝑥5
| = |

𝑑𝑓6

𝑑𝑥6
| = |

𝑑𝑓6

𝑑𝑥8
| = |

𝑑𝑓6

𝑑𝑥9
| = 0, |

𝑑𝑓6

𝑑𝑥7
| = 1 < ∞                                                                                   (21) 

 

When 𝑖 = 7 and 𝑗 = counts, we have 

 

𝑓7 = −
𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟𝑥1𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟𝐴3(𝑁𝑏𝑥5𝑥7+𝑁𝑡𝑥5𝑥5)

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
+

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟[𝑆𝑡+𝑥4]𝑥2

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
 −

𝑁𝑡

𝑁𝑏

3𝐴4𝜖𝑥5𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
 + 𝑆𝑐𝐴𝐾1𝑥6𝑥8

3 − 𝑆𝑐𝐴𝑥1𝑥7 ,   then  

 

|
𝑑𝑓7

𝑑𝑥1
| = |−

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
− 𝑆𝑐𝐴𝑥7| ≤ |−

𝑁𝑡

𝑁𝑏
| 3𝐴3𝑃𝑟|𝑥5| + |−𝑆𝑐𝐴||𝑥7| = 𝑃11 < ∞,  

|
𝑑𝑓7

𝑑𝑥2
| = |

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟[𝑆𝑡+𝑥4]

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟[𝑆𝑡+|𝑥4|]

{3𝐴4[1+𝜖|𝑥4|]+4𝑅𝑎}
= 𝑃12 < ∞, |

𝑑𝑓7

𝑑𝑥3
| = |

𝑑𝑓7

𝑑𝑥9
| = 0,  

 

 

|
𝑑𝑓7
𝑑𝑥4

| = ||

9𝐴3𝐴4𝜖𝑁𝑡𝑃𝑟𝑥1𝑥5
𝑁𝑏{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

2 +
9𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑡(𝑁𝑏𝑥5𝑥7 +𝑁𝑡𝑥5𝑥5)

𝑁𝑏{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
2 +

𝑁𝑡{9𝐴4𝐴3𝑃𝑟𝑥2(1 − 𝜖𝑆𝑡) + 4𝑅𝑎𝑥2}

𝑁𝑏{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
2

+
9𝐴4𝐴4𝜖

2𝑁𝑡𝑥5𝑥5
𝑁𝑏{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

2

|| 

|
𝑑𝑓7
𝑑𝑥4

| ≤
9𝐴3𝐴4𝑁𝑡𝑃𝑟𝜖|𝑥1||𝑥5|

𝑁𝑏(3𝐴4(1 + |𝑥4|𝜖) + 4𝑅𝑎)
2 +

|9|𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑏𝑁𝑡|𝑥5||𝑥7| + 9𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑡𝑁𝑡|𝑥5||𝑥5|

𝑁𝑏(3𝐴4(1 + |𝑥4|𝜖) + 4𝑅𝑎)
2  

 

+
9𝐴4𝐴3𝑁𝑡𝑃𝑟|𝑥2|(1−𝜖𝑆𝑡)+4𝑁𝑡𝑅𝑎|𝑥2|

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

9𝐴4𝐴4𝜖
2𝑁𝑡|𝑥5||𝑥5|

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 = 𝑃13 < ∞,  
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|
𝑑𝑓7

𝑑𝑥5
| = |−

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟𝑥1

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−

𝑁𝑡

𝑁𝑏

3𝐴3𝑃𝑟𝐴3(𝑁𝑏𝑥7+2𝑁𝑡𝑥5)

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−

6𝐴4𝜖𝑥5𝑁𝑡

𝑁𝑏{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
|,  

 

|
𝑑𝑓7

𝑑𝑥5
| ≤

𝐴3𝑁𝑡𝑃𝑟|−3||𝑥1|

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+
|−3|𝐴3𝐴3𝑁𝑡𝑃𝑟(𝑁𝑏|𝑥7|+2𝑁𝑡|𝑥5|)

