Generalized Fibonacci-Lucas Polynomials

Mamta Singh 1, Omprakash Sikhwal 2*, Vibhoj Parsai 3 and Yogesh Kumar Gupta 4

1 Department of Mathematical sciences and computer application, Bhundelkhand university, Jhansi (U. P.), INDIA
2 Department of Mathematics, Mandsaur Institute of Technology, Mandsaur (M. P.), INDIA
3 Department of Mathematics, P. M. B. Guajarati science college, Indore (M. P.), INDIA
4 School of studies in Mathematics, Vikram university Ujjain (M. P.), INDIA

*Corresponding author E-mail: opbhssikhwal@rediffmail.com

Abstract

Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a century. The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In this paper, Generalized Fibonacci-Lucas Polynomials are introduced and defined by the recurrence relation

\[b_n(x) = xb_{n-1}(x) + b_{n-2}(x), \quad n \geq 2 \]

with \(b_0(x) = 2b \) and \(b_1(x) = x \). Some basic identities of Generalized Fibonacci-Lucas Polynomials are obtained by method of generating function.

Keywords: Fibonacci polynomials, Lucas polynomials, Generalized Fibonacci polynomials, Generalized Fibonacci-Lucas polynomials.

1. Introduction

Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a century. The Fibonacci polynomials and Lucas polynomials are closely related and widely investigated. Fibonacci polynomials appear in different frameworks. These polynomials are of great importance in the study of many subjects such as algebra, geometry, combinatorics, approximation theory, statistics and number theory itself. Moreover these polynomials have been applied in every branch of mathematics. Fibonacci polynomials are special cases of Chebyshev polynomials and have been studied on a more advanced level by many mathematicians.

Basin, S. L. [1] show that Q matrix generates a set of Fibonacci Polynomials satisfying the recurrence relation

\[f_{n+1}(x) = xf_n(x) + f_{n-1}(x), \quad n \geq 2 \text{ with } f_0(x) = 0, \quad f_1(x) = 1. \]

The Lucas Polynomials are defined by the recurrence formula

\[l_{n+1}(x) = xl_n(x) + l_{n-1}(x), \quad n \geq 2 \text{ with } l_0(x) = 2, \quad l_1(x) = x. \]

Generating function of Fibonacci polynomials is

\[\sum_{n=0}^{\infty} f_n(x)t^n = \left(1 - xt - t^2\right)^{-1}. \]

Generating function of Lucas polynomials is

\[\sum_{n=0}^{\infty} l_n(x)t^n = (2 - xt)(1 - xt - t^2)^{-1}. \]

Explicit sum formula for (1.1) is given by

\[f_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k-1} \]

where \(\binom{n}{k} \) is binomial coefficient and \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \).

Explicit sum formula for (1.10.3) is given by
\[I_n(x) = \sum_{k=0}^{\lfloor \frac{x}{2} \rfloor} \binom{n-k}{k} x^{-2k}, \]
(1.6)

where \(\binom{n}{k} \) is binomial coefficient and \(\lfloor x \rfloor \) is defined as the greatest integer less than or equal to \(x \).

The Fibonacci and Lucas polynomials possess many fascinating properties which have been studied in [2] to [14]. In this paper, Generalized Fibonacci-Lucas polynomials introduced and some basic identities are obtained by method of generating function.

2. Generalized Fibonacci-Lucas Polynomials

Generalized Fibonacci-Lucas Polynomials are defined by recurrence relation:

\[b_n(x) = x b_{n-1}(x) + b_{n-2}(x), \quad n \geq 2 \quad \text{with initial conditions} \quad b_0(x) = 2b \quad \text{and} \quad b_1(x) = s, \]
(2.1)

where \(b \) and \(s \) are integers.

The first few generalized Fibonacci-Lucas Polynomials are as follows:

\[b_0(x) = 2b, \]
\[b_1(x) = s, \]
\[b_2(x) = sx + 2b, \]
\[b_3(x) = sx^2 + 2bx + s \quad \text{and so on.} \]

If \(x = 1 \), then \(b_n(1) \) is generalized Fibonacci-Lucas sequence \(B_n \).

