S_s-Open sets and S_s-Continuous Functions

Alias B. Khalaf 1*, Abdulrahman H. Majeed 2, Jamil M. Jamil 2

1 University of Duhok, Faculty of Science, Department of Mathematics
2 University of Baghdad, College of Science, Department of Mathematics
*Corresponding author E-mail: aliasbkhalaf@gmail.com

Abstract

In this paper we introduce and study the concept of S_s-open sets also, a study new class of functions called S_s-continuous functions, the relationships between S_s-continuity and other types of continuity are investigated.

Keywords: S_s-open set, S_s-continuous function, semi-open set, semi-continuous functions.

1. Introduction

In 1963, Levine [16], introduced the concept of semi-open set and semi continuity and gave several properties about these functions. Njastad [18] introduced the concepts of α-sets and Abd-El-Monsef et al [1] defined β-open sets and β-continuous functions. Khalaf and Ameen in [14], defined the concept of S-s-open sets and in 2012, Khalaf and Ahmed [15], introduced another type of semi-open sets called S_β-open sets. Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represents non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) represents the closure and Interior of A respectively. A subset A is said to be pre-open [17] (resp., α-open [18], semi-open [16], regular open [21], β-open [1]) set if A ⊆ IntCl(A) (resp. A ⊆ IntClInt(A), A ⊆ ClInt(A), A = IntCl(A), A ⊆ ClIntCl(A)). The complement of a pre-open (resp., α-open, semi-open , regular open, β-open) set is called pre-closed (resp., α-closed, semi-closed, regular closed, β-closed) set. The intersection of all semi-closed sets containing A is called the semi-closure [5] of A and it is denoted by sClA. The semi-interior of a set A is the union of all semi-open sets contained in A and is denoted by sIntA. A subset A of a topological space (X, τ) is said to be θ-open [23] (resp., θ-semi-open [13], semi-θ-open [6]) set if for each x ∈ A, there is an open (resp., semi-open, semi-open) set U such that x ∈ U ⊆ Cl(U) ⊆ A (resp., x ∈ U ⊆ Cl(U) ⊆ A, x ∈ U ⊆ sCl(U) ⊆ A). For more properties of semi-θ-open sets (see [24]) also. A subset A of a topological space X is said to be regular-semi-open [4] if there exists a regular-open set U such that U ⊆ A ⊆ ClU equivalently A is regular-semi-open [22] if and only if A = sIntsClA. A set A is called semi-regular [12], if it is both semi-open and semi-closed. The family of all regular-semi-open (resp., θ-open, θ-semi-open, semi-θ-open, semi-regular) sets of X is denoted by RSO(X) (resp., θO(X), θSO(X), SθO(X), SR(X)). The aim of the present paper is to define a new type of sets, we call it S_s-open set. Since the families SO(X) and PO(X) are incomparable [17], so the it is obvious that the concept of S_s-open sets incomparable with S_β-open sets but it is strictly weaker than S_α-open sets and stronger than S_β-open sets.
2. Preliminaries

In this section, we recall the following definitions and results:

Lemma 2.1 Let \((Y, \tau_Y)\) be a subspace of a space \((X, \tau)\).

1. If \(A \in SO(X, \tau)\) and \(A \subseteq Y\), then \(A \in SO(Y, \tau_Y)\).[16]
2. If \(A \in SO(Y, \tau_Y)\) and \(Y \in SO(X, \tau)\), then \(A \in SO(X, \tau)\).[8]

Lemma 2.2 Let \(A\) be a subset of a space \(X\), then the following properties hold.

1. If \(A \in SO(X)\), then \(sCl(A) \in RSO(X)\).[22]
2. If \(A \in SO(X)\), then \(sCl(A) = sCl_0(A)\).[3]
3. If \(A\) is open subset of \(X\), then \(sCl(A) = \text{IntCl}(A)\).[12]

Lemma 2.3 [9] For any topological space \(X\). If \(A \in \alpha O(X)\) and \(B \in SO(X)\), then \(A \cap B \in SO(X)\).

Definition 2.4 A semi-open subset \(A\) of a space \(X\) is called \(S_c\)-open [14] (resp., \(S_{\beta}\)-open [15], \(S_p\)-open [20]) set if for each \(x \in A\), there exists a closed set (resp., \(\beta\)-closed, pre-closed set) \(F\) such that \(x \in F \subseteq A\).

Definition 2.5 A topological space \((X, \tau)\) is called:

1. semi-\(T_1\) [2], if for every two distinct points \(x, y\) in \(X\), there exist two semi-open sets, one containing \(x\) but not \(y\) and the other containing \(y\) but not \(x\).
2. semi-regular [11], if for each \(x \in X\) and each \(H \in SO(X)\) containing \(x\), there exists \(G \in SO(X)\) such that \(x \in G \subseteq sCl(G) \subseteq H\).

Lemma 2.6 [2] A space \(X\) is semi-\(T_1\), if and only if, the singleton set \(\{x\}\) is semi closed for any point \(x \in X\).

Lemma 2.7 The following properties hold:

1. If a space \(X\) is semi-regular, then each \(SO(X) = S\theta O(X)\).
2. If a space \(X\) is semi-regular, then \(sCl(A) = sCl_0(A)\) for each subset \(A\) of \(X\).

Proof. It is clear that each semi-\(\theta\)-open is semi-open. If \(X\) is semi-regular space and if \(G\) is a non-empty semi-open set in \(X\), the by Definition 2.5, there exists a semi-open set \(U\) such that \(x \in U \subseteq sCl(U) \subseteq G\), this implies that \(G\) is semi-\(\theta\)-open. Therefore, \(SO(X) = S\theta O(X)\).

Part (2). Follows from part (1).

Definition 2.8 A space \(X\) is locally indiscrete [9], if every open set is closed.

