Abstract

In this paper we introduce a new class of multifunction called Upper(lower) $g^{*}bp$-continuous multifunction, Upper(lower) almost $g^{*}bp$-continuous multifunction, Upper(lower) weakly $g^{*}bp$-continuous multifunction and Upper(lower) contrag$^{*}bp$-continuous multifunction in topological spaces, and study some of their basic properties and relations among them.

Keywords: $g^{*}b$-closed set, $g^{*}bp$-continuous, almost $g^{*}bp$-continuous, weakly $g^{*}bp$-continuous.

1. Introduction

Many mathematicians and they devote a great part of their research work on the study of generalised continuous multifunction. In 1999, Mahmoud introduced the concept of pre-irresolute multi-valued function while in 1996 Popa and Noiri and in 2001 Abd-El-Monsef and Nasef introduced other types of multifunctions. Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, $\text{Cl}(A)$ and $\text{Int}(A)$ represents the closure of A and Interior of A respectively. A subset A is said to be preopen [17] (resp., α-open [19], semi open [12], regular open [25]) set if $A \subseteq \text{IntCl}(A)$ (resp., $A \subseteq \text{IntClInt}(A)$, $A \subseteq \text{ClInt}(A)$, $A = \text{IntCl}(A)$). The complement of a preopen set is called preclosed.

2. Preliminaries

We recall the following definition.

Definition 2.1 A subset A of a topological space (X, τ) is called

1. b-open set [3], if $A \subseteq \text{Cl}(@Int(A)) \cup \text{Int}(\text{Cl}(A))$ and b-closed set if $\text{Cl}(\text{Int}(A)) \cup \text{Int}(@\text{Cl}(A)) \subseteq A$.
2. generalized closed set (briefly g-closed) [11] (g^{*}-closed [23]), if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open(g-open) in X.
3. gb-closed [20], and ($g^{*}b$-closed [24]) if $b\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open(g-open) in X.
4. $p\delta$-open set [9], if for each $x \in A$, there exists a preopen set U in X such that $x \in U \subseteq p\text{IntpCl}(U) \subseteq A$.
5. regular preopen (resp., regular preclosed) set [6], if $A = p\text{IntpCl}(A)$ (resp. $A = p\text{ClpInt}(A)$).
\textbf{Definition 2.2} \cite{4} A space X is said to be
\begin{enumerate}
\item Pre-T_0 if and only if to each pair of distinct points x, y in X, there exists a preopen set containing one of the points but not the other.
\item Pre-T_1 if and only if to each pair of distinct points x, y of X, there exists a pair of preopen sets one containing x but not y and other containing y but not x.
\item Pre-T_2 if and only if to each pair of distinct points x, y of X, there exists a pair of disjoint preopen sets one containing x and the other containing y.
\end{enumerate}

\textbf{Definition 2.3} A topological space (X, τ) is said to be:
\begin{enumerate}
\item g^b-T_0 if for each pair of distinct points x, y in X, there exists a g^b-open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
\item g^b-T_1 if for each pair of distinct points x, y in X, there exist two g^b-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
\item g^b-T_2 if for each distinct points x, y in X, there exist two disjoint g^b-open sets U and V containing x and y respectively.
\item g^b-T_2 if every g^b-closed set is g-closed.
\item g^b-space if every g^b-open set of X is open in X.
\end{enumerate}

\textbf{Definition 2.4} A topological space (X, τ) is said to be:
\begin{enumerate}
\item submaximal \cite{7}, if the closure of every open set of X is X.
\item extremally disconnected \cite{15}, if the closure of every open set of X is open in X.
\item pre-T_2 \cite{16}, space if every pg-closed set is preclosed.
\item r-T_2 \cite{8}, if for each pair of distinct points x and y of X, there exists regular open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$.
\end{enumerate}

\textbf{Theorem 2.5} \cite{7} A space X is submaximal if and only if every preopen set is open.

\textbf{Theorem 2.6} \cite{2} Let (Y, τ_Y) be subspace of a space (X, τ). If $A \in PO(X, \tau)$ and $A \subseteq Y$, then $A \in PO(Y, \tau_Y)$.

\textbf{Theorem 2.7} \cite{25} Let A be a subset of a topological space (X, τ), if $A \in \tau$, then $Cl_0(A) = Cl(A)$.

\textbf{Theorem 2.8} \cite{24} Let $A \subseteq Y \subseteq X$ and suppose that A is g^b-closed in X, then A is g^b-closed relative to Y.

\textbf{Definition 2.9} \cite{14} A multifunction $F : X \to Y$ is said to be:
\begin{enumerate}
\item Upper pre-irresolute at $x \in X$ if for each preopen set A of Y containing $F(x)$ ($F(x) \cap V \neq \emptyset$), there exists a preopen set U of X containing x such that $F(U) \subseteq A$.
\item Lower pre-irresolute at $x \in X$ if for each preopen set A of Y such that $F(x) \cap A \neq \emptyset$, there exists a preopen set U of X containing x such that $F(u) \cap A \neq \emptyset$ for every $u \in U$.
\end{enumerate}

\textbf{Definition 2.10} \cite{1} For a multifunction $F : X \to Y$, we shall denote the upper and lower inverse of a set A of Y by $F^+(A)$ and $F^-(A)$, respectively, that is, $F^+(A) = \{x \in X : F(x) \subseteq A\}$ and $F^-(A) = \{x \in X : F(x) \cap A \neq \emptyset\}$.

\textbf{Definition 2.11} A multifunction $F : X \to Y$ is said to be:
\begin{enumerate}
\item Upper α-continuous \cite{21} at $x \in X$ if for each open set V of Y containing $F(x)$, there exists $U \in \alpha(X, x)$ such that $F(U) \subseteq V$.
\item Lower α-continuous \cite{21} at $x \in X$ if for each open set A of Y such that $F(x) \cap A \neq \emptyset$, there exists $U \in \alpha(X, x)$ such that $F(u) \cap A \neq \emptyset$ for every $u \in U$.
\end{enumerate}
3. Upper (Lower) α-continuous [18] if it has this property at each point of X.

Definition 2.12 [22] A multifunction $F : X \to Y$ is said to be;

1. Upper almost α-continuous at $x \in X$ if for each open set V of Y containing $F(x)$, there exists $U \in \alpha(X, x)$ such that $F(U) \subseteq \text{IntCl}(V)$.

2. Lower almost α-continuous at $x \in X$ if for each open set V of Y such that $F(x) \cap A \neq \phi$, there exists $U \in \alpha(X, x)$ such that $F(u) \cap \text{IntCl}(V) \neq \phi$ for every $u \in U$.

Definition 2.13 [13] A multifunction $F : X \to Y$ is said to be;

1. Upper δ-continuous at $x \in X$ if for each regular open set V of Y containing $F(x)$, there exists a regular open set U of X such that $F(U) \subseteq V$.

2. Lower δ-continuous at $x \in X$ if for each regular open set V of Y such that $F(x) \cap A \neq \phi$, there exists a regular open set U of X such that $F(u) \cap V \neq \phi$ for every $u \in U$.

Definition 2.14 [1] A multifunction $F : X \to Y$ is said to be;

1. Upper b-continuous at $x \in X$ if for each open set V of Y containing $F(x)$, there exists a b-open set U of X such that $F(U) \subseteq V$.