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+

6𝐴4𝑁𝑡𝜖|𝑥5|

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
= 𝑃14 < ∞,  

 

|
𝑑𝑓7

𝑑𝑥6
| = |𝑆𝑐𝐴𝐾1𝑥8

3| ≤ 𝑆𝑐𝐴𝐾1𝑥8
2|𝑥8| = 𝑃15 < ∞, |

𝑑𝑓7

𝑑𝑥7
| = |−

3𝐴3𝑃𝑟𝐴3𝑁𝑏𝑁𝑡𝑥5

𝑁𝑏{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
− 𝑆𝑐𝐴𝑥1| ≤ |−𝑆𝑐𝐴||𝑥1| +

|−3|𝐴3𝐴3𝑃𝑟𝑁𝑏𝑁𝑡|𝑥5|

𝑁𝑏(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
= 𝑃16 < ∞ ,  

 

|
𝑑𝑓7

𝑑𝑥8
| = |3𝑆𝑐𝐴𝐾1𝑥6𝑥8

2| ≤ 3𝑆𝑐𝐴𝐾1|𝑥6|𝑥8
2 = 𝑃17 < ∞ ,  

 

When 𝑖 = 8 and 𝑗 = counts, we have 

 

𝑓8 = 𝑥9 

 

|
𝑑𝑓8

𝑑𝑥1
| = |

𝑑𝑓8

𝑑𝑥2
| = |

𝑑𝑓8

𝑑𝑥3
| = |

𝑑𝑓8

𝑑𝑥4
| = |

𝑑𝑓8

𝑑𝑥5
| = |

𝑑𝑓8

𝑑𝑥6
| = |

𝑑𝑓8

𝑑𝑥7
| = |

𝑑𝑓8

𝑑𝑥8
| = 0, |

𝑑𝑓8

𝑑𝑥9
| = 1 < ∞.                                                                                        (22)  

 

When 𝑖 = 9 and 𝑗 = counts, we have 

 

𝑓9 = −𝑆𝑐𝐵𝑥1𝑥9 +
𝑁𝑡𝑆𝑐𝐵
𝑃𝑁𝑏𝑆𝑐𝐴

3𝐴3𝑃𝑟𝑥1𝑥5
{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

+
𝑁𝑡𝑆𝑐𝐵
𝑃𝑁𝑏𝑆𝑐𝐴

3𝐴3𝑃𝑟𝐴3(𝑁𝑏𝑥5𝑥7 +𝑁𝑡𝑥5𝑥5)

{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
 

 

−
𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝑐𝐴

3𝐴3𝑃𝑟[𝑆𝑡+𝑥4]𝑥2

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
+

𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝑐𝐴

3𝐴4𝜖𝑥5𝑥5

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
−
𝑆𝑐𝐵𝐾1𝑥6𝑥8

3

𝑃
,   then   

 

|
𝑑𝑓9

𝑑𝑥1
| = |−𝑆𝑐𝐵𝑥9 +

3𝐴3𝑁𝑡𝑃𝑟𝑆𝑐𝐵𝑥5

𝑃𝑁𝑏𝑆𝑐𝐴 {3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤ |−𝑆𝑐𝐵||𝑥9| +

3𝐴3𝑁𝑡𝑃𝑟𝑆𝑐𝐵|𝑥5|

𝑃𝑁𝑏𝑆𝑐𝐴 {3𝐴4[1+𝜖|𝑥5|]+4𝑅𝑎}
= 𝑃18 < ∞,  

 

|
𝑑𝑓9

𝑑𝑥2
| = |−

𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝑐𝐴

3𝐴3𝑃𝑟[𝑆𝑡+𝑥4]

{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

|−3|𝐴3𝑁𝑡𝑃𝑟𝑆𝑐𝐵[𝑆𝑡+|𝑥4|]

𝑃𝑁𝑏𝑆𝑐𝐴{3𝐴4[1+𝜖|𝑥4|]+4𝑅𝑎}
= 𝑃19 < ∞, |

𝑑𝑓9

𝑑𝑥3
| = 0,  

 

|
𝑑𝑓9
𝑑𝑥4

| = ||

9𝐴3𝐴4𝜖𝑁𝑡𝑃𝑟𝑆𝑐𝐵𝑥1𝑥5
𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

2 +
9𝐴3𝑃𝑟𝐴3𝐴4𝜖𝑁𝑡𝑆𝑐𝐵(𝑁𝑏𝑥5𝑥7 + 𝑁𝑡𝑥5𝑥5)

𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
2 +

𝑁𝑡{9𝐴4𝐴3𝑃𝑟𝑆𝑐𝐵𝑥2(1 − 𝜖𝑆𝑡) + 4𝑅𝑎𝑥2}

𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
2

+
9𝐴4𝐴4𝜖

2𝑁𝑡𝑆𝑐𝐵𝑥5𝑥5
𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

2

|| 

 

|
𝑑𝑓9

𝑑𝑥4
| ≤

9𝐴3𝐴4𝜖𝑁𝑡𝑃𝑟𝑆𝑐𝐵|𝑥1||𝑥5|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

9𝐴3𝐴3𝐴4𝜖𝑁𝑏𝑁𝑡𝑃𝑟𝑆𝑐𝐵|𝑥5||𝑥7|+9𝐴3𝐴3𝐴4𝜖𝑁𝑡𝑁𝑡𝑃𝑟𝑆𝑐𝐵|𝑥5||𝑥5|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2   

 

+
9𝐴4𝐴3𝑁𝑡𝑃𝑟𝑆𝑐𝐵|𝑥2|(1−𝜖𝑆𝑡)+4𝑁𝑡𝑆𝑐𝐵𝑅𝑎|𝑥2|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 +

9𝐴4𝐴4𝜖
2𝑁𝑡𝑆𝑐𝐵|𝑥5||𝑥5|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
2 = 𝑃20 < ∞,  

 

|
𝑑𝑓9
𝑑𝑥5

| = |
3𝐴3𝑃𝑟𝑁𝑡𝑆𝑐𝐵𝑥1

𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
+
3𝐴3𝑃𝑟𝐴3𝑁𝑡𝑆𝑐𝐵(𝑁𝑏𝑥7 + 2𝑁𝑡𝑥5)

𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}
+

6𝐴4𝜖𝑥5𝑁𝑡𝑆𝑐𝐵
𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1 + 𝜖𝑥4] + 4𝑅𝑎}

| 

 

|
𝑑𝑓9

𝑑𝑥5
| ≤

3𝐴3𝑁𝑡𝑃𝑟𝑁𝑡𝑆𝑐𝐵|𝑥1|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+
3𝐴3𝐴3𝑁𝑡𝑃𝑟𝑁𝑡𝑆𝑐𝐵(𝑁𝑏|𝑥7|+2𝑁𝑡|𝑥5|)

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
+

6𝐴4𝑁𝑡𝜖𝑁𝑡𝑆𝑐𝐵|𝑥5|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
= 𝑃21 < ∞,  

 

|
𝑑𝑓9

𝑑𝑥6
| = |−

𝑆𝑐𝐵𝐾1𝑥6𝑥8
3

𝑃
| ≤ |−

𝑆𝑐𝐴

𝑃
| 𝐾1𝑥8

2|𝑥8| = 𝑃22 < ∞,  

 

|
𝑑𝑓9

𝑑𝑥7
| = |

3𝐴3𝑃𝑟𝐴3𝑁𝑏𝑁𝑡𝑆𝑐𝐵𝑥5

𝑁𝑏𝑃𝑆𝑐𝐴{3𝐴4[1+𝜖𝑥4]+4𝑅𝑎}
| ≤

3𝐴3𝑃𝑟𝐴3𝑁𝑏𝑁𝑡𝑆𝑐𝐵|𝑥5|

𝑁𝑏𝑃𝑆𝑐𝐴(3𝐴4(1+|𝑥4|𝜖)+4𝑅𝑎)
= 𝑃23 < ∞,   

 

|
𝑑𝑓9

𝑑𝑥8
| = |−

3𝑆𝑐𝐵𝐾1𝑥6𝑥8
2

𝑃
| ≤

|−3|𝑆𝑐𝐴𝐾1|𝑥6|𝑥8
2

𝑃
= 𝑃24 < ∞,  

 

|
𝑑𝑓9

𝑑𝑥9
| = |−𝑆𝑐𝐵𝑥1| ≤ |−𝑆𝑐𝐵||𝑥1| = 𝑃25 < ∞                                                                                                                                              (23) 

