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Abstract 

 

In this paper, a new notion, named fuzzification of PS – Algebra, which is a generalization of 

BCK/BCI/TM/BH/Q/d/KU-algebras, is introduced, along with PS-ideal and we have discussed some of their properties 

in detail. 
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1. Introduction 

The concept of fuzzy set was initiated by L.A.Zadeh in 1965 [15]. Since then these ideas have been applied to other 

algebraic structures such as groups, rings, modules, vector spaces and topologies. K.Iseki and S.Tanaka [2] introduced 

the concept of BCK-algebras in 1978 and K.Iseki [3] introduced the concept of BCI-algebras in 1980. It is known that 

the class of BCK –algebras is a proper subclass of the class of BCI algebras. J.Neggers and H.S.Kim introduced a 

notion called B-algebra in 2002. T.Priya and T.Ramachandran [8-13] introduced the new algebraic structure, PS-

algebra, which is an another generalization of BCI / BCK/Q /d/ KU algebras and investigated its properties in detail. In 

this paper we introduce a new notion, called fuzzification of PS-algebra, which is a generalization of BCK / BCI / BH/Q 

/d /TM / KU algebras, and investigate some of its properties.   

2. Preliminaries 

In this section we site the fundamental definitions that will be used in the sequel. 

Definition 2.1 [2]: A BCK- algebra is an algebra (X,*, 0) of type (2, 0) satisfying the following conditions: 

i) (x * y) * (x * z)  (z * y) 

ii) x * (x * y)  y 

iii) x  x 

iv) x  y and y  x  x=y 

v) 0  x  x=0, where x  y is defined by x * y = 0 ,for all x, y, z  X 

 

Definition 2.2 [3]: A BCI- algebra is an algebra (X,*, 0) of type (2, 0) satisfying the following conditions: 

i) (x * y) *(x * z)   (z*y)  

ii) x * (x * y)  y  

iii) x  x  

iv) x  y  and y  x  x = y 

v) x  0  x = 0, where x  y is defined by x * y = 0, for all x, y, z  X. 

 

Definition 2.3 [5]: A Q- algebra is an algebra (X,*, 0) of type (2, 0) satisfying the following conditions: 

i) x * x = 0 

ii) x * 0 = x 
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iii) (x * y)*z = (x * z) * y, where x  y is defined by x * y = 0, for all x, y, z  X. 

 

Definition 2.4 [6]: A d- algebra is an algebra (X,*, 0) of type(2,0) satisfying the following conditions: 

i) x * x = 0 

ii) 0 * x = 0 

iii) x * y = 0 and y * x = 0 imply x = y ,  for all x, y  X. 

 

Definition 2.5 [7,14]: A KU- algebra is an algebra (X,*,0) of type(2,0) satisfying the following conditions: 

i) (x * y) * ((y * z) * (x * z)) =0 

ii) x * 0 = 0 

iii) 0 * x = x 

iv) x * y = 0 and y * x = 0 imply x = y ,  for all x, y, z  X. 

 

Remark: 

 Every BCK-algebra is a TM-algebra but not the converse. 

 Every BCK-algebra is a BCI-algebra but not the converse. 

 Every BCI-algebra is a BCH-algebra but not the converse. 

 Every BCH-algebra is a Q-algebra but not the converse. 

 Every TM-algebra is a BH-algebra but not the converse. 

 Every BCK-algebra is a d-algebra but not the converse. 

 

Definition 2.6 [8]: Let S be a non-empty subset of an algebra X , then S is called a subalgebra of X if   x * y  S ,    for 

all x ,y  S. 

 

Definition 2.7 [15]: Let X is a non-empty set. A fuzzy subset  of the set X is a mapping   : X  [0, 1]. 

 

Definition 2.8 [9]: Let  be a fuzzy set of X. For a fixed t  [0, 1], the set  
t
 ={x  X (x) ≥ t} is called the upper level 

subset of. Clearly  
t
    t = X for t[0,1] if t1 < t2 , then  t1     t2. 