2. Lower b-continuous at $x \in X$ if for each open set V of Y such that $F(x) \cap A \neq \phi$, there exists a b-open set U of X such that $F(u) \cap V \neq \phi$ for every $u \in U$.

3. Upper and lower g^*bp-continuous multifunction

In this section, we introduce the concept of upper and lower g^*bp-continuous multifunctions in topological spaces.

Definition 3.1 A multifunction $F : X \to Y$ is said to be:

1. Upper g^*bp-continuous ($Ug^*bp.c.$) at $x \in X$ if for each preopen set A of Y containing $F(x)$, there exists a g^*bp-open set U of X containing x such that $F(U) \subseteq A$.

2. Lower g^*bp-continuous ($Lg^*bp.c.$) at $x \in X$ if for each preopen set A of Y such that $F(x) \cap A \neq \phi$, there exists a g^*bp-open set U of X containing x such that $F(u) \cap A \neq \phi$ for every $u \in U$.

3. Upper (Lower) g^*bp-continuous if it has this property at each point of X.

Proposition 3.2 Let X and Y be topological spaces. For a multifunction $F : X \to Y$, the following statements are equivalents:

1. F is $Ug^*bp.c.$ ($Lg^*bp.c.$),
2. For every preopen set A, $F^+(A)(F^-(A))$ is a g^*bp-open set in X,
3. For every preclosed set K, $F^-(K)(F^+(K))$ is a g^*bp-closed set in X.

Proof. $(1) \Rightarrow (2)$. If A is preopen set of Y, then for each $x \in F^+(A), F(x) \subseteq A$. By (1) there exists a g^*bp-open set U of x such that $F(U) \subseteq A$ which implies that $x \in U \subseteq F^+(A)$, therefore $F^+(A)$ is g^*bp-open in X.

$(2) \Rightarrow (3)$. Let K be preclosed set of Y. Then $Y \setminus K$ is preopen set of Y. By (2), $F^+(Y \setminus K) = X \setminus F^-(K)$ is g^*bp-open set in X and hence $F^-(K)$ is g^*bp-closed in X.

$(3) \Rightarrow (1)$. Let A be any preopen set of Y. Then $(Y \setminus A)$ is preclosed in Y. By (3), $F^-(Y \setminus A)$ is g^*bp-closed set in X. But $F^-(Y \setminus A) = X \setminus F^+(A)$. Thus $X \setminus F^+(A)$ is g^*bp-closed in X so $F^+(A)$ is g^*bp-open in X. Therefore, we obtain $F(F^+(A)) \subseteq A$, hence F is g^*bp-continuous.

The proof for the case where F is $Lg^*bp.c.$ is similarly proved.

Theorem 3.3 If a multifunction $F : (X, \tau) \to (Y, \sigma)$ is upper b-continuous and Y is submaximal, then F is upper g^*bp-continuous.
proof. Let A be preopen set in Y, since Y is submaximal then A is open set in Y. Since F is upper b-continuous, then $F^+(A)$ is b-open in X and by Theorem(3.4) [24], it is g^b-open in X. Hence F is upper g^b-continuous.

Proposition 3.4 Let $X = R_1 \cup R_2$, where R_1 and R_2 are g^b-closed set in X. Let $F : R_1 \rightarrow Y$ and $G : R_2 \rightarrow Y$ be upper g^b-continuous. If $F(x) = G(x)$ for each $x \in R_1 \cap R_2$. Then $H : R_1 \cup R_2 \rightarrow Y$ such that

$$H(x) = \begin{cases} F(x) & \text{if } x \in R_1 \\ G(x) & \text{if } x \in R_2 \end{cases}$$

is upper g^b-continuous.

proof. Let A be any preopen set in Y. Clearly $H^+(A) = F^+(A) \cup G^+(A)$. Since F is upper g^b-continuous, then $F^+(A)$ is g^b-open in R_1. But R_1 is g^b-open in X. Then by Theorem (3.30) [24], $F^+(A)$ is g^b-open in X. Similarly, $G^+(A)$ is g^b-open in R_2 and hence a g^b-open in X. Since a union of two g^b-open sets is g^b-open. Therefore, $H^+(A) = F^+(A) \cup G^+(A)$ is g^b-open in X. Hence H is upper g^b-continuous.

Theorem 3.5 For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ the following are equivalent.

1. F is upper g^b-continuous.
2. $F(g^bCl(B)) \subseteq pCl(F(B))$, for every subset B of X,
3. $g^bCl(F^+(A)) \subseteq F^+(pCl(A))$, for each subset A of Y,
4. $F^-(pInt(A)) \subseteq g^bInt(F^-(A))$, for each subset A of Y,
5. $pInt(F(B)) \subseteq F(g^bInt(B))$, for each subset B of X.

proof. (1) \Rightarrow (2). Let B be any subset of X. Then $F(B) \subseteq pCl(F(B))$ and $pClF(B)$ is preclosed in Y. Hence $B \subseteq F^+(pCl(F(B)))$, since F is g^b-continuous. By Proposition 3.2, $F^+(pCl(F(B)))$ is g^b-closed set in X. Therefore, $g^bCl(B) \subseteq F^+(pCl(F(B)))$. Hence $F(g^bCl(B)) \subseteq F^+(pCl(F(B)))$.

(2) \Rightarrow (3). Let A be any subset of Y, then $F^+(A)$ is a subset of X. By (2) we have $F(g^bCl(F^+(A)) \subseteq pCl(F(F^+(A)))) = pCl(A)$. It follow that $g^bCl(F^+(A)) \subseteq F^+(pCl(A))$.

(3) \Rightarrow (4). Let A be any subset of Y. Then apply(3) to (Y, A) we obtain $g^bCl(F^+(Y \setminus A)) \subseteq F^+(pCl(Y \setminus A)) \Rightarrow g^bCl(X \setminus F^-(A)) \subseteq F^+(Y \setminus pInt(A)) \Rightarrow X \setminus g^bInt(F^-(A)) \subseteq X \setminus F^-(pInt(A)) \Rightarrow F^-(pInt(A)) \subseteq g^bInt(F^-(A))$.

(4) \Rightarrow (5). Let B be any subset of X, Then $F(B)$ is a subset of Y. By (4), we have $F^-(pInt(F(A))) \subseteq g^bInt(F^-(A))$. Therefore, $pInt(F(A)) \subseteq F(g^bInt(F(A)))$.

(5) \Rightarrow (1). Let $x \in X$ and let A be any preopen set of Y containing $F(x)$. Then $x \in F^+(A)$ and $F^+(A)$ is a subset of X. By (5), we have $pInt(F(A)) \subseteq F(g^bInt(F^+(A)))$. Then $pInt(A) \subseteq F(g^bInt(F^+(A)))$, since A is preopen, then $A \subseteq F(g^bInt(F^+(A)))$ implies that $F^+(A) \subseteq g^bInt(F^+(A))$. Therefore $F^+(A)$ is g^b-open in X containing x and clearly $F(F^+(A)) \subseteq A$. Hence F is upper g^b-continuous.