 

Therefore, we have shown that 
𝜕𝑓𝑖

𝜕𝑥𝑗
≤ 𝑘  such that 𝑖, 𝑗 = 1(1)7 . Clearly, |

𝜕𝑓𝑖

𝜕𝑥𝑗
|
1(1)7

 is bounded and there exists 𝑘  such that 𝑘 =

𝑚𝑎𝑥(0,1, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃8, 𝑃9, … , 𝑃25) where 0 < 𝑘 < ∞. Hence, 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) are Lipschitz continuous and there-

fore the system of coupled differential equation considered has a unique solution. 

 

3.2. Numerical solution 

The set of equations (10) – (12) with the boundary conditions (13) are first transformed into a set of first order ordinary differential equations 

using the idea of superposition introduced by Na [28]. The following identities are essential for the method of superimposition  
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𝑓 = 𝑓1, 𝑓

′ = 𝑓2, 𝑓
′′ = 𝑓3, 𝑓

′′′ = 𝑓3
′, 𝜃 = 𝑓4, 𝜃

′ = 𝑓5, 𝜃
′′  = 𝑓5

′ , 𝑔 = 𝑓6, 𝑔
′ = 𝑓7, 𝑔

′′ = 𝑓7
′, ℎ = 𝑓8, ℎ

′ = 𝑓9, ℎ
′′ = 𝑓9

′                                (24) 

 

Substituting (14) into equations (10) – (13) and simplifying yields:  

 

𝑓3
′ =

𝐴2𝑥2𝑥2−𝐴2𝑥1𝑥3+𝐴1𝜉𝑥3𝑥5+𝐴1𝑃𝑜𝑟𝑥2

𝐴1[1+𝜉[1−𝑠𝑡−𝑥4]]
                                                                                                                                                             (25) 

 

𝑓5
′ =

3𝐴3𝑃𝑟{−𝑥1𝑥5−𝐴3(𝑁𝑏𝑥5𝑥7+𝑁𝑡𝑥5𝑥5)+[𝑆𝑡+𝑥4]𝑥2−
𝐴4

𝜖
𝑃𝑟
𝑥5𝑥5

𝐴3
}

3𝐴4[1+𝜖𝑥4]+4𝑅𝑎
                                                                                                                                (26) 

 

𝑓7
′ =

𝑁𝑡

𝑁𝑏

𝑑𝑥5

𝑑𝜂
+ 𝑆𝑐𝐴𝐾1𝑥6𝑥8

3 − 𝑆𝑐𝐴𝑥1𝑥7,                                                                                                                                                         (27) 

 

𝑓9
′ = −𝑆𝑐𝐵𝑥1𝑥9 −

𝑁𝑡𝑆𝑐𝐵

𝑃𝑁𝑏𝑆𝑐𝐴

𝑑𝑥5

𝑑𝜂
−
𝑆𝑐𝐵𝐾𝑟𝑥6𝑥8

3

𝑃
                                                                                                                                                   (28) 

 

Subject to 

 

f2(0) = 1, f1(0) = 0, f4(0) = 1 − st, f7(0) = ℵf6(0), f9(0) = −
ℵf6(0)

P
 ,  

 

f2(∞) → 0, f4(∞) → 0, f6(∞) →  0, f8(∞) →  0                                                                                                                                         (29) 

 

The coupled differential equations (25) – (29) are then solved numerically using the Shooting method embedded in o.d.e. solver matlab 

bvp4c. The values used for the thermophysical properties of nanoparticles are the ones shown on table 1. Except otherwise stated, default 

values of parameters are ξ = 0.7, ϵ = 0.7, Pr = 0.7,M = 1, Ra = 1,Nb = 1,Nt = 1, ScB = 0.2, ScB = 0.2,  

kr = 0.2, Por = 0.5, P = 0.2, ℵ = 0.2, st = 0.2.  