Lemma 2.9 [9] A space \(X\) is locally indiscrete if and only if every semi open set in \(X\) is closed.

Definition 2.10 [19] A function \(f : X \to Y\) is said to be strongly \(\theta\)-semi-continuous at a point \(x \in X\), if for each open set \(V\) containing \(f(x)\), there exists a semi-open set \(U\) containing \(x\) such that \(f(sCl(U)) \subseteq V\).

The function \(f\) is said to be strongly \(\theta\)-semi-continuous on \(X\) if it is strongly \(\theta\)-semi-continuous at every point of \(X\), we shall denote by \(f\) is st.sc on \(X\).

Definition 2.11 [10] A function \(f : X \to Y\) is said to be semi-continuous (resp., contra-semi-continuous) if the inverse image of every open set in \(Y\) is semi-open (resp., semi-closed) in \(X\).

Theorem 2.12 [2] For any spaces \(X\) and \(Y\). If \(A \subseteq X\) and \(B \subseteq Y\) then,

1. \(sInt_{X \times Y}(A \times B) = sInt_X(A) \times sInt_Y(B)\).
2. \(sCl_{X \times Y}(A \times B) = sCl_X(A) \times sCl_Y(B)\).
3. S_γ-Open Sets

In this section, we introduce the concept of S_γ-open sets in topological spaces.

Definition 3.1 A semi-open subset A of a space X is called S_γ-open if for each $x \in A$, there exists a semi-closed set F such that $x \in F \subseteq A$.

The family of all S_γ-open subsets of a topological space (X, τ) is denoted by $S_\gamma O(X, \tau)$ or $S_\gamma O(X)$.

Proposition 3.2 A subset A of a space X is S_γ-open if and only if $A = \cup F_\gamma$ where A is semi-open set and F_γ semi-closed set for each γ.

Proof. Obvious.

Remark 3.3 It is clear from the definition that every S_γ-open subset of a space X is semi-open, but the converse is not true in general as it is shown in Example 3.11.

Proposition 3.4 If a space X is semi-T_1, then $S_\gamma O(X) = SO(X)$.

Proof. Follows from the fact that in a semi-T_1 space, every singleton set is semi-closed (Lemma 2.6).

Remark 3.5 Since any union of semi-open sets is semi-open [16], so any union of S_γ-open sets in a topological space (X, τ) is also S_γ-open. The intersection of two S_γ-open sets need not be S_γ-open in general as it is shown by the following example:

Example 3.6 Consider the intervals $[0, 1]$ and $[1, 2]$ in R with the usual topology. Since R is T_1 space and hence it is semi-T_1, so by Proposition 3.4, both the intervals are S_γ-open sets and we have $[0, 1] \cap [1, 2] = \{1\}$ which is not S_γ-open.

Proposition 3.7 Every semi-θ-open subset of a space X is S_γ-open.

Proof. Suppose that the subset A of X is semi-θ-open, then clearly it is semi-open and by definition, for each $x \in A$, there exists a semi-open set U such that $x \in U \subseteq sClU \subseteq A$. Hence, $sClU$ is the semi-closed set containing x contained in A, so A is S_γ-open.

The relation of S_γ-open sets to some other types of sets is illustrated in the following remark:

Remark 3.8 If X is any topological space, then the following properties hold:

1. Since every θ-semi-open subset of X is semi-θ-open, so, from Proposition 3.7, we obtain that every θ-semi-open set is S_γ-open.
2. It is obvious that every semi-regular subset of X is S_γ-open.
3. It is obvious that every s_γ-open set is S_γ-open.
4. Every s_γ-open set is $s\beta$-open, because every semi open set is β-open.

Although not every open set is an S_γ-open set as we can see in Example 3.11 but we have the following results:

Proposition 3.9 Let (X, τ) be a semi regular space, then $\tau \subseteq S_\gamma O(X)$.

Proof. Let A be any non-empty open subset of X, then for each $x \in A$, there is a semi-open set G such that $x \in G \subseteq sCl(G) \subseteq A$ implies that $x \in sCl(G) \subseteq A$. Hence A is S_γ-open.

Proposition 3.10 The following properties hold.

1. If A is a semi-open subset of a space X, then $sClA$ is S_γ-open.
2. If A is a semi-closed subset of a space X, then $sIntA$ is S_γ-open.
3. $sClIntA$ is S_γ-open subset, for every subset A of X.
4. $sIntsClA$ is S_γ-open subset, for every subset A of X.
5. Every regular semi-open subset of X is S_s-open.

Proof. (1) For any subset A of X, we have $sCl A = A \cup IntCl A$. Hence $sCl A$ is both semi-open and semi-closed, so it is S_s-open.

The proof of parts (2), (3), (4) and (5) are similar.

We get the following diagram of implications:

$$
\begin{array}{cccc}
\text{\theta-open set} & \downarrow & \text{\delta-open set} & \longrightarrow \text{semi-\theta-open set} & \leftarrow \text{\theta-semi-open set} \\
\downarrow & & \downarrow & & \\
\text{open set} & & \text{semi-open set} & \leftarrow \text{S_s-open set} & \leftarrow \text{sc-open set}
\end{array}
$$

The following examples show that the above implications are not reversible.

Example 3.11 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then we have: $SO(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$, and hence $SC(X) = \{\phi, \{c\}, \{b\}, \{b, c\}, X\}$. So, $S_s O(X) = \{\phi, X\}$ implies that the set $\{a\} \in SO(X)$, but $\{a\} \notin S_s O(X)$.

Example 3.12 Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c, d\}, X\}$. Then : $SO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c, d\}, \{a, d\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, c\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a\}, \{b\}, \{c\}, \{d\}, X\}$. Hence, the set $\{a, d\}$ is an S_s-open set which is not S_c-open.