Proposition 3.6 Let $F : X \rightarrow Y$ be upper g^b-continuous and $Y \subseteq Z$. If Y is preclosed subset of a topological space Z then $F : X \rightarrow Z$ is upper g^b-continuous.

proof. Let K be any preclosed set in Z. Then $K \cap Y$ is preclosed in Z, by Theorem(2.22) [2], it is preclosed in Y. Since F is upper g^b-continuous $F^+(K \cap Y)$ is g^b-closed in X but $F(x) \in Y$ for each $x \in X$, and thus $F^+(K) = F^+(K \cap Y)$ is g^b-closed subset of X. Therefore, by Proposition 3.2 $F : X \rightarrow Z$ is upper g^b-continuous.

Theorem 3.7 If $F : X \rightarrow Y$ is upper g^b-continuous and A is g^b-closed set in X then $F[A] : A \rightarrow Y$ is upper g^b-continuous.

proof. Let B be preclosed set in Y, since F is upper g^b-continuous, then $F^+(B)$ is g^b-closed in X. If $F^+(B) \cap A = A_1$ then A_1 is g^b-closed in X, since intersection of two g^b-closed is g^b-closed. Since $(F[A])^+(A) = A_1$ by Theorem 2.8, A_1 is g^b-closed set in A. Therefore $F[A]$ is upper g^b-continuous.

Theorem 3.8 If $F : X \rightarrow Y$ and $G : Y \rightarrow Z$ be any two multifunction, then $G \circ F : X \rightarrow Z$ is upper g^b-continuous if G is preirresolute multifunction and F is upper g^b-continuous.

proof. Let A be any preclosed set in Z. Since G is preirresolute multifunction then $G^+(A)$ is preclosed in Y, since F is upper g^b-continuous then $F^+(G^+(A))$ is g^b-closed in X. Hence $G \circ F$ is upper g^b-continuous.
Theorem 3.9 If $F : X \to Y$ is a upper g^*bp-continuous injection and Y is pre-T_1, then X is g^*bT_1.

proof. Assume that Y is pre-T_1. For any distinct points x and y in X, there exists preopen set A and W such that $F(x) \in A$, $F(y) \notin A$, $F(x) \notin W$ and $F(y) \in W$. Since F is upper g^*bp-continuous, so there exists a g^*b-open sets G and H such that $x \in G$, $y \in H$, $F(G) \subseteq A$ and $F(H) \subseteq W$. Thus we obtain $y \notin G$, $x \notin H$. This show that X is g^*bT_1.

Theorem 3.10 If $F : X \to Y$ is upper g^*bp-continuous injection and Y is pre-T_2 then X is g^*bT_2.

proof. For any pair of distinct points x and y in X, there exists disjoint preopen sets U and V in Y such that $F(x) \in U$ and $F(y) \in V$. Since F is upper g^*bp-continuous, there exists g^*b-open sets G and H in X containing x and y, respectively, such that $F(G) \subseteq U$ and $F(H) \subseteq V$. Since U and V are disjoint, we have $U \cap V = \phi$, hence $G \cap H = \phi$. This shows that X is g^*bT_2.

Theorem 3.11 An upper g^*bp-continuous image of a g^*b-connected space is g^*b-connected for a multifunction F.

proof. Let $F : X \to Y$ be an upper g^*bp-continuous multifunction from a g^*b-connected space X onto a space Y. Suppose Y is not connected and let $Y = A \cup B$ be a partition of Y. Then both A and B are preopen and preclosed subset of Y. Since F is upper g^*bp-continuous, $F^+(A)$ and $F^+(B)$ are g^*b-open subset of X. In view of the fact that $F^+(A)$ and $F^+(B)$ are disjoint, $X = F^+(A) \cup F^+(B)$ is a partition of X. This is contrary to the connectedness of X.

Definition 3.12 A multifunction $F : X \to Y$ is said to be;

1. Upper almost g^*bp-continuous at a point $x \in X$ if for each preopen set A of Y such that $F(x) \in A$, there exists a g^*b-open set U containing x such that $F(U) \subseteq \text{IntCl}(A)$.
2. Lower almost g^*bp-continuous at a point $x \in X$ if for each preopen set A of Y such that $F(x) \in A$, there exists a g^*b-open set U of X containing x such that $F(U) \cap \text{IntCl}(A) \neq \phi$.
3. Upper (Lower) almost g^*bp-continuous if it has this property at each point of X.

Theorem 3.13 A multifunction $F : X \to Y$ is upper almost g^*bp-continuous if and only if for each $x \in X$ and each regular open set A containing $F(x)$, there exists a g^*b-open set U in X containing x such that $F(U) \subseteq A$.

proof. For every $x \in X$ and let A be any regular open set containing $F(x)$, then A is preopen set containing $F(x)$. Since F is upper almost g^*bp-continuous, then there exists a g^*b-open set U in X containing x such that $F(U) \subseteq \text{IntCl}(A)$. Conversely. Assume that for all regular open set A containing $F(x)$, there exists a g^*b-open set U in X containing x with $F(U) \subseteq A = \text{IntCl}(A)$ then A is preopen set and hence F is upper almost g^*bp-continuous.

Theorem 3.14 For a multifunction $F : X \to Y$, the following statements are equivalent:

1. F upper almost g^*bp-continuous,
2. $F^+(\text{IntCl}(A))$ is g^*b-open set in X, for each preopen set A in Y,
3. $F^-(\text{ClInt}(B))$ is g^*b-closed set in X, for each preclosed set B in Y,
4. $F^-(B)$ is g^*b-closed set in X, for each regular closed set B in Y,
5. $F^+(A)$ is g^*b-open set in X, for each regular open set A in Y.

proof. (1) \Rightarrow (2). Let A be any preopen set in Y. We have to show that $F^+(\text{IntCl}(A))$ is g^*b-open set in X. Let $x \in F^+(\text{IntCl}(A))$. Then $F(x) \in \text{IntCl}(A)$ and $\text{IntCl}(A)$ is regular open set in Y. Since F is upper almost g^*bp-continuous. By Theorem 3.13, there exists a g^*b-open set U of X containing x such that $F(U) \subseteq \text{IntCl}(A)$. Which implies that $x \in U \subseteq F^+(\text{IntCl}(A))$. Therefore, $F^+(\text{IntCl}(A))$ is g^*b-open set in X.

(2) \Rightarrow (3). Let B be any preclosed set of Y. Then $Y \setminus B$ is preopen set of Y. By (2), $F^+(\text{IntCl}(Y \setminus B))$ is g^*b-open set in X and $F^+(\text{IntCl}(Y \setminus B)) = F^+(\text{Int}(Y \setminus \text{Int}(B))) = F^+(Y \setminus \text{ClInt}(B)) = X \setminus F^-(\text{ClInt}(B))$ is g^*b-open set in X and hence $F^-(\text{ClInt}(B))$ is g^*b-closed set in X.

(3) \Rightarrow (4). Let B be any regular closed set of Y. Then B is preclosed set of Y. By (3), $F^-(\text{ClInt}(B))$ is g^*b-closed set in X since B is regular closed set, then $F^-(\text{ClInt}(B))$ is $F^-(B)$. Therefore $F^-(B)$ is g^*b-closed set in X.