 

3. Fuzzy PS-ideal and Fuzzy PS-Sub algebra 

Definition 3.1 (PS-algebra): A nonempty set X with a constant 0 and a binary operation ‘ * ‘ is called  PS – Algebra if 

it satisfies the following axioms. 

1. x * x  = 0 

2. x * 0 = 0 

3. x * y = 0 and y * x = 0  x = y ,   x ,y  X. 

In X, we define a binary relation  by x  y if and only if y * x = 0. 

In any PS-algebra (X, *, 0), the following holds good for all x, y  X. 

1. x *(y*x)= y * (x *x) 

2. y * (x * (y* x)) = 0 

3. x * (x * (x*y)) = x * y 

4. y * ( x * (x * y)) = 0 

 

Example 3.1: Let X = {0, a, b, c} be the set with the following Cayley table. 

 

* 0 a b c 

0 0 b a c 

a 0 0 0 b 

b 0 0 0 b 

c 0 b b 0 

 

Then (X, *, 0) is a PS – algebra. 

Remark: Every KU algebra is a PS-algebra but not the converse, since (a*0)*((0*c)*(a*c)) = a  0. 

 

Definition 3.2: Let X be a PS-algebra and I be a subset of X, then I is called a PS-ideal of X if it satisfies the following 

conditions: 

1. 0   I 

2. y * x   I and  y   I   x   I 
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Definition 3.3: Let X be a PS-algebra. A fuzzy set  in X is called a fuzzy PS-ideal of X if it satisfies the following 

conditions. 

i) (0) ≥ (x) 

ii) (x) ≥ min {(y *x), (y)}, for all x, y  X 

 

Definition 3.4: A fuzzy set  in a PS-algebra X is called a fuzzy PS- sub algebra of X if (x * y) ≥ min {(x), (y)}, for 

all x, y X. 

 

Theorem 3.1: Every fuzzy PS-ideal of a PS-algebra X is order reversing. 

Proof: Let  be a fuzzy PS-ideal of a PS-algebra X and let x, y  X be such that x  y, then y * x = 0 

Now (x) ≥ min {(y * x), (y)} 

                = min {(0), (y)} 

                = {(y)} 

 (x) ≥ (y) 

 

Theorem 3.2: If µ is a fuzzy PS-ideal then it satisfies the condition µ(x * (y * x)) ≥ µ (y). 

Proof : Let µ be a fuzzy PS-ideal. Then 

µ( x * ( y * x ) ) ≥  Min { µ(y *( x * ( y * x ))),µ (y) } 

                          = Min {µ(0), µ (y)} 

                          = µ (y). 

 

Theorem 3.3: Let X be a PS-algebra.   is a fuzzy PS-ideal of X iff   is a fuzzy PS-subalgebra of X. 

Proof: By definition, every fuzzy PS-ideal of a PS-algebra X is a fuzzy PS-subalgebra of X. 

Let  be a fuzzy PS-ideal.  

To prove:  is a fuzzy PS- subalgebra of X. 

By definition of PS-ideal, (x) ≥ min {(y *x), (y)}, for all x, y  X 

Now (x* y) ≥ min {(y *(x*y), (y)}, 

                     = min {(0), (y)} 

                     ≥ min {(x), (y)} 

 is a fuzzy PS- subalgebra of X. 

Conversely, let  be a fuzzy PS-subalgebra of X. 

To prove:  is a fuzzy PS-ideal of X 

Now (0) = (x * x) 

                 ≥ min {(x), (x)} 

                 = (x) 

 (0) ≥  (x) 

And  (x) ≥ (y) 

                = min {(0), (y)} 

                = min {(y *x), (y)} 

 (x) ≥ min {(y *x), (y)} 

Hence  is a fuzzy PS-ideal of X.  

 

Theorem 3.4: The intersection of any set of fuzzy PS-ideal in PS-algebra X is also a fuzzy PS-ideal. 

