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Abstract:  A new unconditional inequality of the totient function is contributed to the literature. This result is 
associated with various unsolved problems about the distribution of prime numbers. 
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1 Introduction  
The totient function }1),gcd(:{#)( =<= NnNnNϕ , which counts the number of relatively prime integers 
less than N, is a sine qua non in number theory. It and its various generalizations appear everywhere in the 
mathematical literature. The product form representation 
 

∏ −=
Np

pNN
|

)/11()(ϕ                                                                     (1) 

 
unearths its intrinsic link to the distribution of the prime numbers. 
 
The totient function ϕ(N) is an oscillatory function, its value oscillates from its maximum ϕ(N) = N − 1 at prime 
integers N to its minimum ϕ(N) = N/c0loglog N, at the primorial integers kv

k
vv pN 21 32 ⋅= , where pi is the kth 

prime, vi ≥ 1, and c0 > 1 is a constant. The new contributions to the literature are the unconditional estimates 
stated below. 
 
Theorem 1.   Let pi be the kth prime, and let  Nk = 2⋅3⋅5⋅⋅⋅pk, k ≥ 1.  Then kkk NeNN loglog)(/ γϕ >  for all 
sufficiently large primorial integer Nk. 
 
This unconditional result is consistent with the Riemann hypothesis, and seems to prove the Nicolas inequality, 
Theorem 4 below, for all sufficiently large integers. Just a finite number of cases of primorial integers Nk ≤ N0 
remain unresolved as possible counterexamples of the inequality.  
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Theorem 2.   The function NcNN logloglog//)( 0>ϕ  for almost every integer N ≥ 1, and c0 > 0 constant. 
 
Currently the best unconditional estimate of this arithmetical function in the literature is the followings: 
 
Theorem 3.   ([13])   Let N ∈ ℕ, then )loglog2/(5loglog)(/ NNNeNN +< γϕ  with one exception for N = 2⋅3 
⋅⋅⋅ 23. 
 
On the other hand, there are several conditional criteria; one of these is listed below.  
 
Theorem 4.   ([12])    Let Nk = 2⋅3⋅5⋅⋅⋅pk be the product of the first k primes.  
(i) If the Riemann Hypothesis is true then kkk NeNN loglog)(/ γϕ >  for all k ≥ 1. 
(ii) If the Riemann Hypothesis is false then both kkk NeNN loglog)(/ γϕ <  and kkk NeNN loglog)(/ γϕ >  
occur for infinitely many k ≥ 1. 
 
Some related and earlier works on this topic include the works of Ramanujan, Erdos, and other on abundant 
numbers, see [11], [2], and recent related works appeared in [2], [3], [9], [14], and [20].  
 
The next section covers some background materials focusing on some finite sums over the prime numbers and 
some associated and products. The proofs of Theorems 1 and 2 are given in the last two sections respectively.  
 
 
 
 
 
2 Background Materials 
This section provides a survey of supporting materials. An effort was made to have a self contained paper as 
much as possible, but lengthy proofs available in the literature are omitted.  
 
2.1 Sums and Products Over the Primes. The most basic finite sum over the prime numbers is the prime 
harmonic sum p−1n≤x∑ . The refined estimate of this finite sum, stated below, is a synthesis of various results 
due to various authors. The earliest version p−1n≤x∑ = log log x +B1 +O(1 / log x)  is due to Mertens, see [17].  
 
Theorem 5.    Let x ≥ 2 be a sufficiently large number. Then                                          
 

 

1
pp≤x

∑ =

loglog x +B1 +O(e−c(loglog x )1/2

),                                          unconditionally,
loglog x +B1 +O((log x)−1/2 ),                                           conditional on the Riemann hypothesis,
loglog x +B1 +Ω±((log x)−1/2 logloglog x / log x),             unconditional oscillations,
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where  B1 = .2614972128… . 
 
Proof: Use the integral representation of the finite sum 
 

 1
pp≤x

∑ =
dπ (t)
tc

x

∫ ,                                                                              (3) 
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where c > 1 is a small constant. Moreover, the prime counting function π (x) = #{ p ≤ x : p is prime }  has the 
form 
 

π (x) =
li(x)+O(xe−c(log x )1/2

),                                  unconditionally,
li(x)+O(x1/2 log x),                                    conditional on the Riemann hypothesis,
li(x)+Ω±(x1/2 logloglog x / log x),              unconditional oscillations.
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            (4) 

 
The unconditional part of the prime counting formula arises from the delaVallee Poussin form of the prime 
number theorem π (x) = li(x)+O(xe−c(log x )