Theorem 3.15 If a multifunction $F : X \rightarrow Y$ is upper $g^*\text{bp}$-continuous, then it is upper almost $g^*\text{bp}$-continuous but not conversely.

proof. Let A be any regular open set in Y, so is preopen in Y. Since F is upper $g^*\text{bp}$-continuous then $F^+(A)$ is $g^*\text{bp}$-open in X. Hence by Theorem 3.14, F is upper almost $g^*\text{bp}$-continuous.

Remark 3.16 The converse of the theorem need not be true in general.

Example 3.17 Consider $X = Y = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$, $\sigma = \{\emptyset, \{a\}, Y\}$ and with the identity multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, F is upper almost $g^*\text{bp}$-continuous but not upper $g^*\text{bp}$-continuous since for preclosed set $B = \{b, c\}$ in Y, $F^+(B) = \{b, c\}$ is not $g^*\text{bp}$-closed in X.

Theorem 3.18 If a multifunction $F : X \rightarrow Y$ is upper almost α-continuous then F is upper almost $g^*\text{bp}$-continuous.

proof. Let A be any regular open set in Y. Since F is upper almost α-continuous then $F^+(A)$ is semi open set in X, hence by Theorem (3.10) [24], is $g^*\text{bp}$-open in X. Therefore, F is upper almost $g^*\text{bp}$-continuous.

Theorem 3.19 If a multifunction $F : X \rightarrow Y$ is upper δ-continuous, then F is upper almost $g^*\text{bp}$-continuous.

proof. Let $x \in X$ and let A be any preopen set in Y, then $A \subseteq \text{IntCl}(A)$. Since F is upper δ-continuous, there exists an regular open set U of X containing x such that $F(U) \subseteq \text{IntCl}(\text{IntCl}(A))$, then $F(U) \subseteq \text{IntCl}(A)$. Since U is regular open set, then it is preopen and by Theorem (3.12) [24], U is $g^*\text{bp}$-open set of X. Therefore, F is upper almost $g^*\text{bp}$-continuous.

Theorem 3.20 If $F : X \rightarrow Y$ is upper almost $g^*\text{bp}$-continuous function, then we have $F^-(A) \subseteq g^*\text{Int}(F^+(\text{IntCl}(A)))$ for every preopen set A in Y.

proof. Let A be any preopen set in Y, then $A \subseteq \text{IntCl}(A)$. Since $\text{IntCl}(A)$ is regular open set in Y, and Since F is upper almost $g^*\text{bp}$-continuous multifunction, so by Theorem 3.14, $F^+(\text{IntCl}(A))$ is $g^*\text{bp}$-open set in X. So $F^+(A) \subseteq F^+(\text{IntCl}(A)) = g^*\text{Int}(F^+(\text{IntCl}(A)))$.

Corollary 3.21 If $F : X \rightarrow Y$ is lower almost $g^*\text{bp}$-continuous function, then we have $g^*\text{bCl}(F^-(\text{ClInt}(E))) \subseteq F^-(E)$, for every preclosed set E in Y.

proof. Let E be any preclosed set in Y, so $Y \setminus E$ is preopen. By Theorem 3.20, $F^+(Y \setminus E) \subseteq g^*\text{Int}(F^+(Y \setminus \text{ClInt}(E)))$ this implies that $X \setminus F^-(E) \subseteq g^*\text{Int}(F^+(Y \setminus \text{ClInt}(E)))$, then $X \setminus F^-(E) \subseteq g^*\text{Int}(X \setminus F^-(\text{ClInt}(E)))$, it follow that $X \setminus F^-(E) \subseteq X \setminus g^*\text{bCl}(F^-(\text{ClInt}(E)))$. Hence $g^*\text{bCl}(F^-(\text{ClInt}(E))) \subseteq F^-(E)$.

Theorem 3.22 Let $F : X \rightarrow Y$ be an upper almost $g^*\text{bp}$-continuous. If Y is preopen set in Z, then $F : X \rightarrow Z$ is upper almost $g^*\text{bp}$-continuous.

proof. Let A be any regular open set of Z. Since Y is preopen, then $A \cap Y$ is regular open set in Y [see [10]]. Since F is upper almost $g^*\text{bp}$-continuous then $F^+(A \cap Y)$ is $g^*\text{bp}$-open set in X. But $F(x) \in Y$ for each $x \in X$. Thus $F^+(A) = F^+(A \cap Y)$ is a $g^*\text{bp}$-open set in X. Therefore F is upper almost $g^*\text{bp}$-continuous.

Theorem 3.23 If $F : X \rightarrow Y$ is an upper almost $g^*\text{bp}$-continuous multifunction and A is $g^*\text{b}$-closed set of X, then the restriction function $F|A : A \rightarrow Y$ is almost $g^*\text{bp}$-continuous multifunction.

proof. Let B be any regular closed set of Y. Since F is upper almost $g^*\text{bp}$-continuous multifunction, then by Theorem 3.14, $F^+(B)$ is $g^*\text{b}$-closed set in X, and $(F|A)^+(B) = A \cap F^+(B)$. Since A is $g^*\text{b}$-closed, so $A \cap F^+(B)$ is $g^*\text{b}$-closed set in A (see Theorem 2.8). Hence $F|A$ is upper almost $g^*\text{bp}$-continuous multifunction.
Theorem 3.24 If $F: X \to Y$ is an upper almost g^*bp-continuous injection and Y is r-T_1, then X is $g^*b - T_1$.

proof. Assume that Y is r-T_1. For any distinct points x and y in X, there exists regular open set A and W such that $F(x) \in A$, $F(y) \notin A$, $F(x) \notin W$ and $F(y) \in W$. Since F is upper almost g^*bp-continuous there exists a g^*b-open set G and H such that $x \in G$, $y \in H$, $F(G) \subseteq A$ and $F(H) \subseteq W$. Thus we obtain $y \notin G$, $x \notin H$. This show that X is $g^*b - T_1$.

Theorem 3.25 If $F: X \to Y$ is upper almost g^*bp-continuous and Y is pre-T_2 then X is $g^*b - T_2$.

proof. For any pair of distinct points x and y in X, there exists disjoint preopen sets U and V in Y such that $F(x) \in U$ and $F(y) \in V$. Since F is upper almost g^*bp-continuous, there exists g^*b-open sets G and H in X containing x and y, respectively, such that $F(G) \subseteq IntCl(U)$ and $F(H) \subseteq IntCl(V)$. Since U and V are disjoint, we have $IntCl(U) \cap IntCl(V) = \phi$, hence $G \cap H = \phi$. This shows that X is $g^*b - T_2$.

4. Weakly g^*bp-continuous multifunction

Definition 4.1 A multifunction $F: X \to Y$ is said to be:

1. Upper weakly g^*bp-continuous at a point $x \in X$ if for each preopen set A of Y such that $F(x) \in A$, there exists a g^*b-open set U containing x such that $F(U) \subseteq Cl(A)$.

2. Lower weakly g^*bp-continuous at a point $x \in X$ if for each preopen set A of Y such that $F(x) \in A$, there exists a g^*b-open set U of X containing x such that $F(U) \cap Cl(A) \neq \phi$.