Proof: Let { i }be a family of fuzzy PS-ideals of PS-algebras X. 

Then for any x, y  X. 

(   i) (0) = Inf ( i (0))  

                 ≥ Inf ( i (x)) 

                 = (   i) (x) 

And (   i) (x) = Inf ( i (x)) 

                         ≥ Inf {min {  i (y * x),  i (y)}} 

                        = min {Inf ( i (y * x)), Inf ( i (y))} 

                        = min {(   i) (y * x), (   i) (y)} 

This completes the proof. 

 

Theorem 3.5: A fuzzy set  of a PS-algebra X is a fuzzy PS- subalgebra iff for every t[0,1],  
t
 is either empty or a 

subalgebra of X. 

Proof: Assume that  is a fuzzy PS- sub algebra of X and  
t
  

Then for any x, y  
t
, we have  
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(x * y) ≥ min {(x), (y)}= t 

There fore  x * y  
t
 

Hence 
t
 is a sub algebra of X. 

Conversely, assume that 
t
 is subalgebra of X. 

Let x, y  X. Take  t = min {(x), (y)}  

Then by assumption 
t
 is a sub algebra of X, x * y  

t
 

(x * y) ≥ t = min {(x), (y)} 

Hence  is a fuzzy PS- sub algebra of X. 

 

Theorem 3.6: Any sub algebra of a PS – algebra X can be realized as level sub algebra of some fuzzy PS-sub algebra 

of X. 

Proof: Let µ be a sub algebra of the given PS– algebra X and let µ be a fuzzy set in X defined by  

µ (x) =   t, if x  A 

              0, if x  A. 

where t [0, 1] is fixed. It is clear that µ
t
 =A. 

Now we prove such defined µ is a fuzzy PS- sub algebra of X. 

Let  x, y X. If  x, y  A, then x*y  A.  

Hence  (x) =  (y) =  (x*y) = t and  µ(x * y) ≥ min { (x),  (y)} 

If x, y A, then  (x) =  (y) = 0 and µ(x * y) ≥ min { (x),  (y)} = 0. 

If at most one of x, y  A, then at least one of   (x) and   (y) is equal to 0.  

Therefore, min { (x),  (y)} = 0 so that µ(x * y) ≥ 0, which completes the proof. 

As a generalisation of theorem 3.6, we prove the following  theorem. 

 

Theorem 3.7 : Let X be à PS- algebra. Then given any chain of subalgebra S0   S1   S2   ………….    Sr  = X, 

there exists a fuzzy PS-subalgebra µ of X whose  level subalgebras are exactly the sualgebras of this chain. 

Proof : Consider a set of numbers t0 > t1 > t2 > ……… > tr , where each ti [0,1]. 

Let µ : X → [0,1] be a fuzzy set defined by µ(s0) = t0 and µ(si - si-1) = ti, 0< i ≤ r. 

We claim that µ is a fuzzy PS-subalgebra of X.Let x,y  X. Then we classify it into two cases as follows : 

Case (1) 

Let x, y  si - si-1. Then by the definition of µ,  

µ(x) = ti = µ (y). 

Since Si is a subalgebra,it follows that x * y  Si, and so either x * y  Si – Si-1   (or)    x * y  Si-1 

In  any case, we conclude that 

µ(x * y) ≥ ti = min {µ(x), µ(y) }. 

Case (2) 

For i > j, 

Let x  Si – Si-1  and y  Sj – Sj-1. 

Then µ(x) = ti ; µ (y) = tj and x * y  Si, since Si is a subalgebra of X and Sj   Si. 

Hence  µ(x * y) ≥ tj = min {µ(x), µ(y)} 

Thus µ is a fuzzy PS-subalgebra of X. 

From the definition of µ,it follows that Im(µ) = { t0 , t1, t2 , ………  tr }. 

Hence the level subalgebras of µ are given by the chain of subalgebras. 