Example 3.13 Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, X\}$. Then we can easily find the following families of sets:

$SO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}, \{a, b, c, d\}, \{a, d\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, c\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a\}, \{b\}, \{c\}, \{d\}, X\}$, also $SC(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c\}, \{b, c\}, \{b, c, d\}, \{a, b, c, d\}, \{a, b, c\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a\}, \{b\}, \{c\}, \{d\}, X\}$. Hence, the set $\{a, c\}$ is an S_s-open set which is not θ-semi-open set also it is not semi-regular set.

Proposition 3.14 For any space X, $sCl(sInt(\{x\})) = \{x\}$ if and only if $\{x\}$ is S_s-open.

proof. Let $sCl(sInt(\{x\})) = \{x\}$, this implies that $sInt(\{x\}) = \{x\}$ and so, $\{x\}$ is both semi-open and semi-closed, then $\{x\}$ is semi regular open. Hence, $\{x\} \in S_s O(X)$.

Conversely. Let $\{x\}$ be an S_s-open set in X, then there exists a semi-closed F such that $x \in F \subseteq \{x\}$, this implies that $x \in \{x\} \subseteq \{x\}$, so, $\{x\}$ is semi-open and semi-closed. Therefore, $sCl(sInt(\{x\})) = \{x\}$.

Proposition 3.15 Let (x, τ) be a topological space. Then $\{x\} \in S_s O(X)$ if and only if it is semi-regular.

proof. If $\{x\}$ is semi-regular, then, by Remark 3.8, $\{x\} \in S_s O(X)$.

Conversely. Suppose $\{x\}$ is $S_s O(X)$, then $\{x\}$ is semi-open and by definition it is semi-closed. Hence, $\{x\}$ is semi-regular.

Proposition 3.16 A subset A of a space (X, τ) is S_s-open if and only if for each $x \in A$, there exists an S_s-open set B such that $x \in B \subseteq A$.

proof. If A is an S_s-open subset in the space (X, τ), then for each $x \in A$, putting $A = B$, which is S_s-open containing x such that $x \in B \subseteq A$.

Conversely. Suppose that for each $x \in A$, there exists a S_s-open set B such that $x \in B \subseteq A$. So, $A = \cup B_{\gamma}$ where $B_{\gamma} \in S_s O(X)$ for each γ. Therefore, by Remark 3.5, A is S_s-open.

Proposition 3.17 Let X be a topological space, and $A, B \subseteq X$. If $A \in S_s O(X)$ and B is both α-open and semi-closed, then $A \cap B \in S_s O(X)$.
proof. Let \(A \in S_s O(X) \) and \(B \) be \(\alpha \)-open, then \(A \) is semi open set, so by Lemma 2.3, we have \(A \cap B \in SO(X) \). Now let \(x \in A \cap B \), then \(x \in A \) and therefore, there exists a semi-closed set \(F \) such that \(x \in F \subseteq A \). Since \(B \) is semi-closed, so \(F \cap B \) is semi-closed set. Hence, \(x \in F \cap B \subseteq A \cap B \). Thus \(A \cap B \) is \(S_s \)-open set in \(X \).

Proposition 3.18 Let \((Y, \tau_Y)\) be an \(\alpha \)-open subspace of a space \((X, \tau)\). If \(A \in S_s O(X, \tau) \) and \(A \subseteq Y \), then \(A \in S_s O(Y, \tau_Y) \).

proof. Let \(A \in S_s O(X, \tau) \), then \(A \in SO(X, \tau) \) and for each \(x \in A \), there exists a semi-closed set \(F \) in \(X \) such that \(x \in F \subseteq A \). Since \(A \in SO(X, \tau) \) and \(A \subseteq Y \), so, by Lemma 2.1, \(A \in SO(Y, \tau_Y) \). Since \(F \) semi-closed set in \(X \), then \(X \setminus F \) is semi-open and hence, by Lemma 2.3, \(Y \setminus (X \setminus F) \) is semi-open in \(Y \). So, by Lemma 2.1, \(Y \setminus (X \setminus F) \) is semi-open in \(Y \). Therefore, \(F = Y \setminus (Y \setminus X \setminus F) \) is semi-closed set in \(Y \). Hence \(A \in S_s O(Y, \tau_Y) \).

Proposition 3.19 Let \(Y \) be a semi-regular set in a space \((X, \tau)\). If \(A \in S_s O(Y, \tau_Y) \), then \(A \in S_s O(X, \tau) \).

proof. Let \(A \in S_s O(Y, \tau_Y) \), then \(A \in SO(Y, \tau_Y) \) and for each \(x \in A \), there exists a semi-closed set \(F \) in \(Y \) such that \(x \in F \subseteq A \). Since \(A \in SO(Y, \tau_Y) \) and \(Y \) is semi-regular. So, by Lemma 2.1, \(A \in SO(X, \tau) \). Since \(F \) semi-closed set in \(Y \), then \(Y \setminus F \) is semi-open in \(Y \) and also, by Lemma 2.1, \(Y \setminus F \) is semi-open in \(X \). Again \(Y \) is semi-regular in \(X \) implies that \(X \setminus Y \) is semi-open. Hence, \(Y \setminus F \cup X \setminus Y = X \setminus F \) is semi-open in \(X \). So, \(F \) is semi-closed in \(X \). Therefore, \(A \in S_s O(X, \tau) \).

Definition 3.20 Let \(A \) be a subset of a topological space \((X, \tau)\).

1. The union of all \(S_s \)-open sets which are contained in \(A \) is called the \(S_s \)-interior of \(A \) and is denoted by \(S_s \text{Int}(A) \).
2. The intersection of all \(S_s \)-closed sets containing \(A \) is called the \(S_s \)-closure of \(A \) and we denote it by \(S_s \text{Cl}(A) \).
3. The \(S_s \)-boundary of \(A \) is \(S_s \text{Cl}(A) \setminus S_s \text{Int}(A) \) and is denoted by \(S_s \text{Bd}(A) \).