Generating function of Generalized Fibonacci-Lucas Polynomials is

\[\sum_{n=0}^{\infty} b_n(x)r^n = \frac{2b(1-xt)+st}{1-xt-r^2}. \]
(2.2)

Now, we present hyper geometric form of generating function

\[\sum_{n=0}^{\infty} b_n(x)r^n = \left[\frac{2b(1-xt)+st}{1-xt-r^2} \right]^{x} = \left[\frac{2b(1-xt)+st}{1-xt} \right]^{x} \]

\[= \left[2b(1-xt)+st \right] \sum_{n=0}^{\infty} \left(x+nt \right)^{x} r^n = \left[2b(1-xt)+st \right] \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} x^{n-m} r^{2m} \]

\[= \left[2b(1-xt)+st \right] \sum_{n=0}^{\infty} \frac{n!}{m!(n-m)!} \sum_{m=0}^{n} \frac{(n+m)!}{m!} x^{n-m} r^{2m} \]

\[= \left[2b(1-xt)+st \right] e^x \sum_{n=0}^{\infty} \frac{(n+m)!}{n! m!} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \sum_{n=0}^{\infty} \frac{(n+m)!}{n! m!} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \sum_{n=0}^{\infty} \frac{(n+m+1)!}{n! m!} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \sum_{n=0}^{\infty} \frac{(n+1)!}{n! m!} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \binom{n+1}{1} m \left(1 \right)_{m} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \sum_{n=0}^{\infty} \binom{n+1}{1} m \left(1 \right)_{m} \frac{(t)^n}{m!} \]

\[= \left[2b(1-xt)+st \right] e^x \left[\binom{n+1}{1} m \left(1 \right)_{m} \frac{(t)^n}{m!} \right]. \]

\[\sum_{n=0}^{\infty} b_n(x)r^n = \left[2b(1-xt)+st \right] e^x \left[\binom{n+1}{1} m \left(1 \right)_{m} \frac{(t)^n}{m!} \right]. \]
(2.3)

Relation between generalized Fibonacci-Lucas Polynomials, Fibonacci Polynomial and Lucas Polynomials is

\[b_n(x) = s f_n(x) + b (2-xt) I_n(x). \]
(2.4)

3. Identities of Generalized Fibonacci Lucas Polynomials

In this section, some basic identities of Fibonacci-Lucas polynomials have been obtained by method of generating function.
Theorem 3.1: Prove that
\[b_{n+1}(x) - b_{n-1}(x) = x b_n(x), \quad n \geq 1. \]

Proof: By generating function (2.2), we have
\[\sum_{n=0}^{\infty} b_n(x) t^n = \frac{2b(1-xt) + st}{(1-xt-t^2)^2}. \]
Differentiating with respect to \(t \), we get
\[\sum_{n=0}^{\infty} n b_n(x) t^{n-1} = \frac{2b(1-xt) + st}{(1-xt-t^2)^2} (1-xt+t^2) + (s-2bx) (1-xt-t^2)^{-3}, \]
\[(1-xt-t^2) \sum_{n=0}^{\infty} n b_n(x) t^{n-1} = \frac{2b(1-xt) + st}{(1-xt-t^2)^2} (1-xt+t^2) + (s-2bx) (1-xt-t^2)^{-3}, \]
\[(1-xt-t^2) \sum_{n=0}^{\infty} n b_n(x) t^{n-1} = (s+2b) \sum_{n=0}^{\infty} b_n(x) t^n + (s-2bx). \]
Equating the coefficient of \(t^n \) to get
\[(n+1)b_{n+1}(x) - nb_n(x) - (n-1)b_{n-1}(x) = x b_n(x) + 2b_{n-1}(x), \]
\[(n+1)b_{n+1}(x) - (n-1)b_{n-1}(x) = (n+1) \cdot x b_n(x), \]
\[b_{n+1}(x) - b_{n-1}(x) = x b_n(x). \]
(3.1)

Theorem 3.2: Prove that
\[b_{n+1}(x) = x b_{n-1}(x) + b_{n-1}(x) + b_{n-2}(x), \quad n \geq 2. \]