1/2

) , see [10, p. 179], the conditional part arises from the Riemann form 
of the prime number theorem π (x) = li(x)+O(x1/2 log x) , and the unconditional oscillations part arises from the 
Littlewood form of the prime number theorem π (x) = li(x)+Ω±(x

1/2 log loglog x / log x) , consult [7, p. 51], [10, 
p. 479] et cetera.  Now replace the logarithm integral li(x) = (t log t)−1 dt0

x∫ , and the appropriate prime counting 
measure dπ (t) , and simplify the integral.                                                                                                             ■                                          
 
The proof of the unconditional part of this result is widely available in the literature, see [6], [10], [16], et 
cetera. The omega notation ))(()()( xhxgxf ±Ω+=  means that both f (x)> g(x)+ c0h(x)  and 
f (x)< g(x)− c0h(x)  occur infinitely often as x → ∞, where c0 > 0 is a constant, see [10, p. 5], [18].  

 
As an application of the last result, there is the following interesting product: 
 
Theorem 6.   Let x ∈ ℝ be a large real number, then 
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p≤x
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=

eγ log x +O(e−c(log x )1/2

),                                      unconditionally,
eγ log x +O(x−1/2 ),                                            conditional on the Riemann hypothesis,
eγ log x +Ω±(x−1/2 logloglog x / log x),              unconditional oscillations,

+

,
--

.
-
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         (5) 

  
Proof: Consider the logarithm of the product 
 

log 1− 1
p
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p≤x
∏ =

1
pp≤x

∑ +
1
npnn≥2

∑
p≤x
∑

=
1
pp≤x

∑ +γ −B1 +O(
1
x
) ,            

                                          (6) 

 
where the Euler constant is defined by γ = lim x→∞ n−1 − logn( )n≤x∑ = 0.577215665... , and the Mertens constant is 

defined by B1 = γ + log(1−1/ p)+1/ p( )p≥2∑ = .2614972128... , see  [6, p. 466]. The last equality in (6) stems 

from the power series expansion B1 = γ − (npn )−1n≥2∑p≥2∑ , which yields 
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1
npnn≥2

∑
p≤x
∑ = γ −B1 −

1
npnn≥2

∑
p>x
∑

= γ −B1 +O(
1
x
),

                                                              (7) 

Applying Theorem 5 returns  
 

log 1− 1
p
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p≤x
∏

−1

=

γ + loglog x +O(e−c(log x )1/2

),                             unconditionally,
γ + loglog x +O(x−1/2 ),                                   conditional on the Riemann hypothesis,
γ + loglog x +Ω±(x−1/2 logloglog x / log x),     unconditional oscillations,

+

,
--

.
-
-

         (8) 

 
and reversing the logarithm completes the verification.                                                                                        ■ 
 
The third part in (5) above simplifies the proof given in [5] of the following result:  
 
The quantity 
 

 x1/2 log x( ) 1−1/ p( )
p≤x∏

−1
− eγ log x( )                                                            (9) 

 
attains arbitrary large positive and negative values as x → ∞.  
 
 
 
 
3 An Estimate of the Totient Function 
The proof of Theorem 3 on the extreme values of the arithmetic function )(/ NN ϕ  relies on the oscillation 
theorem of the finite prime product (1−1/ p)p≤x∏ −1 . This technique leads to a concise and simpler proof. A 
completely elementary proof, but longer, and not based on the oscillation theorem was presented in the earlier 
version of this paper.  
 
Theorem 1.  Let N ∈ ℕ be a primorial integer, then N /ϕ(N )> 6π −2eγ log logN  holds unconditionally for all 
sufficiently large N  = 2⋅3⋅5⋅⋅⋅pk. 
 
Proof : Theorem 6 implies that the product 
 

1−1/ p( )
p≤x
∏

−1
= eγ log x +Ω±

logloglog x
x1/2 log x

%

&
'

(
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* .                                                  (10) 

                                                      
In particular, it follows that 
 

1−1/ p( )
p≤x
∏

−1
> eγ log x + c0

logloglog x
x1/2 log x

                                                    (11)  

 
and   
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1−1/ p( )
p≤x
∏

−1
< eγ log x − c0

logloglog x
x1/2 log x

 

 
occur infinitely often as x → ∞, where c0 > 0, c1 > 0, and c2  > 0 are constants. It shows that (1−1/ p)p≤x∏ −1  

oscillates infinitely often, symmetrically about the line eγ log x  as x → ∞.  
 