Proposition 3.21 Let \(A \) be any subset of a space \(X \). If a point \(x \) is in the \(S_s \)-interior of \(A \), then there exists a semi closed set \(F \) of \(X \) containing \(x \) such that \(F \subseteq A \).

proof. Suppose that \(x \in S_s \text{Int}(A) \), then there exists a \(S_s \)-open set \(U \) of \(X \) containing \(x \) such that \(U \subseteq A \). Since \(U \) is \(S_s \)-open set, so there exists a semi closed set \(F \) containing \(x \) such that \(F \subseteq U \subseteq A \). Hence \(x \in F \subseteq A \).

Proposition 3.22 For any subset \(A \) of a topological space \(X \). The following statements are true:

1. \(S_s \text{Int}(A) \) is the largest \(S_s \)-open set contained in \(A \).
2. \(A \) is \(S_s \)-open if and only if \(A = S_s \text{Int}(A) \).
3. \(S_s \text{Cl}(A) \) is the smallest \(S_s \)-Closed set in \(X \) containing \(A \).
4. \(A \) is \(S_s \)-closed set if and only if \(A = S_s \text{Cl}(A) \).

Some other properties of \(S_s \)-interior of a set \(A \) are in the following result:

Theorem 3.23 If \(A \) and \(B \) are any subsets of a topological space \((X, \tau)\), then the following properties hold:

1. if \(A \subseteq B \), then \(S_s \text{Int}(A) \subseteq S_s \text{Int}(B) \) and \(S_s \text{Cl}(A) \subseteq S_s \text{Cl}(B) \).
2. \(S_s \text{Int}(A) \cup S_s \text{Int}(B) \subseteq S_s \text{Int}(A \cup B) \).
3. \(S_s \text{Int}(A) \cap S_s \text{Int}(B) \subseteq S_s \text{Int}(A \cap B) \).
4. \(S_s \text{Cl}(A) \cup S_s \text{Cl}(B) \subseteq S_s \text{Cl}(A \cup B) \).
5. \(S_s \text{Cl}(A \cap B) \subseteq S_s \text{Cl}(A) \cap S_s \text{Cl}(B) \).

proof. Obvious.

In general, \(S_s \text{Int}(A) \cup S_s \text{Int}(B) \neq S_s \text{Int}(A \cup B) \). and \(S_s \text{Int}(A) \cap S_s \text{Int}(B) \neq S_s \text{Int}(A \cap B) \). Also, the equalities in (4) and (5) does not hold as shown in the following example:
Example 3.24 Consider the space (X, τ) defined in Example 3.13, then we have the following cases:

1. if $A = \{a, c\}$ and $B = \{a, d\}$, then $S_s\text{Int}(A) = \{a\}$, $S_s\text{Int}(B) = \{a\}$. Hence, $S_s\text{Int}(A) \cup S_s\text{Int}(B) = \{a\}$ and $S_s\text{Int}(A \cup B) = S_s\text{Int}(\{a, b, c\}) = \{a, b, c\}$. It follows that $S_s\text{Int}(A) \cup S_s\text{Int}(B) \neq S_s\text{Int}(A \cup B)$.

2. If $A = \{a, b\}$ and $B = \{b, c, d\}$, then $S_s\text{Int}(A) = \{a, b\}$, $S_s\text{Int}(B) = \{b, c, d\}$, so $S_s\text{Int}(A) \cap S_s\text{Int}(B) = \{b\}$ and $S_s\text{Int}(A \cap B) = S_s\text{Int}(\{b\}) = \phi$. It follows that $S_s\text{Int}(A) \cap S_s\text{Int}(B) \neq S_s\text{Int}(A \cap B)$.

3. If $A = \{a\}$ and $B = \{c, d\}$, then $S_s\text{Cl}(A) = F$, $S_s\text{Cl}(B) = B$. Hence, $S_s\text{Cl}(A) \cup S_s\text{Cl}(B) = \{a, c, d\}$, and $S_s\text{Cl}(A \cup B) = S_s\text{Cl}(\{a, c, d\}) = X$. It follows that $S_s\text{Cl}(A) \cup S_s\text{Cl}(B) \neq S_s\text{Cl}(A \cup B)$.

4. If $A = \{a, c, d\}$ and $B = \{b, c, d\}$, then $S_s\text{Cl}(A) = X$ and $S_s\text{Cl}(B) = B$, so $S_s\text{Cl}(A) \cap S_s\text{Cl}(B) = B$, and $S_s\text{Cl}(A \cap B) = S_s\text{Cl}(\{c, d\}) = \{c, d\}$. It follows that $S_s\text{Cl}(A \cap B) \neq S_s\text{Cl}(A) \cap S_s\text{Cl}(B)$.

Proposition 3.25 Let A be a subset of a topological space X. Then $x \in S_s\text{Cl}(A)$ if and only if for any S_s-open set U containing x, $U \cap A \neq \phi$.

proof. Let $x \in S_s\text{Cl}(A)$ and suppose that $U \cap A = \phi$ for some S_s-open set U which contains x. Then $(X \setminus U)$ is S_s-closed set and $A \subseteq (X \setminus U)$, thus $S_s\text{Cl}(A) \subseteq (X \setminus U)$. But this implies that $x \in (X \setminus U)$, which is contradiction. Therefore $U \cap A \neq \phi$.

Conversely, suppose that there exists an S_s-open set containing x with $A \cap U = \phi$, then $A \subseteq X \setminus U$ and $X \setminus U$ is an S_s-closed with $x \notin X \setminus U$. Hence, $x \notin S_s\text{Cl}(A)$.