4. Results 

In order to analyze our results, numerical computation has been carried out for various values of Brownian motion parameter (Nb), ho-

mogenous fluid parameter (kr), porosity parameter (Por), Schmidt number (Sc),radiation parameter ,Prandtl number (Pr), thermal con-

ductivity parameter (ϵ) and thermophoretic parameter (Nt), using the shooting approach discussed in the previous section.  

The numerical values are plotted in Figs. 1– 8. The effect of porosity on fluid temperature is graphically represented in Fig.1. The figure 

portrayed that porosity triggers a rise in the ternary nanofluid temperature. A rise in both conventional and ternary nanofluid temperature 

is observed with the ternary nanofluid rising more than the conventional nanofluid. Deviation in radiation with fluid temperature is de-

scribed in Fig.2. The figure showed that the fluid temperature increases with radiation. Increasing radiation parameter implies that more 

heat energy is injected into the system and additional heat results in a rise in the fluid temperature. Fig.3 is a graphical demonstration of 

the impact of radiation on the heterogeneous bulk concentration. The figure revealed that heterogeneous bulk fluid concentration reduces 

with increasing value of radiation. The influence of stratification on velocity is illustrated in Fig.4. The figure demonstrated the tendency 

of stratification to increase fluid flow. Variation in homogeneous fluid parameter (kr) with homogeneous bulk fluid concentration is graph-

ically represented in Fig.5. The figure exhibited that the homogeneous fluid parameter deflates the homogeneous fluid concentration. This 

observation is in good agreement with Fig.10 in [30] and Fig.7 of [22]. Fig.6 elucidated the effect of homogeneous parameter on the 

heterogeneous bulk fluid concentration. The figure established that the homogeneous parameter causes the heterogeneous bulk fluid con-

centration to reduce. 

Variation in thermophoretic parameter with homogeneous bulk fluid concentration is elucidated in Figure 7. The figure showed that ther-

mophoretic parameter reduces the concentration of the reactant fluid. Similar effect is observed in Fig.8 where the Brownian motion pa-

rameter deflates the homogeneous fluid concentration.  

 

 
Fig. 1: Variation in Porous Parameter (POr) with Temperature. 
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Fig. 2: Variation in Radiation Parameter (RA) with Temperature. 

 

 
Fig. 3: Variation in Radiation Parameter (RA) with Concentration of Reactant B. 

 

 
Fig. 4: Variation in Stratification Parameter (ST) with Velocity. 

 
Fig. 5: Variation in Homogenous Fluid Parameter (KR) with the Concentration of Homogenous Bulk Fluid. 
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Fig. 6: Variation in Homogenous Parameter (KR) with Reactant B Concentration Profile. 

 

 
Fig. 7: Variation in Thermophoretic Parameter (NT ) with Homogeneous Bulk Concentration Profile. 

 

 
Fig. 8: Variation in Brownian Motion Parameter (NB) with Homogeneous Fluid Concentration. 

5. Conclusion 

The quartic autocatalytic reaction of a ternary hybrid nanofluid has been investigated and numerical solution obtained. The result showed 

the following: 

1) That both porosity and radiation are useful tools that can be used to trigger a rise in fluid temperature. Though this behavior of 

porosity is not always the case but in this scenario it sparks up a rise in temperature. The underlying reason for this behaviour is the 

presence of the catalytic reaction in which the catalytic reaction causes a rise in kinetic energy and this will bring a sensation of heat 

which results in the temperature rise.  

2) The experiment indicated that radiation and homogeneous parameter causes the concentration of the heterogeneous bulk fluid to 

reduce.  

3) Stratification influences a rise in fluid flow.  

4) It was also observed from the result that the ternary hybrid nanofluid rises more than when two or one nano particle(s) is used in 

instance when a rise in profile results from any change in parameter. This suffices to conclude that the ternary(three) nanofluid is 

better performing than when two or one nanoparticle are or is used. This was seen in variation involving radiation, porosity and 

stratification.  

5) The present work will be ideal in manufacturing of ceramics as this research involves alumina and silicon nanoparticles which are 

ideal nanoparticles in making ceramics. 
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