 µt0   µt1   µt2   ………….    µtr  = X. 

Now µt0 = {x X / µ(x) ≥ t0} = S0. 

Finally,we prove that µti = Si for 0< i ≤ r. 

Clearly Si  µti. 

If x  µti, then µ(x) ≥ ti which implies that xSj for j > i. 

Hence µ(x)  {t1, t2, ………  ti } and so x  Sk for some k ≤ i. 

As Sk  Si, it follows that x  Si. 

 µti = Si for 0< i ≤ r. 

This completes the proof. 

 

Theorem 3.8: Two level sub algebras µ
s
, µ

t
 (s < t) of a fuzzy PS- sub algebras are equal iff there is no xX such that    

s ≤ µ(x) < t.  

Proof: Let µ
s 
= µ

t 
for some s < t. If there exist xX such that s ≤ µ(x) < t, then µ

t
 is a proper subset of µ

s
, which is a 

contradiction. 

Conversely, assume that there is no xX such that s ≤ µ(x) < t.  

Since  s < t, µ
t
   µ

s
. 

If x µ
s
 , then µ(x) ≥ s and so µ(x) ≥ t, because µ(x) does not lie between s and t. 
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Hence x  µ
t
, which gives µ

s
  µ

t
. 

This completes the proof. 

 

Theorem 3.9: Let  be a fuzzy set in a PS-algebra X and let t  Im (). Then  is a fuzzy PS-ideal of X if and only if the 

level subset µ
t
 is a PS-ideal of X, which is called a level PS-ideal of X.  

Proof: Assume that  is a fuzzy PS-ideal of X. Clearly 0  µ
t
. 

Let y *x  µ
t
   and y  µ

t
. Then (y * x) ≥ t and (y) ≥ t 

Now (x) ≥ min {(y * x), (y)} 

                ≥ min {t, t} 

                = t 

Hence the level subset µ
t
 is a PS-ideal of X. 

Conversely assume that, the level subset µ
t
 is a PS-ideal of X, for any t [0,1].   

Suppose assume that there exist some x0X such that (0) < (x0) 

Take s = 
1

2
 [ (0) + (x0)]   

 µ (0) < s < µ (x0) 

 x0 µ
s
 and 0  µ

s
 , a contradiction, since µ

s
 is a PS-ideal of X. 

Therefore,  (0) ≥ (x) for all xX. 

If possible, assume that x0, y0 X such that (x0) < min { ( y0 * x0) , (y0)}. 

Take s = 
1

2
 [ (x0) + min { ( y0 * x0) , (y0)}]  

 s > µ (x0) and s < min {µ (y0 * x0), µ (y0)}. 

 s > µ (x0), s < µ (y0 * x0) and s < µ (y0). 

 x0  µ
s
, a contradiction, since µ

s
 is a PS-ideal of X. 

Therefore (x) ≥ min {(y * x), (y)},  for any x, y  X. 

 

Theorem 3.10 : Let X be a PS-algebra & µ be a fuzzy PS-subalgebra of X. If Im(µ) is finite, say {t1, t2, …,tr}, then for 

any ti, tj  Im(µ),
i jt t    ,implies ti = tj. 

Proof : Assume that ti  ≠ tj say ti < tj. 

If x  
jt then µ(x) ≥ tj > ti, which implies that x  

it
 . 

Let x  X be such that ti < µ(x) < tj 

Then x 
it

  , but x  
jt . 

Hence  
j it t   and  

j it t   , a contradiction. 

4. Conclusion 

In this article authors have been discussed fuzzy PS-ideal in fuzzy PS-algebra. The relationship between level subsets 

and subalgebra also established. It has been observed that PS-algebra as a generalization of BCK/BCI/Q/d/TM/KU-

algebras. Interestingly, the chain concept adds another dimension to the defined PS-algebra. This concept can further be 

generalized to Intuitionistic fuzzy set, interval valued fuzzy sets, Lie algebra for new results in our future work. 
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