3. Upper (Lower) almost g^*bp-continuous if it has this property at each point of X.

Theorem 4.2 Let $F: X \to Y$ be a multifunction. If $F^+(ClA)$ is g^*b-open set in X for each preopen set A in Y, then F is upper weakly g^*bp-continuous.

proof. Let $x \in X$ and let A be any preopen set of Y containing $F(x)$. Then $x \in F^+(A) \subseteq F^+(ClA)$. By hypothesis, we have $F^+(ClA)$ is g^*b-open set in X containing x. Therefore, we obtain $F(F^+(ClA)) \subseteq ClA$. Hence F is upper weakly g^*bp-continuous.

It is obvious that upper almost g^*bp-continuous implies upper weakly g^*bp-continuous. However, the converse is not true in general as it shown in the following example.

Example 4.3 Consider $X = Y = \{a, b, c, d\}$ with the topology $\tau = \sigma = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, with identity multifunction $F: (X, \tau) \to (Y, \sigma)$ F is upper weakly g^*bp-continuous but not upper almost g^*bp-continuous since for a preopen set $B = \{a, b\}$ in Y $F^+(IntClB) = \{a, b\}$ which is not g^*b-open in X.

Theorem 4.4 If $F: X \to Y$ is upper weakly g^*bp-continuous multifunction and Y is almost p-regular, then F is upper almost g^*bp-continuous.

proof. Let $x \in X$ and let A be preopen set of Y. By the almost p-regularity of Y there exists a regular open set G of Y such that $F(x) \in G \subseteq Cl(G) \subseteq IntCl(A)$. Since F is upper weakly g^*bp-continuous, there exists a g^*b-open set U in X such that $F(U) \subseteq Cl(G) \subseteq IntCl(A)$. Therefore F is almost g^*bp-continuous.

Theorem 4.5 Let $F: X \to Y$ be a multifunction. If for each $x \in X$ and each regular closed set R of Y containing $F(x)$, there exists a g^*b-open set U in X containing x such that $F(U) \subseteq R$, then F is upper weakly g^*bp-continuous.

proof. Let $x \in X$ and let A be any preopen set of Y containing $F(x)$. Then put $R = Cl(A)$ which is a regular closed set of Y containing $F(x)$. By hypothesis, there exists a g^*b-open set U in X containing x such that $F(U) \subseteq R$. Hence F is upper weakly g^*bp-continuous.

Theorem 4.6 Let $F: X \to Y$ be a multifunction. If the inverse image of each regular closed set of Y is a g^*b-open set in X, then F is upper weakly g^*bp-continuous.

proof. Let A be any preopen set of Y. Then $Cl(A)$ is a regular closed set in Y. By hypothesis, we have $F^+(Cl(A))$ is a g^*b-open set in X. Therefore, by Theorem 4.2, F is upper weakly g^*bp-continuous.

Corollary 4.7 Let $F: X \to Y$ be a multifunction. If the inverse image of each regular open set of Y is a g^*b-closed set in X, then F is upper weakly g^*bp-continuous.
Corollary 4.8 Let $F : X \rightarrow Y$ be a multifunction. If $F^+(\text{Int}F)$ is g^*b-closed set in X for each preclosed set F in Y, then F is upper weakly g^*b-continuous.

Theorem 4.9 Let $F : X \rightarrow Y$ be upper weakly g^*b-continuous multifunction, if A is g^*b-closed subset of X, then the restriction $F|A : A \rightarrow Y$ is upper weakly g^*b-continuous in the subspace A.

proof. Let $x \in A$ and let B be a preclosed set of Y containing $F(x)$. Since F is upper weakly g^*b-continuous, by Corollary 4.8, $F^+(\text{Int}B)$ is g^*b-closed set in X, and $(F|A)^+(\text{Int}B) = A \cap F^+(\text{Int}B)$ is g^*b-closed in X, by Theorem (3.30)[24], it is g^*b-closed in A. Hence $F|A$ is upper weakly g^*b-continuous.

Theorem 4.10 Let $F : X \rightarrow Y$ be upper weakly g^*b-continuous multifunction and for each $x \in X$. If Y is any subset of Z containing $F(x)$, then $F : X \rightarrow Z$ is upper weakly g^*b-continuous.

proof. Let $x \in X$ and A be any preclosed set of Z containing $F(x)$. Then $A \cap Y$ is preclosed in Y containing $F(x)$. Since $f : X \rightarrow Y$ is upper weakly g^*b-continuous, there exists a g^*b-open set U of X containing x such that $F(U) \subseteq \text{Cl}(A \cap Y)$ and hence $F(U) \subseteq \text{Cl}A$. Therefore, $F : X \rightarrow Z$ is upper weakly g^*b-continuous.

Theorem 4.11 For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

1. f is upper weakly g^*b-continuous,
2. $g^*bClF^+(\text{IntpCl}B) \subseteq F^+(\text{pCl}B)$, for each $B \subseteq Y$,
3. $F^-(\text{pInt}B) \subseteq g^*b\text{Int}F^-(\text{ClpInt}B)$, for each $B \subseteq Y$,
4. $F^-(\text{pIntpCl}A) \subseteq g^*b\text{Int}F^-(\text{Clp}A)$, for each preclosed set A of Y,
5. $F^-(A) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$, for each regular preclosed set A of Y,
6. $g^*bClF^+(\text{IntF}) \subseteq F^+(\text{Cl}F)$, for each regular preclosed set F of Y,
7. $g^*bClF^+(\text{IntF}) \subseteq F^+(\text{Cl}F)$, for each preclosed set F of Y,
8. $g^*bClF^+(A) \subseteq F^+(\text{Cl}A)$, for each preclosed set A of Y,
9. $F^-(\text{IntF}) \subseteq g^*b\text{Int}F^-(F)$, for each preclosed set F of Y.

proof. (1) \Rightarrow (2). Let B be any subset of Y. Assume that $x \notin F^+(\text{pCl}B)$. Then $F(x) \notin \text{pCl}B$ and there exists a preclosed set A containing $F(x)$ such that $A \cap B = \emptyset$, hence $A \cap \text{IntpCl}B = \emptyset$, then $A \subseteq Y \setminus (\text{IntpCl}B)$ and $\text{Cl}A \cap \text{IntpCl}B = \emptyset$. Hence, by (1), there exists a g^*b-open set U of X containing x such that $F(U) \subseteq \text{Cl}A$. Therefore, we have $f(U) \cap \text{IntpCl}B = \emptyset$ which implies $U \cap F^+(\text{IntpCl}B) = \emptyset$ and hence $x \notin g^*bClF^+(\text{IntpCl}B)$. Therefore, we obtain $g^*bClF^+(\text{IntpCl}B) \subseteq F^+(\text{pCl}B)$.

(2) \Rightarrow (3). Let B be any subset of Y. Then apply (2) to $Y \setminus B$ we obtain $g^*bClF^+(\text{IntpCl}(Y \setminus B)) \subseteq F^+(\text{pCl}(Y \setminus B)) \Rightarrow g^*bClF^+(\text{IntpCl}(Y \setminus pIntB)) \subseteq F^+(Y \setminus pIntB) \Rightarrow \text{ClpInt}F(Y \setminus pIntB) \subseteq \text{ClpInt}F(X \setminus F^+(\text{ClpIntB})) \subseteq X \setminus F^+(\text{ClpIntB}) \Rightarrow g^*bClF(X \setminus F^+(\text{ClpIntB})) \subseteq g^*bClF^+(\text{IntpCl}A)$, for each preclosed set A of Y.