Proposition 3.26 For any subset A of a topological space X. The following statements are true.

1. $X \setminus S_s\text{Cl}(A) = S_s\text{Int}(X \setminus A)$.

2. $S_s\text{Cl}(A) = X \setminus S_s\text{Int}(X \setminus A)$.

3. $X \setminus S_s\text{Int}(A) = S_s\text{Cl}(X \setminus A)$.

4. $S_s\text{Int}(A) = X \setminus S_s\text{Cl}(X \setminus A)$.

proof. We only prove (1), and the other parts can be proved similarly. (1) For any point $x \in X$, if $x \in X \setminus S_s\text{Cl}(A) \Leftrightarrow x \notin S_s\text{Cl}(A)$ for each $B \in S_sO(X)$ containing x, we have $A \cap B = \phi \Leftrightarrow x \in B \subseteq X \setminus A \Leftrightarrow x \in S_s\text{Int}(X \setminus A)$.

Theorem 3.27 If A is a subset of a topological space X. Then $\text{Int}_\theta(A) \subseteq S_s\text{Int}(A) \subseteq S_s\text{Cl}(A) \subseteq S_s\text{Cl}(A) \subseteq \text{Cl}_\theta(A)$.

proof. Obvious.

Proposition 3.28 Let A be any subset of a space X. If $A \in S_s\text{O}(X)$, then $S_s\text{Cl}(A) \subseteq S_s\text{Cl}(A)$.

proof. Assume that $x \notin S_s\text{Cl}(A)$, then there exists an S_s-open set U containing x such that $A \cap U = \phi$ and $A \cap S_s\text{Cl}(U) = \phi$ since $A \in S_s\text{O}(X)$, but $S_s\text{Cl}(U) \subseteq S_s\text{Cl}(U)$ implies that $A \cap S_s\text{Cl}(U) = \phi$ and hence $x \notin S_s\text{Cl}(A)$.

Proposition 3.29 Let (X, τ) be a semi regular space and A be any subset of X. Then, $S_s\text{Cl}(A) = S_s\text{Cl}(A) = S_s\text{Cl}(A)$.

proof. From Theorem 2.6, we have $S_s\text{Cl}(A) = S_s\text{Cl}(A)$, so we get that $S_s\text{Cl}(A) = S_s\text{Cl}(A) = S_s\text{Cl}(A)$.

4. S_s-Continuous Functions

Definition 4.1 A function $f : X \rightarrow Y$ is called S_s-continuous at a point $x \in X$, if for each open set V of Y containing $f(x)$, there exists an S_s-open set U of X containing x such that $f(U) \subseteq V$.

If f is S_s-continuous at every point $x \in X$, then it is called S_s-continuous.

Proposition 4.2 A function $f : X \rightarrow Y$ is S_s-continuous if and only if the inverse image of every open set in Y is an S_s-open in X.
proof. Let \(f \) be \(S_s \)-continuous, and \(V \) be any open set in \(Y \). If \(f^{-1}(V) \neq \emptyset \), then there exists \(x \in f^{-1}(V) \) which implies \(f(x) \in V \). Since, \(f \) is \(S_s \)-continuous, there exists an \(S_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \). This implies that \(x \in U \subseteq f^{-1}(V) \). This shows that \(f^{-1}(V) \) is \(S_s \)-open.

Conversely, let \(V \) be any open set in \(Y \), \(f(x) \in V \), then \(x \in f^{-1}(V) \). By hypothesis, \(f^{-1}(V) \) is an \(S_s \)-open set in \(X \) containing \(x \), thus \(f(f^{-1}(V)) \subseteq V \). Therefore, \(f \) is \(S_s \)-continuous.

Proposition 4.3 If a function \(f : X \rightarrow Y \) is strongly \(\theta \)-semi-continuous, then \(f \) is \(S_s \)-continuous.

proof. Let \(x \in X \) and \(V \) be any open set of \(Y \) containing \(f(x) \). Since, \(f \) is strongly \(\theta \)-semi-continuous, then, there exists a semi-open set \(G \) in \(X \) containing \(x \) such that \(f(sCl(G)) \subseteq V \). Hence, by Proposition 3.10(1), \(sCl(G) \) is an \(S_s \)-open set. Therefore, \(f \) is \(S_s \)-continuous.

Corollary 4.4 If a function \(f : X \rightarrow Y \) is strongly \(\theta \)-continuous, then \(f \) is \(S_s \)-continuous.

proof. Follows from Remark 3.4 of [19] and Proposition 4.3.

The following example shows that the converse of Corollary 4.4 is not true in general.

Example 4.5 Let \(X = \{a, b, c, d\} \) equipped with the two topologies \(\tau = \sigma = \{\emptyset, \{a\}, \{c, d\}, \{a, c, d\}, X\} \).

If \(f : (X, \tau) \rightarrow (X, \sigma) \) is the identity function, then \(f \) is \(S_s \)-continuous, but it is not strongly \(\theta \)-continuous because \(f^{-1}(\{a, c, d\}) = \{a, c, d\} \) which is not \(\theta \)-open.

The proof of the following result follows directly from their definitions.

Corollary 4.6 Every \(S_s \)-continuous function is semi-continuous.

proof. Obvious.

Example 4.7 Let \(X = \{a, b, c\} \) with the topology \(\tau = \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \). Let \(f : (X, \tau) \rightarrow (X, \sigma) \) be the identity function. Then, \(f \) is semi-continuous, but it is not \(S_s \)-continuous, because \(\{a\} \) is an open set in \((X, \sigma) \) and \(f^{-1}(\{a\}) \) is not \(S_s \)-open.

Corollary 4.8 If a function \(f : X \rightarrow Y \) is both semi-continuous and contra-semi-continuous, then it is \(S_s \)-continuous.

proof. Follows from Definition 2.11 and Proposition 4.2.