To rewrite the variable x ≥ 1 in terms of the integer N, recall that the Chebychev function satisfies  ϑ (x) = log pp≤x∑ ≤ c1x , c1 > 1, see [15]. The properties of this function lead to 
 

logNk = log p
p≤pk

∑ =ϑ (pk ) ,    and    ϑ (pk ) = pk +o(pk ) ≤ c1 logNk .                             (12) 

 
So it readily follows that pk ≤ x = c1 logNk . Moreover, since the maxima of the sum of divisors function 
 

σ (N )
N

= 1+ 1
p
+
1
p2
+ 1

pα
!

"
#

$

%
&

pα || N
∏ ≤ 1−1/ p( )−1

p | N
∏ ,                                      (13) 

 
where the symbol pα || N denotes the maximal prime power divisor of N, occur at the colossally abundant 
integers kv

k
vv pN 21 32 ⋅= , and v1 ≥  v2 ≥ ⋅⋅⋅ ≥ vk ≥ 1,  see [2], [3], [9], [11], it follows  that the maxima of the 

inverse totient function N/ϕ(N) occur at the squarefree primorial integers Nk = 2⋅3⋅5⋅⋅⋅pk. Therefore, expressions 
(10) and (11) implies that 
 

Nk

ϕ(Nk )
= 1−1/ p( )−1

p ≤ c1 logNk

∏

> eγ loglogNk + c2
loglogloglogNk

(logNk )
1/2 loglogNk

> eγ loglogNk

                                           (14) 

 
as the primorial integer Nk = 2⋅3⋅5⋅⋅⋅pk tends to infinity.                                                                                       ∎ 
 
 
 
 
4. Probabilistic Properties 
The natural density function 
   

NtNNNntB
N

/})(/:{#lim)( ≥≤=
∞→

ϕ                                                        (15) 

 
is known to be a continuous function of t ≥ 0. Some recent works have established the exact asymptotic 
expression  

( )( ))/1(1exp)( 2tOetB te +−=
−γ

                                                             (16) 
 
as t tends to infinity, see [19], [20].  
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The evaluation of the natural density (15) at Net loglogγ=  as N → ∞ suggests that the Nicolas inequality 
should be εαγγ ϕ −+>> 1)( loglog)(/loglog k

k
kkk NeNNNe . The numerical data are compiled in [8]. 

 
Now, note that the evaluation at Net logloglogγ=  as N → ∞  yields the density function 
 

( )( )
( ) .))loglog/(log1(1

log
1

)/1(1exp)logloglog(

2

2

NO
N

tOeNetB te

+=

+−==
−γγ

                                                   (17) 

 
Consequently, the subset of integers N ≥ 1 such that NcNN logloglog)(/ 0>ϕ  has zero density with respect to 
the set of integers ℕ. A simple proof of this result is included here. 
 
Theorem 2.   The function NNcN logloglog/)( 0>ϕ  for almost every integer N ≥ 1, and c0 > 0 constant. 
 
Proof: The prime divisors counting function satisfies NcNpN loglog}|{#)( 1≤=ω  for almost every integer N 
≥ 1, this is Ramanujan Theorem. In addition,  
 

(1−1/ p)
p |N
∏ ≥ (1−1/ p)

p≤x
∏ ≥

e−γ

log x
1− 1
2 log2 x

%

&
'

(

)
* ,                                                (18) 

 
where x ≥ 2 is a suitable real number, holds for every integer N ≥ 1, this is Mertens Theorem. Furthermore, by 
the Prime Number Theorem, the nth prime pn ≤ x = c2n logn . In light of these facts, put  
 

pn ≤ c2 (c1 loglogN )log(c1 loglogN )
≤ c3 loglogN logloglogN ,

                                                  (19) 

 
where c1, c2, c3, c4, … are constants. Substituting (19) into the previous relation (18) implies that 
 

(1−1/ p)
p |N
∏ ≥ (1−1/ p)

p≤pn

∏

≥
c4

log log logN

                                                                  (20) 

 
holds for almost every integer N ≥ 1. Ergo, the ratio ∏ ≥−= Np NcpNN | 4 logloglog/)/11(/)(ϕ  holds for 

almost every integer N ≥ 1 as claimed.                                                                                                               ■ 
 
Corollary 7.   The function σ (N )< c5N log log logN  for almost every integer N ≥ 1, and c5 > 0 constant. 
 
Proof: The sigma-phi identity, on the first line below, coupled with Theorem 4 lead to 
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σ (N )
N

=
N

ϕ(N )
(1−1/ pα+1( )

pα ||N
∏

<
N

ϕ(N )
< c5N logloglogN ,

                                                        (21) 

 
where c5 is a constant, holds for almost every integer N ≥ 1.                                                                                ■ 
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