(3) \Rightarrow (4). Let A be any preclosed set of Y. Then apply (3) to $pClA$ we obtain $F^-(pClpIntClA) \subseteq g^*b\text{Int}F^-(\text{Cl}pClIntClA) = g^*b\text{Int}F^-(\text{Cl}A)$. Therefore we obtain $F^-(pClpIntClA) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$.

(4) \Rightarrow (5). Let A be any regular preclosed set of Y. Then A is preclosed set of Y. By (4) we have $F^-(A) = F^-(pClpIntClA) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$. Therefore we obtain $F^-(A) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$.

(5) \Rightarrow (6). Let F be any regular preclosed set of Y. Then $Y \setminus F$ is a regular preclosed set of Y. By (5), we have $F^-(Y \setminus F) \subseteq g^*b\text{Int}F^-(\text{Cl}(Y \setminus F)) \Rightarrow X \setminus F^+(F) \subseteq g^*b\text{Int}F^-(Y \setminus \text{Int}F) \Rightarrow X \setminus F^+(F) \subseteq g^*b\text{Int}F^-(Y \setminus \text{Int}F) \Rightarrow F^-(Y \setminus F) \subseteq g^*b\text{Int}F^-(Y \setminus \text{Int}F) \Rightarrow F^-(F) \subseteq g^*b\text{Cl}F^+(\text{Int}F) \subseteq F^+(\text{Int}F) \subseteq F^+(F)$. Hence $g^*b\text{Cl}F^+(\text{Int}F) \subseteq F^+(F)$.

(6) \Rightarrow (7). Let F be any preclosed set of Y. Then $\text{ClpInt}F$ is regular preclosed set of Y. By (6) we have $g^*b\text{Cl}F^+(\text{IntpClpInt}F) = g^*b\text{Cl}F^+(\text{Int}F) \subseteq F^+(\text{pClpInt}F)$. Therefore we obtain $g^*b\text{Cl}F^+(\text{Int}F) \subseteq F^+(\text{pClpInt}F)$.

(7) \Rightarrow (8). Let A be any preclosed set of Y. Then by (7), we have $g^*b\text{Cl}F^+(A) \subseteq g^*b\text{Cl}F^+(\text{Int}ClA) \subseteq F^+(\text{pClpInt}ClA) \subseteq F^+(\text{Cl}A) \subseteq F^+(\text{Cl}A)$. Therefore we obtain $g^*b\text{Cl}F^+(\text{Int}F) \subseteq F^+(\text{Cl}F)$.

(8) \Rightarrow (9). Let F be any preclosed set of Y. Then $Y \setminus F$ is preclosed set of Y. By (8), we have $g^*b\text{Cl}F^+(Y \setminus F) \subseteq F^+(\text{Cl}F) \Rightarrow g^*b\text{Cl}(X \setminus F^-) \subseteq F^+(Y \setminus \text{Int}F) \Rightarrow X \setminus g^*b\text{Int}F^-(F) \subseteq X \setminus F^-(\text{Int}F) \subseteq F^-(\text{Int}F) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$. Therefore we obtain $F^-(\text{Int}F) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$.

(9) \Rightarrow (1). Let $x \in X$ and let A be any preclosed set in Y containing $F(x)$. Then $x \in F^-(A)$ and $\text{Cl}A$ is a closed set, hence preclosed, in Y. By (9), we have $x \in F^-(A) \subseteq F^-(\text{Int}ClA) \subseteq g^*b\text{Int}F^-(\text{Cl}A)$. If we put $U = g^*b\text{Int}F^-(\text{Cl}A)$, then we obtain that $x \in U$ and $F(U) \subseteq \text{Cl}A$. Therefore, F is weakly g^*b-continuous.
Theorem 4.12 The following are equivalent for a function $f: X \to Y$.

1. F is upper weakly $g^{*}bp$-continuous,
2. $F(g^{*}bCl(A)) \subseteq Cl_{0}(F(A))$ for each subset A of X,
3. $g^{*}bCl(F^{+}(B)) \subseteq F^{+}(Cl_{0}(B))$ for each subset B of Y,
4. $g^{*}bCl(F^{+}(Int(Cl_{0}(B)))) \subseteq F^{+}(Cl_{0}(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2). Let A be any subset of X. Suppose that $F(g^{*}bCl(A)) \not\subseteq Cl_{0}(F(A))$. Then there exists $y \in F(g^{*}bCl(A))$ such that $y \notin Cl_{0}(F(A))$, so there exists an open set G in Y containing y such that $ClG \cap F(A) = \phi$. If $F^{+}(y) = \phi$, then there is nothing to prove. Suppose that x be an arbitrary point of $F^{+}(y)$, so $F(x) \in G$. Since G is open then it is preopen in Y and by (1), there exists a $g^{*}b$-open set U of X containing x such that $F(U) \subseteq Cl(G)$. Therefore, we have $F(U) \cap F(A) = \phi$, so $x \notin g^{*}bCl(A)$. Hence $y \notin F(g^{*}bCl(A))$ which is a contradiction. Therefore, $F(g^{*}bCl(A)) \subseteq Cl_{0}(F(A))$.

(2) \Rightarrow (3). Let B be any subset of Y. Set $A = F^{+}(B)$ in (2), then we have $f(g^{*}bCl(F^{+}(B))) \subseteq Cl_{0}(B)$ and $g^{*}bCl(F^{+}(B)) \subseteq F^{+}(Cl_{0}(B))$.

(3) \Rightarrow (4). Let B be any subset of Y. Since $Cl_{0}(B)$ is closed in Y hence is preclosed in Y. We have $g^{*}bCl(F^{+}(Int(Cl_{0}(B)))) \subseteq F^{+}(Cl(Cl_{0}(B)))) \subseteq F^{+}(Cl(Cl_{0}(B)))) \subseteq F^{+}(Cl_{0}(B))$.

(4) \Rightarrow (1). Let G be any preopen set of Y, then $G \subseteq IntCl(G)$. Apply (4) to $IntCl(G)$, we get $g^{*}bClF^{+}(IntCl_{0}(IntCl(G))) \subseteq F^{+}(Cl[IntCl(G)]))$. By Theorem 2.7, we have $g^{*}ClF^{+}(IntCl_{0}(IntCl(G))) \subseteq F^{+}(Cl[IntCl(G)])$. So, we get, $g^{*}bCl(F^{+}(G)) \subseteq g^{*}bClF^{+}(IntCl(G)) \subseteq F^{+}(Cl[IntCl(G)]) \subseteq F^{+}(Cl(G))$. Hence, by Theorem 4.11, F is upper weakly $g^{*}bp$-continuous.

Corollary 4.13 If a multifunction $F: X \to Y$ is upper weakly $g^{*}bp$-continuous, then $F^{+}(A)$ is $g^{*}b$-closed in X for every θ-closed set A in Y.

Proof. If A is θ-closed, so by Theorem 4.12, we obtain that $g^{*}bCl(F^{+}(A)) \subseteq F^{+}(Cl_{0}(A)) = F^{+}(A)$. Therefore, $F^{+}(A)$ is $g^{*}b$-closed.