Remark 4.9 The function \(f \) in Example 4.5 is not contra-semi-continuous.

Proposition 4.10 A function \(f : X \rightarrow Y \) is \(S_s \)-continuous if and only if \(f \) is semi-continuous and for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists a semi-closed set \(G \) of \(X \) containing \(x \) such that \(f(G) \subseteq V \).

proof. Let \(x \in X \) and \(V \) be any open set of \(Y \) containing \(f(x) \). By hypothesis, there exists an \(S_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq V \). Since \(U \) is \(S_s \)-open, then for each \(x \in U \), there exists a semi-closed set \(G \) of \(X \) such that \(x \in G \subseteq U \). Therefore, we have \(f(G) \subseteq V \).

Conversely, let \(V \) be any open set of \(Y \). It should be shown that \(f^{-1}(V) \) is \(S_s \)-open set in \(X \). Since, \(f \) is semi-continuous, then \(f^{-1}(V) \) is semi-open set in \(X \). Let \(x \in f^{-1}(V) \), then \(f(x) \in V \). By hypothesis, there exists a semi-closed set \(G \) of \(X \) containing \(x \) such that \(f(G) \subseteq V \), which implies that \(x \in G \subseteq f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is \(S_s \)-open in \(X \). Hence, by Proposition 4.2, \(f \) is \(S_s \)-continuous.

5. Characterizations and Properties

In this section, we give some characterizations and properties of \(S_s \)-continuous functions and we start with the following result.

Proposition 5.1 For a function \(f : X \rightarrow Y \), the following statements are equivalent:
1. \(f \) is \(S_\rho \)-continuous.

2. \(f^{-1}(V) \) is an \(S_\rho \)-open set in \(X \), for each open set \(V \) of \(Y \).

3. \(f^{-1}(F) \) is an \(S_\rho \)-closed set in \(X \), for each closed set \(F \) of \(Y \).

4. \(f(S_\rho Cl(A)) \subseteq Cl(f(A)) \), for each subset \(A \) of \(X \).

5. \(S_\rho Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B)) \), for each subset \(B \) of \(Y \).

6. \(f^{-1}(Int(B)) \subseteq S_\rho Int(f^{-1}(B)) \), for each subset \(B \) of \(Y \).

7. \(Int(f(A)) \subseteq f(S_\rho Int(A)) \), for each subset \(A \) of \(X \).

proof. (1) \(\Rightarrow \) (2): Follows from Proposition 4.2.

(2) \(\Rightarrow \) (3): Let \(F \) be any closed set of \(Y \). Then, \(Y \setminus F \) is an open set of \(Y \). By (2), \(f^{-1}(Y \setminus F) = X \setminus f^{-1}(F) \) is an \(S_\rho \)-open set in \(X \) and hence \(f^{-1}(F) \) is \(S_\rho \)-closed in \(X \).

(3) \(\Rightarrow \) (4): Let \(A \) be any subset of \(X \). Then, \(f(A) \subseteq Cl(f(A)) \) and \(Cl(f(A)) \) is a closed set in \(Y \). By (3), we have \(f^{-1}(Cl(f(A))) \subseteq S_\rho \)-closed in \(X \). Therefore, \(S_\rho Cl(A) \subseteq f^{-1}(Cl(f(A))) \). Hence, \(f(S_\rho Cl(A)) \subseteq Cl(f(A)) \).

(4) \(\Rightarrow \) (5): Let \(B \) be any subset of \(Y \), so \(f^{-1}(B) \) is a subset of \(X \). By (4), we have \(f(S_\rho Cl(f^{-1}(B))) \subseteq Cl(f^{-1}(B)) \subseteq Cl(B) \). Hence, \(S_\rho Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B)) \).

(5) \(\Leftrightarrow \) (6): Let \(B \) be any subset of \(Y \). Then apply (5) to \(Y \setminus B \), we obtain \(S_\rho Cl(f^{-1}(Y \setminus B)) \subseteq f^{-1}(Cl(Y \setminus B)) \Leftrightarrow S_\rho Cl(X \setminus f^{-1}(B)) \subseteq f^{-1}(Y \setminus Int(B)) \Leftrightarrow X \setminus S_\rho Int(f^{-1}(B)) \subseteq X \setminus f^{-1}(Int(B)) \Leftrightarrow f^{-1}(Int(B)) \subseteq S_\rho Int(f^{-1}(B)) \).

Therefore, \(f^{-1}(Int(B)) \subseteq S_\rho Int(f^{-1}(B)) \).

(6) \(\Rightarrow \) (7): Let \(A \) be any subset of \(X \). Then, \(f(A) \) is a subset of \(Y \). By (6), we have \(f^{-1}(Int(f(A))) \subseteq S_\rho Int(f^{-1}(f(A))) \subseteq S_\rho Int(A) \). Therefore, \(Int(f(A)) \subseteq f(S_\rho Int(A)) \).

(7) \(\Rightarrow \) (1): Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). Then, \(x \in f^{-1}(V) \) and \(f^{-1}(V) \) is a subset of \(X \). By (7), we have \(Int(f^{-1}(V)) \subseteq f(S_\rho Int(f^{-1}(V))) \). Hence, \(Int(V) \subseteq f(S_\rho Int(f^{-1}(V))) \). Since, \(V \) is an open set, so \(V \subseteq f(S_\rho Int(f^{-1}(V))) \) implies \(f^{-1}(V) \subseteq S_\rho Int(f^{-1}(V)) \). Therefore, \(f^{-1}(V) \) is an \(S_\rho \)-open set in \(X \) which contains \(x \) and clearly \(f(f^{-1}(V)) \subseteq V \). Hence, \(f \) is \(S_\rho \)-continuous.