Proof: By generating function (2.2), we have
\[\sum_{n=0}^{\infty} b_n(x) t^n = \frac{2b(1-xt) + st}{(1-xt-t^2)^2}. \]
Differentiating with respect to \(t \), we get
\[\sum_{n=0}^{\infty} n b_n(x) t^{n-1} = \frac{2b(1-xt) + st}{(1-xt-t^2)^2} (1-xt+t^2) - (s-2bt) (1-xt-t^2)^{-3}, \]
\[(1-xt-t^2) \sum_{n=0}^{\infty} n b_n(x) t^{n-1} = (s-2bt) \sum_{n=0}^{\infty} b_n(x) t^n - 2bt \sum_{n=0}^{\infty} b_n(x) t^n + \sum_{n=0}^{\infty} x b_n(x) t^{n+1}, \]
Equating the coefficient of \(t^n \) to get
\[b_{n+1}(x) = x b_{n-1}(x) + b_{n-1}(x) + b_{n-2}(x), \quad n \geq 2. \]
(3.2)

Theorem 3.3: Prove that
\[b_{n+1}(x) = x b_{n-1}(x) + b_{n-1}(x) + b_{n-2}(x), \quad n \geq 1. \]

Proof: By 3.1, we have
\[b_{n+1}(x) - b_{n-1}(x) = x b_n(x), \quad n \geq 1. \]
Differentiating with respect to \(t \), we get
\[b_{n+1}(x) - b_{n-1}(x) = x b_n(x) + b_n(x), \]
\[b_{n+1}(x) = x b_n(x) + b_n(x) + b_{n-1}(x) \]
(3.3)

Theorem 3.4: Prove that
\[nb_n(x) = x b_{n-1}(x) + 2b_{n-1}(x), \quad n \geq 1 \]
\[xb_{n+1}(x) = (n+1)b_{n+1}(x) - 2b_n(x), \quad n \geq 1. \]

Proof: By generating function (2.2), we have
\[\sum_{n=0}^{\infty} b_n(x) t^n = \frac{2b(1-xt) + st}{(1-xt-t^2)^2}. \]
Differentiating with respect to \(t \), we get
\[
\sum_{n=0}^{\infty} nb_n(x) t^{n-1} = \left[s - 2bx(1 - xt - t^2)^{-1} \right] + \left[2b(1 - xt + xt)](1 - xt - t^2)^{-1}} \right] (x + 2r).
\]

(3.4)

Differentiating with respect to \(x \), to get
\[
\sum_{n=0}^{\infty} b_n(x) t^{n-1} = \left[-2bt(1 - xt - t^2)^{-1} \right] + \left[2b(1 - xt + xt)](1 - xt - t^2)^{-1} \right],
\]
\[
\sum_{n=0}^{\infty} b_n(x) t^{n-1} = \left[-2bt(1 - xt - t^2)^{-1} \right] + \left[2b(1 - xt + xt)](1 - xt - t^2)^{-1} \right],
\]
\[
\sum_{n=0}^{\infty} b_n(x) t^{n-1} + 2b(1 - xt - t^2)^{-1} = \left[2b(1 - xt + xt)](1 - xt - t^2)^{-1} \right].
\]

(3.5)

Using (3.5) in (3.4), to get
\[
\sum_{n=0}^{\infty} nb_n(x) t^{n-1} = \left[s - 2bx(1 - xt - t^2)^{-1} \right] + (x + 2r) \sum_{n=0}^{\infty} b_n(x) t^{n-1} + 2b(1 - xt - t^2)^{-1},
\]
\[
\sum_{n=0}^{\infty} nb_n(x) t^{n-1} = \left[s - 2bx(1 - xt - t^2)^{-1} \right] + (x + 2r) \sum_{n=0}^{\infty} b_n(x) t^{n-1} + 2b(1 - xt - t^2)^{-1},
\]
\[
\sum_{n=0}^{\infty} nb_n(x) t^{n-1} = \left[s - 2bx(1 - xt - t^2)^{-1} \right] + \sum_{n=0}^{\infty} b_n(x) t^{n-1} + \sum_{n=0}^{\infty} 2b_n(x) t^{n-1} + 2b(1 - xt - t^2)^{-1}.
\]

Equating the coefficient of \(t^n \), to get
\[
\sum_{n=0}^{\infty} nb_n(x) t^{n-1} = x b_n(x) + 2b_{n-1}(x).
\]

(3.6)

Equating the coefficient of \(t^n \), to get
\[
(n + 1) b_{n+1}(x) = x b_n(x) + 2b_n(x).
\]
\[
x b_{n+1}(x) = (n + 1) b_{n+1}(x) - 2b_n(x).
\]

(3.7)

Theorem 3.5: Prove that
\[
(n + 1) b_n(x) = b_{n+1}(x) + b_{n-1}(x) , \quad n \geq 1.
\]