Corollary 4.14 Let $F: X \to Y$ be any multifunction. If $F^{+}(Cl_{0}(B))$ is $g^{*}b$-closed in X for each subset B of Y, then $F: X \to Y$ is upper weakly $g^{*}bp$-continuous.

Proof. Since $F^{+}(Cl_{0}(B))$ is $g^{*}b$-closed in X, we have $g^{*}bCl(F^{+}(B)) \subseteq g^{*}bClF^{+}(Cl_{0}(B)) = F^{+}(Cl_{0}(B))$. Therefore, by Theorem 4.12, F is upper weakly $g^{*}bp$-continuous.

Theorem 4.15 A multifunction $F: X \to Y$ is upper weakly $g^{*}bp$-continuous if and only if $F^{+}(A) \subseteq g^{*}bIntF^{+}(Cl(A))$ for each preopen set A in Y.

Proof. Necessity. Let F be upper weakly $g^{*}bp$-continuous and let A be any preopen set of Y, then $A \subseteq IntCl(A)$. Therefore, by Theorem 4.11, we get $F^{+}(A) \subseteq F^{+}(IntCl(A)) \subseteq g^{*}bIntF^{+}(Cl(A))$. Hence, $F^{+}(A) \subseteq g^{*}bIntF^{+}(Cl(A))$.

Sufficiency. Let A be any regular preopen set of Y, then A is preopen set in Y. By hypothesis, we have $F^{+}(A) \subseteq g^{*}bIntF^{+}(Cl(A))$. Therefore, by Theorem 4.11, F is upper weakly $g^{*}bp$-continuous.

Corollary 4.16 A multifunction $F: X \to Y$ is upper weakly $g^{*}bp$-continuous if and only if $g^{*}bClF^{+}(Int(F)) \subseteq F^{+}(F)$ for each preopen set F in Y.

Theorem 4.17 If $F: X \to Y$ is a upper weakly $g^{*}bp$-continuous function and Y is extremally disconnected space, then F is upper almost $g^{*}bp$-continuous.

Proof. Let $x \in X$ and let A be any preopen set of Y containing $F(x)$. Since F is upper weakly $g^{*}bp$-continuous, there exists a $g^{*}b$-open set U of X containing x such that $F(U) \subseteq Cl(A)$. Since Y is extremally disconnected, then $F(U) \subseteq IntCl(A)$. Therefore, F is upper almost $g^{*}bp$-continuous.

Theorem 4.18 If $F: X \to Y$ is upper weakly $g^{*}bp$-continuous injection and Y is pre-T_{1} then X is $g^{*}b-T_{1}$.

Proof. Assume that Y is pre-T_{1}. For any distinct points x and y in X, there exist preopen sets A and W such that $F(x) \in A$, $F(y) \notin A$, $F(x) \notin W$ and $F(y) \in W$. Since F is upper weakly $g^{*}bp$-continuous, there exists a $g^{*}b$-open sets G and H in X containing x and y respectively, such that $F(G) \subseteq Cl(U)$, $F(H) \subseteq Cl(A)$, $F(H) \subseteq Cl(W)$ since A and W are disjoint then $Cl(A)$ and $Cl(W)$ are disjoint. Thus we obtain $y \notin G$, $x \notin H$. This show that X is $g^{*}b-T_{1}$.
Theorem 4.19 If $F : X \rightarrow Y$ is upper weakly g^*bp-continuous and Y is pre-T_2 then X is $g^*b - T_2$.

proof. For any pair of distinct points x and y in X, there exist disjoint preopen sets U and V in Y such that $F(x) \in U$ and $F(y) \in V$. Since F is upper weakly g^*bp-continuous, there exist g^*b-open sets G and H in X containing x and y, respectively, such that $F(G) \subseteq Cl(U)$ and $F(H) \subseteq Cl(V)$. Since U and V are disjoint, we have $Cl(U) \cap Cl(V) = \phi$, hence $G \cap H = \phi$. This shows that X is $g^*b - T_2$.

5. **Contra g^*bp-continuous function**

Definition 5.1 A multifunction $F : X \rightarrow Y$ is called:

1. Upper contra g^*bp-continuous at $x \in X$ if for each preclosed set A such that $x \in F^+(A)$, there exists a g^*b-open set U containing x such that $U \subseteq F^+(A)$.

2. Lower contra g^*bp-continuous at $x \in X$ if for each preclosed set A such that $x \in F^-(A)$, there exists a g^*b-open set U containing x such that $U \subseteq F^-(A)$.

3. Lower (upper) contra g^*bp-continuous if F has this property at each point of X.

Theorem 5.2 The following are equivalent for a multifunction $F : X \rightarrow Y$.

1. F is upper contra g^*bp-continuous.
2. $F^+(A)$ is g^*b-open set for any preclosed set $A \subseteq Y$.
3. $F^-(U)$ is g^*b-closed set for any preopen set $U \subseteq Y$.
4. For each $x \in X$ and each preclosed set A containing $F(x)$, there exists a g^*b-open set U containing x such that if $y \in U$, then $F(y) \subseteq A$.

proof. (1) \Rightarrow (2). Let A be a preclosed set in Y and $x \in F^+(A)$. Since F is upper contra g^*bp-continuous, there exists a g^*b-open set U containing x such that $U \subseteq F^+(A)$. Thus, $F^+(A)$ is g^*b-open. The converse of the proof is similar. (2) \Rightarrow (3). This follows from the fact that $F^+(Y \setminus A) = X \setminus F^-(A)$ for every subset A of Y. (1) \Leftrightarrow (4). Obvious.

Theorem 5.3 The following are equivalent for a multifunction $F : X \rightarrow Y$.

1. F is upper contra g^*bp-continuous.
2. $F^+(A)$ is g^*b-open set for any preclosed set $A \subseteq Y$.
3. $F^+(U)$ is g^*b-closed set for any preopen set $U \subseteq Y$.
4. For each $x \in X$ and each preclosed set A such that $F(x) \cap A \neq \phi$, if $y \in U$, then $F(y) \subseteq A$, there exists a g^*b-open set U containing x such that if $y \in U$, then $F(y) \cap A \neq \phi$.

proof. The proof is similar to the proof of Theorem 5.2.

Theorem 5.4 If a multifunction $F : X \rightarrow Y$ is upper contra g^*bp-continuous and Y is preregular, then F is upper g^*bp-continuous.

proof. Let $x \in X$ and A be preopen set of Y containing $F(x)$. Since Y is preregular, then there exists a preopen set G in Y containing $F(x)$ such that $pCl(G) \subseteq A$. Since F is upper contra g^*bp-continuous, then by Theorem 5.2, there exists a g^*b-open set U in X containing x such that $F(U) \subseteq pCl(G)$. Then $F(U) \subseteq pCl(G) \subseteq A$. Hence F is upper g^*bp-continuous.

Theorem 5.5 If a multifunction $F : X \rightarrow Y$ is upper contra g^*bp-continuous, then F is upper weakly g^*bp-continuous.
proof. Let A be any preopen set in Y. Since F is upper contra g^*bp-continuous, then $F^+(A)$ is g^*b-closed set of X. Hence, by Theorem 4.2, we obtain that F is upper weakly g^*bp-continuous.

The converse of Theorem 5.5 is not true in general as it is shown in the following example.