Proposition 5.2 For a function \(f : X \to Y \), the following statements are equivalent:

1. \(f \) is \(S_\rho \)-continuous.

2. \(S_\rho Cl(f^{-1}(V)) \subseteq f^{-1}(Cl_\vartheta(V)) \), for each open set \(V \) of \(Y \).

3. \(f^{-1}(Int_\vartheta(V)) \subseteq S_\rho Int(f^{-1}(V)) \), for each closed \(V \) of \(Y \).

proof. (1) \(\Rightarrow \) (2): Let \(V \) be any open set in \(Y \). Suppose that \(x \notin f^{-1}(Cl_\vartheta(V)) \), then \(f(x) \notin Cl_\vartheta(V) \) and there exists an open set \(G \) containing \(f(x) \), such that \(Cl_\vartheta(G) \cap V = \emptyset \) implies \(G \cap V = \emptyset \). Since, \(f \) is \(S_\rho \)-continuous, there exists a \(S_\rho \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq G \). Therefore, we have \(f(U) \cap V = \emptyset \) and \(U \cap f^{-1}(V) = \emptyset \). This shows that \(x \notin S_\rho Cl(f^{-1}(V)) \). Thus, we obtain \(S_\rho Cl(f^{-1}(V)) \subseteq f^{-1}(Cl_\vartheta(V)) \).

(2) \(\Rightarrow \) (3). It is quite similar to part (5) \(\Rightarrow \) (6) in Proposition 5.1.

(3) \(\Rightarrow \) (1). From the Proposition 5.1 (6) and the fact that \(Int(V) = Int_\vartheta(V) \) for each closed set \(V \).

Proposition 5.3 A \(f : X \to Y \) is \(S_\rho \)-continuous if and only if \(S_\rho Bd(f^{-1}(B)) \subseteq f^{-1}(Bd(B)) \), for each subset \(B \) in \(Y \).

proof. Let \(B \) be any subset of \(Y \), then we have \(f^{-1}(Bd(B)) = f^{-1}(Cl(B) \setminus Int(B)) = f^{-1}(Cl(B)) \setminus f^{-1}(Int(B)) \). Hence, by Proposition 5.1 (5) and (6), we have \(f^{-1}(Cl(B)) \setminus f^{-1}(Int(B)) \supseteq f^{-1}(S_\rho Cl(B) \setminus S_\rho Int(B)) \). Hence, \(S_\rho Bd(f^{-1}(B)) \subseteq f^{-1}(Bd(B)) \).

Conversely, let \(V \) be any open set in \(Y \) and \(F = Y \setminus V \). Then, by hypothesis, we have \(S_\rho Bd(f^{-1}(F)) \subseteq f^{-1}(Bd(F)) \subseteq f^{-1}(Cl(F)) = f^{-1}(F) \) and hence \(S_\rho Cl(f^{-1}(F)) = S_\rho Int(f^{-1}(F)) \cup S_\rho Bd(f^{-1}(F)) \subseteq f^{-1}(F) \). Thus, \(f^{-1}(F) \) is \(S_\rho \)-closed and hence \(f^{-1}(V) \) is \(S_\rho \)-open in \(X \).

Theorem 5.4 Let \(f : X \to Y \) be a function. Let \(B \) be any basis for \(\tau \) in \(Y \). Then, \(f \) is \(S_\rho \)-continuous if and only if for each \(B \in B \), \(f^{-1}(B) \) is a \(S_\rho \)-open subset of \(X \).
proof. Necessity. Suppose that \(f \) is \(S_s \)-continuous. Then, since each \(B \in \mathcal{B} \) is an open subset of \(Y \). Therefore, by Theorem 5.1, \(f^{-1}(B) \) is a \(S_s \)-open subset of \(X \).

Sufficiency. Let \(V \) be any open subset of \(Y \). Then, \(V = \bigcup \{ B_i : i \in I \} \) where every \(B_i \) is a member of \(\mathcal{B} \) and \(I \) is a suitable index set. It follows that \(f^{-1}(V) = f^{-1}(\bigcup \{ B_i : i \in I \}) = \bigcup f^{-1}(\{ B_i : i \in I \}) \). Since, \(f^{-1}(B_i) \) is a \(S_s \)-open subset of \(X \) for each \(i \in I \). Hence, \(f^{-1}(V) \) is the union of a family of \(S_s \)-open sets of \(X \) and hence is \(S_s \)-open set of \(X \). Therefore, by Proposition 5.1, \(f \) is \(S_s \)-continuous.

Proposition 5.5 Let \(f : X \to Y \) be a \(S_s \)-continuous function. If \(Y \) is any subset of a topological space \(Z \), then \(f : X \to Z \) is \(S_s \)-continuous.

proof. Let \(x \in X \) and \(V \) be any open set of \(Z \) containing \(f(x) \), then \(V \cap Y \) is open in \(Y \). But, \(f(x) \in Y \) for each \(x \in X \), then \(f(x) \in V \cap Y \). Since, \(f : X \to Y \) is \(S_s \)-continuous, then there exists a \(S_s \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \cap Y \subseteq V \). Therefore, \(f : X \to Z \) is \(S_s \)-continuous.

Proposition 5.6 Let \(f : X \to Y \) be a function and \(X \) is locally indiscrete space. Then, \(f \) is \(S_s \)-continuous if and only if \(f \) is semi-continuous.

proof. Follows from Lemma 2.9.

Proposition 5.7 Let \(f : X \to Y \) be a function and \(X \) is semi-\(T_1 \) space. Then, \(f \) is \(S_s \)-continuous if and only if \(f \) is semi-continuous.

proof. Follows from Proposition 3.4.