Proof: By (3.1), we have
\[
b_{n+1}(x) - b_{n+1}(x) = x b_n(x), \quad n \geq 1.
\]

Differentiating with respect to \(x \), to get
\[
b_{n+1}(x) = b_{n+1}(x) + b_n(x).
\]
\[
x b_{n+1}(x) + b_n(x) = b_{n+1}(x) + b_{n-1}(x).
\]

(3.8)

Using equation (3.5) in equation (3.8), to get
\[
b_{n+1}(x) = b_{n+1}(x) + b_{n-1}(x) + 2b_{n+1}(x) - b_{n+1}(x) ,
\]
\[
b_{n+1}(x) + b_{n+1}(x) = b_{n+1}(x) + 2b_{n+1}(x) - b_{n+1}(x) ,
\]
\[
(n + 1) b_{n+1}(x) = b_{n+1}(x) + b_{n+1}(x).
\]

(3.9)

Theorem 3.6: Prove that
\[
x b_n(x) = 2b_{n+1}(x) - (n + 2) b_n(x), \quad n \geq 0.
\]

Proof: Using equation (3.5) in equation (3.9), to get
\[
(n + 1) b_n(x) = b_{n+1}(x) + \frac{1}{2} \left[nb_n(x) - x b_n(x) \right],
\]
\[
2(n + 1) b_n(x) = 2b_{n+1}(x) + \left[nb_n(x) - x b_n(x) \right],
\]
\[
x b_n(x) = 2b_{n+1}(x) + nb_n(x) - (2n + 2) b_n(x) = 2b_{n+1}(x) + (n - 2n - 2) b_n(x),
\]
\[
x b_n(x) = 2b_{n+1}(x) - (n + 2) b_n(x).
\]

(3.10)

Theorem 3.7: Prove that
\[
(n + 1) x b_n(x) = n b_{n+1}(x) - (n + 2) b_{n+1}(x), \quad n \geq 1.
\]

Proof: Using equation (3.3) in equation (3.9), to get
\[
(n + 1) b_{n+1}(x) - x b_n(x) - b_{n-1}(x) = b_{n+1}(x) + b_{n-1}(x),
\]
(n+1)b_{n+1}(x) = (n+1)xb_n(x) - (n+1)b_{n+1}(x),

(n+2)b_{n+1}(x) = (n+1)xb_n(x),

(n+1)b_{n+1}(x) - (n+1)b_{n+1}(x) - b_{n+1}(x) = (n+1)xb_n(x),

nb_{n+1}(x) - (n+2)b_{n+1}(x) = (n+1)xb_n(x),

(n+1)b_{n+1}(x) = nb_{n+1}(x) - (n+2)b_{n+1}(x). \ (3.11)

Theorem 3.8: (Explicit sum formula) Prove that

\[b_x(x) = 2b \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(n-m)!}{m!(n-2m)!} x^{n-2m}. \]

Proof: Generating function (2.2), we have

\[\sum_{n=0}^{\infty} b_x(x) t^n = \left[2b \left(1 - xt\right) + xt \right] \left(1 + xt - t^2\right)^{-2} \]

\[= \left[2b \left(1 - xt\right) + xt \right] \left(1 + xt - t^2\right)^{-2} \]

\[= \left[2b \left(1 - xt\right) + xt \right] \sum_{n=0}^{\infty} \left(1 + xt\right) t^n \]

\[= \left[2b \left(1 - xt\right) + xt \right] \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \left(-1\right)^m x^{n-2m} \]

Equating the coefficient of \(t^m \) on both sides, to get

\[b_x(x) = 2b \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(n-m)!}{m!(n-2m)!} x^{n-2m}. \] \quad (3.12)

Theorem 3.9: For positive integer \(n \geq 0 \), prove that

\[b_x(x) = 2b x^x \; _2F_1 \left(\frac{-n}{2}, \frac{1-n}{2}; -n; \frac{-4}{x^2} \right). \]