Example 5.6 Consider $X = Y = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{b\}, \{a, b\}, Y\}$ and a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is defined by $F(a) = c$, $F(b) = b$ and $F(c) = a$, F is upper weakly g^*bp-continuous but not upper contra g^*bp-continuous since for preopen set $B = \{a\}$ in Y and $F^{-1}(B) = \{a, b\}$ is not g^*b-closed in X.

Theorem 5.7 If a multifunction $F : X \rightarrow Y$ is upper contra g^*bp-continuous and X is g^*b-space, then F is upper contra continuous.

proof. Let A be an open set in Y, then i is preopen. Since F is upper contra g^*bp-continuous, so $F^+(A)$ is g^*b-closed in X. Since X is g^*b-space, hence, $F^+(A)$ is closed in X. Thus F is upper contra continuous.

6. Multifunctions with g^*bp-closed graphs

Definition 6.1 Let $F : X \rightarrow Y$ be any multifunction, the graph of the function F is denoted by $G(F)$ and is said to be g^*bp-closed if for each $(x, y) \notin G(F)$, there exists a g^*b-open set U in X containing x, and a preopen set V of Y containing y such that $(U \times V) \cap G(F) = \phi$.

Lemma 6.2 The multifunction $F : X \rightarrow Y$ has a g^*bp-closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq F(x)$, there exists a g^*b-open set U and a preopen set V containing x and y respectively, such that $F(U) \cap V = \phi$.

proof. Follows from Definition 6.1.

Proposition 6.3 If $F : X \rightarrow Y$ is upper weakly g^*bp-continuous, and Y is pre-T_2 space, then $G(F)$ is a g^*bp-closed graph.

proof. Suppose that $(x, y) \notin G(F)$, then $F(x) \neq y$. By the fact that Y is pre-T_2, there exist preopen sets W and V such that $F(x) \in W$, $y \in V$ and $W \cap V = \phi$. It follow from above that $F(U) \subseteq CIW$. Hence, we have $F(U) \cap V = \phi$. This means that $G(F)$ is g^*bp-closed graph.

Theorem 6.4 Let $F : X \rightarrow Y$ be a preirresolute multifunction where X is an arbitrary topological space and Y is pre-T_2. Then $G(f)$ is g^*bp-closed.

proof. Let $(x, y) \notin G(F)$. Then $F(x) \neq y$. Since Y is pre-T_2, there exists $U \in PO(Y, F(x))$, $V \in PO(Y, y)$ such that $U \cap V = \phi$. It is upper preirresolute, this implies that $F^+(U) = W \subseteq PO(X, x)$, $W \subseteq g^*bO(X, x)$. Hence $F(U) = F(F^+(U)) \subseteq U$. It follow from above that $F(U) \cap V = \phi$. Therefore, by the Lemma 6.2, we obtain that $G(F)$ is g^*bp-closed.

Definition 6.5 The graph $G(F)$ of a multifunction $F : X \rightarrow Y$ is called contra g^*bp-closed if for each $(x, y) \notin G(F)$, there exist $U \in g^*bO(X, x)$, $V \in PC(Y, y)$ such that $(U \times V) \cap G(F) = \phi$.

Lemma 6.6 The graph $G(F)$ of a multifunction $F : X \rightarrow Y$ is contra g^*bp-closed if and only if for each $(x, y) \notin G(F)$, there exist $U \in g^*bO(X, x)$, $V \in PC(Y, y)$ such that $F(U) \cap V = \phi$.

Theorem 6.7 If a multifunction $F : X \rightarrow Y$ is upper contra g^*bp-continuous and Y is pre-Urysohn, then $G(F)$ is contra g^*bp-closed.

proof. Let $(x, y) \notin G(F)$. Then $y \neq F(x)$ and there exists preopen sets H_1, H_2 such that $F(x) \in H_1$, $y \in H_2$ and $pCl(H_1) \cap pCl(H_2) = \phi$. From hypothesis, there exists $V \in g^*bO(X, x)$ such that $F(V) \subseteq pCl(H_1)$. Therefore, we obtain $F(V) \cap pCl(H_2) = \phi$. This shows that $G(F)$ is contra g^*bp-closed.

Theorem 6.8 If a multifunction $F : X \rightarrow Y$ is upper g^*bp-continuous and Y is pre-T_1, then $G(F)$ is upper contra g^*bp-closed.
It follows that $U \in F$. Hence F. References

Since upper g^*bp-continuous, there exists g^b-open set U in X containing x such that $F(U) \subseteq H$. Therefore we obtain $F(U) \cap (Y - H) = \phi$ and $(Y - H) \in PC(Y, y)$. This show that $G(F)$ is contra g^*bp-closed.

Theorem 6.9 Let $F : X \to Y$ be a multifunction and $G : X \to X \times Y$ the graph function of F, defined by $G(x) = (x, F(x))$ for every $x \in X$. If G is upper contra g^*bp-continuous, then F is upper contra g^*bp-continuous.

proof. Let U be any preopen set in Y, then $X \times U$ is preopen set in $X \times Y$. Since G is upper contra g^*bp-continuous. It follows that $F^+(U) = G^+(X \times U)$ is an g^b-closed in X. Thus F is upper contra g^*bp-continuous.

Definition 6.10 Let X and Y be topological spaces. A multifunction $F : X \to Y$ is said to have strongly g^*bp-closed graph if for each $(x, y) \notin G(F)$, there exists $U \in g^bO(X, x)$, $V \in PO(Y, y)$ such that $(U \times Cl(V)) \cap G(F) = \phi$.

Lemma 6.11 A multifunction $F : X \to Y$ has strongly g^*bp-closed graph if for each $(x, y) \notin G(F)$, there exists $U \in g^bO(X, x)$, $V \in PO(Y, y)$ such that $F(U) \cap Cl(V) = \phi$.

Remark 6.12 Evidently every multifunction has a strongly g^*bp-closed graph it has a g^*bp-closed graph but the converse is not true as it is shown by the following example.

Example 6.13 Let $X = Y = \{a, b\}$ and $\tau = \{\phi, \{a\}, X\}$, $\sigma = \{\phi, \{b\}, Y\}$, then the identity multifunction $I : (X, \tau) \to (Y, \sigma)$ has a g^*bp-closed graph but it has not strongly g^*bp-closed graph.

Theorem 6.14 If $F : X \to Y$ is upper almost g^*bp-continuous and Y is pre-T_2, then $G(F)$ is strongly g^*bp-closed graph.

proof. Let $(x, y) \notin G(F)$. Since Y is pre-T_2, then there exists preopen set V of Y containing y such that $F(x) \notin Cl(V)$. Now $Cl(V)$ is regular closed set in Y. So, $Y \setminus Cl(V)$ is regular open in Y containing $F(x)$. Therefore, by the upper almost g^*bp-continuous of F there exists $U \in g^bO(X, x)$ such that $F(U) \subseteq Y \setminus Cl(V)$. Hence $F(U) \cap Cl(V) = \phi$.

Corollary 6.15 If $F : X \to Y$ is upper g^*bp-continuous and Y is pre-T_2 then $G(F)$ is strongly g^*bp-closed.

proof. Since upper g^*bp-continuous implies upper almost g^*bp-continuous, the result follows.

References