Proposition 5.8 Let \(f : X \to Y \) be an \(S_s \)-continuous function. If \(A \) is \(\alpha \)-open and semi-closed subset of \(X \), then \(f|A : A \to Y \) is \(S_s \)-continuous in the subspace \(A \).

proof. Let \(V \) be any open set of \(Y \). Since, \(f \) is \(S_s \)-continuous. Then, by Proposition 4.2, \(f^{-1}(V) \) is \(S_s \)-open set in \(X \). Since, \(A \) is \(\alpha \)-open and semi-closed subset of \(X \). By Proposition 3.17, \((f|A)^{-1}(V) = f^{-1}(V) \cap A \) is an \(S_s \)-open subset of \(A \). This shows that \(f|A : A \to Y \) is \(S_s \)-continuous.

Proposition 5.9 A function \(f : X \to Y \) is \(S_s \)-continuous, if for each \(x \in X \), there exists a semi-regular set \(A \) of \(X \) containing \(x \) such that \(f|A : A \to Y \) is \(S_s \)-continuous.

proof. Let \(x \in X \), then by hypothesis, there exists a semi-regular set \(A \) containing \(x \) such that \(f|A : A \to Y \) is \(S_s \)-continuous. Let \(V \) be any open set of \(Y \) containing \(f(x) \), then there exists an \(S_s \)-open set \(U \) in \(A \) containing \(x \) such that \((f|A)(U) \subseteq V \). Since, \(A \) is semi-regular set, by Remark 3.8, \(U \) is \(S_s \)-open set in \(X \) and hence \(f(U) \subseteq V \). This shows that \(f \) is \(S_s \)-continuous.

Proposition 5.10 Let \(f : X_1 \to Y \) and \(g : X_2 \to Y \) be two \(S_s \)-continuous functions. If \(Y \) is Hausdorff, then the set \(E = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = g(x_2) \} \) is \(S_s \)-closed in the product space \(X_1 \times X_2 \).

proof. Let \((x_1, x_2) \notin E \). Then, \(f(x_1) \neq g(x_2) \). Since, \(Y \) is Hausdorff, there exist open sets \(V_1 \) and \(V_2 \) of \(Y \) such that \(f(x_1) \subseteq V_1 \), \(g(x_2) \subseteq V_2 \) and \(V_1 \cap V_2 = \emptyset \). Since, \(f \) and \(g \) are \(S_s \)-continuous, then there exist \(S_s \)-open sets \(U_1 \) and \(U_2 \) of \(X_1 \) and \(X_2 \) containing \(x_1 \) and \(x_2 \) such that \(f(U_1) \subseteq (V_1) \) and \(g(U_2) \subseteq (V_2) \), respectively. Put \(U = U_1 \times U_2 \), then \((x_1, x_2) \in U \) and by Proposition 2.12, \(U \) is an \(S_s \)-open set in \(X_1 \times X_2 \) and \(U \cap E = \emptyset \). Therefore, we obtain \((x_1, x_2) \notin S_s\text{Cl}(E) \). Hence, \(E \) is \(S_s \)-closed in the product space \(X_1 \times X_2 \).

Proposition 5.11 Let \(f : X \to Y \) and \(g : Y \to Z \) be two functions. If \(f \) is \(S_s \)-continuous and \(g \) is continuous. Then, the composition function \(g \circ f : X \to Z \) is \(S_s \)-continuous.

proof. Let \(V \) be any open subset of \(Z \). Since, \(g \) is continuous, \(g^{-1}(V) \) is open subset of \(Y \). Since, \(f \) is \(S_s \)-continuous, then by Proposition 4.2, \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is \(S_s \)-open subset in \(X \). Therefore, \(g \circ f \) is \(S_s \)-continuous.

Proposition 5.12 Let \(f : (X, \tau) \to (Y, \rho) \) be a surjection function such that \(f(U) \) is \(S_s \)-open in \(Y \), for any \(S_s \)-open set \(U \) in \(X \) and let \(g : (Y, \rho) \to (Z, \sigma) \) be any function. If \(g \circ f \) is \(S_s \)-continuous then \(g \) is \(S_s \)-continuous.

proof. Let \(y \in Y \). Since, \(f \) is surjection, there exists \(x \in X \) such that \(f(x) = y \). Let \(V \in \sigma \) with \(g(y) \in V \), then \((g \circ f)(x) \in V \). Since, \(g \circ f \) is \(S_s \)-continuous, there exists an \(S_s \)-open set \(U \) in \(X \) containing \(x \) such that \((g \circ f)(U) \subseteq V \). By assumption \(H = f(U) \) is an \(S_s \)-open set in \(Y \) and contains \(f(x) = y \). Thus, \(g(H) \subseteq V \). Hence, \(g \) is \(S_s \)-continuous.
Proposition 5.13 If $f_i : X_i \to Y_i$ is S_s-continuous functions for $i = 1, 2$. Let $f : X_1 \times X_2 \to Y_1 \times Y_2$ be a function defined as follows: $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then, f is S_s-continuous.

proof. Let $R_1 \times R_2 \subseteq Y_1 \times Y_2$, where R_i is open set in Y_i for $i = 1, 2$. Then, $f^{-1}(R_1 \times R_2) = f_1^{-1}(R_1) \times f_2^{-1}(R_2)$. Since, f_i is S_s-continuous for $i = 1, 2$. By Proposition 4.2, $f^{-1}(R_1 \times R_2)$ is S_s-open set in $X_1 \times X_2$.

Proposition 5.14 Let $f : X \to Y$ be any function. If the function $g : X \to X \times Y$, defined by $g(x) = (x, f(x))$, is an S_s-continuous function, then f is S_s-continuous.

proof. Let H be an open subset of Y, then $X \times H$ is an open subset of $X \times Y$. Since g is S_s-continuous, then $g^{-1}(X \times H) = f^{-1}(H)$ is an S_s-open subset of X. Hence f is S_s-continuous.

References