Proof: By explicit sum formula (3.12), it follows that

\[b_x(x) = 2b \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(n-m)!}{m!(n-2m)!} x^{n-2m} \]

\[= 2bx \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(-1)^m (1) \left(-n\right)_m}{m!} x^{n-2m} \]

\[= 2bx \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(-1)^m 2^m \left(-n\right)_m \left(-n+1\right)_{m/2}}{m!} x^{n-2m} \]

\[= 2bx \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(-1)^m \left(-n\right)_m \left(-n+1\right)_{m/2}}{m!} \left(-\frac{4}{x^2}\right)^m \]

\[= 2bx \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(-1)^m \left(-n\right)_m \left(-n+1\right)_{m/2}}{m!} \left(-\frac{4}{x^2}\right)^m \]

\[= 2bx \sum_{m=0}^{\lfloor x/2 \rfloor} \frac{(-1)^m \left(-n\right)_m \left(-n+1\right)_{m/2}}{m!} \left(-\frac{4}{x^2}\right)^m. \] \quad (3.13)
Theorem 3.10: For positive integer \(n \geq 0 \), prove that
\[
\sum_{n=0}^{\infty} \left(\frac{c}{n!} \right) b_n(x) \frac{t^n}{n!} = 2b(1-xt)^{-c} \left[F_n \left(\frac{c+1}{2}, \frac{c+2}{2}, \frac{n+1}{2}, \frac{n+2}{2}, \frac{t^2}{(1-xt)^2} \right) \right]
\]

Proof: Multiplying both sides of equation (3.12) by \(\left(\frac{c}{n!} \right) t^n \) and summing between limits \(n=0 \) to \(n=\infty \), to get
\[
\sum_{n=0}^{\infty} \left(\frac{c}{n!} \right) b_n(x) t^n = 2b \sum_{n=0}^{\infty} \left(\frac{c}{n!} \right) \frac{n-m!}{m! n!} (c)_n x^{n+2m} \frac{t^n}{n!}
\]
\[
= 2b \sum_{n=0}^{\infty} \frac{n-m!}{m! n!} (c)_{n+2m} x^{n+2m} (c)_{n+2m} \frac{t^n}{n!}
\]
\[
= 2b \sum_{n=0}^{\infty} \frac{n-m!}{m! n!} (c+2m+1)_{n+2m} (c)_n (xt)^n t^{2m}
\]
\[
= 2b \left(\sum_{n=0}^{\infty} (c+2m+1)_{n+2m} (c)_n (xt)^n t^{2m} \right)
\]
\[
= 2b (1-xt)^{-c+2m} \sum_{n=0}^{\infty} \frac{n+m!}{m! n!} (c)_n t^{2m}
\]
\[
= 2b (1-xt)^{-c+2m} \sum_{n=0}^{\infty} \frac{n+m!}{m! n!} (c)_n t^{2m}
\]
\[
= 2b (1-xt)^{-c+2m} \sum_{n=0}^{\infty} \frac{n+m!}{m! n!} (c)_n t^{2m}
\]
\[
= 2b \sum_{n=0}^{\infty} \frac{n+m!}{m! n!} (c)_n t^{2m}
\]
\[
= 2b \left(\frac{c}{2} \right)_n \left(\frac{c+1}{2} \right)_n \left(\frac{t^2}{(1-xt)^2} \right)_n
\]
\[
= 2b \left(\frac{c}{2} \right)_n \left(\frac{c+1}{2} \right)_n \left(\frac{t^2}{(1-xt)^2} \right)_n
\]
\[
= 2b \left(\frac{c}{2} \right)_n \left(\frac{c+1}{2} \right)_n \left(\frac{t^2}{(1-xt)^2} \right)_n
\]
\[
= 2b \left(\frac{c}{2} \right)_n \left(\frac{c+1}{2} \right)_n \left(\frac{t^2}{(1-xt)^2} \right)_n
\]
\[
= 2b \left(\frac{c}{2} \right)_n \left(\frac{c+1}{2} \right)_n \left(\frac{t^2}{(1-xt)^2} \right)_n
\]
\[
\sum_{n=0}^{\infty} \left(\frac{c}{n!} \right) b_n(x) \frac{t^n}{n!} = 2b(1-xt)^{-c} \left[F_n \left(\frac{c+1}{2}, \frac{c+2}{2}, \frac{n+1}{2}, \frac{n+2}{2}, \frac{t^2}{(1-xt)^2} \right) \right]
\]

(3.14)

4. Conclusion

In this paper, Generalized Fibonacci-Lucas Polynomials have been introduced. Some basic identities are obtained by method of generating function. Also some identities are obtained in hyper geometric form.

Acknowledgements

The authors would like to thank the anonymous referee for carefully reading the paper and for their comments which greatly improved the paper.
References