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Abstract 

 

The article elaborates a method for estimating the probabilities of occurrence of prognosticated events in future. On the basis of the 

data from the previous periods about prognosticating the relevant events, as well as the data about the trends observed at present, two 

matrices are formed, the product of which is the matrix for the prognosis errors committed by the individual or the expert. The article 

shows that the vector for probabilities of the prognosticated events is the eigenvector of the prognosis error matrix, which corre-

sponds to its single eigenvalue. Application of the elaborated method is shown on the definite example for forecasting demand of 

new products. 
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1. Introduction 

Individual decision making is significantly determined by the 

uncertainty of future outcomes and consequences that will take 

place after an individual makes the decision and implements it into 

practice. When making a decision, an individual may generate 

many possible consequences and scenarios and each of them can 

be implemented in future. However, it cannot be said a priori 

which event will take place and which scenario will be imple-

mented. Uncertainty of the future, consequences, and outcomes of 

the decisions is the key obstacle for making the optimal decision 

by an individual in terms of achieving the goal. Indeed, the opti-

mal decision made by an individual (in his/her opinion) is optimal 

only for the today’s reality; however, in tomorrow’s actuality (af-

ter a week, a month, a year, or several years), not only may the 

decision turn out to be not optimal but it also may cause quite 

opposite results from what was expected due to the irreversible 

and constant changes both in internal and internal conditions. 

Any prediction of future events is subjective, since is made by a 

party (a person making the decision; an expert, either individual or 

a group) whose abilities to predict future events and their probabil-

ity are rather limited (Kahneman et al. 2010, Madera 2014 a, 

Madera 2014 b, Madera 2015). In this connection, the methods for 

scientific prediction of events and their probabilities for different 

time horizons have become especially topical. These methods 

need to take into account both the relevant information that is 

obtained at the present moment and the data referring to prediction 

of relevant events and their implementation in the past (Clauset & 

Woodard 2013, Clemen 1989, Mohler 2013, Rossi 2010). 

Most existing methods for predicting events and their probability 

are based on an assumption that the past and future are indiscerni-

ble, so the past trends will be the same in the future. Extrapolation 

of the previous data onto future is used as a prediction method. 

This principle underlies regressions, time series, various types of 

moving averages, smoothing, etc. (Green 2012, Hanke et al. 2001, 

McNees 1990, Mirkin 2014, Rossi 2010). This prediction concep-

tion indicates that people tend to underestimate, or in many cases 

even neglect, uncertainty of future (Madera 2014 a, Makridakis 

1986). A number of methods for predicting financial and com-

modity markets employ the hypothesis that the financial tools 

(stock price, currency exchange rates, prices for raw materials, 

fuel, real estate, etc.) are stochastic despite the fact that this hy-

pothesis has not been proven in practice. Furthermore, numerous 

facts demonstrate that a price change cannot be predicted based on 

the historical time series of price changes over the past periods 

(Mantegna & Stanley 2000); there may be several-fold deviation 

between the predicted prices and the actual ones for all the types 

of raw materials, stock prices, and currency exchange rates 

(Mirkin 2014). Expert evaluations, which are inevitably subjec-

tive, are used when the data on predicting relevant events over the 

past periods are either unavailable or insufficient for the analysis 

(Armstrong 2001, Green 2012, Hanke et al. 2001). In many stud-

ies, when assessing the probabilities of future events, the research-

ers build regression models (Haan & Sinha 1999), describe the 

events as Markov random processes (Boer et al. 2007), or assume 

a priori that a random phenomenon under study obeys a certain 

law of probability distribution (typically, the normal probability 

distribution) (Clauset & Woodard 2013, Mohler 2013, Riley 

2012). 

In the classical approach the probabilities of occurrence of prog-

nosticated events in future are assessed, as a rule, using Bayes’ 

theorem, according to which the a priori probabilities of the prog-

nosticated events are transformed into the a posteriori probabilities 

based on the new information obtained as a result of conducting 

an experiment. Otherwise speaking, the a priori probabilities 

( )p A j  of occurrence of the prognosticated events A j , j = 

1,2,…,n, that are exhaustive are transformed according to Bayes’ 

theorem into the a posteriori probabilities ( | )p A Bj  with using 

the data obtained after having conducted the experiment in which 

some event В occurs jointly with one of the prognosticated events.  

In order to apply Bayes’ theorem, it is necessary to know the a 

priori probabilities ( )p A j , j = 1,2,…,n, of the prognosticated 
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events, as well as the conditional probabilities ( | )B A jp  deter-

mining the appearance of the event B provided that each of the 

events A j  occurs. In this situation, the probabilities ( )p A j  and 

( | )B A jp , j = 1,2,…,n, are a priori known only in a limited 

number of cases, which can be modeled with the use of urn-with-

balls type probabilistic models. At the same time, when consider-

ing events that pertain to human activities and their results (in 

economy, management, finance, decision-making, etc.), the prob-

abilities of occurrence of future events cannot already be consid-

ered as known a priori, because man is not granted the capability 

of reliably predicting which specific events will occur in future 

and what probabilities of their occurrence will be. Due to this fact, 

the probabilities ( )p A j  of the prognosticated events A j , j = 

1,2,…,n, to the same extent as the probabilities ( | )B A jp  of 

appearance of the event B provided that the events A j  occur in 

future, can be interpreted only as subjective probabilities, the val-

ues of which are assigned by the individual (expert) on the basis of 

his or her own understanding of the course of events and observed 

trends. The subjective nature determining the probabilities of the 

prognosticated events occurrence makes unreliable any forecasting 

with regard to man and their activities. 

This article proposes a method for determining the a priori un-

known probabilities ( )P A = ( ( )1p A , ( )2p A ,…, ( )p A n ) of oc-

currence of the prognosticated events 1A , 2A ,…, A n  that makes 

it possible to reduce the amount of subjectivity when prognosticat-

ing. The method uses two types of data: data related to prognosti-

cating the relevant events from periods in the past and data about 

the trends observed at present, which, in the individual’s opinion, 

can cause occurrence of certain events in future. According to 

these data, the matrix (L) for errors of prognosticating the relevant 

events in the previous periods and the matrix (M) for the adjusted 

prognoses based on the present information are arranged. The 

article shows that the vector ( )P A = ( ( )1p A , ( )2p A ,…, ( )p A n ) 

is the eigenvector of the prognosis error matrix K M L  , which 

corresponds to the single eigenvalue of the matrix K. Because the 

probability values for the prognosticated events are elements of 

the eigenvector ( )P A  of the matrix K, the calculation method for 

which does not depend on the individual, the proposed method, as 

opposed to Bayesian approach, makes it possible to reduce the 

subjectivity when determining the probabilities of the prognosti-

cated events. The article gives an example of using the developed 

method. 

2. Event prognosis errors in previous periods 

and at present 

When prognosticating the occurrence of future events A j , j = 

1,2,…,n, which are exhaustive (the set А), the individual relies on 

the observations of the other events B i , i = 1,2,…,n, which are 

also exhaustive (the set В). The events 1A , 2A ,…, A n A will 

further be called the real events, and the events 1B , 2B ,…, B n

В will be the prognosticating events. 

It is obvious that none of the events observed in the past or at pre-

sent can evidence unambiguously and absolutely reliably the oc-

currence of any event in the future reality. That is why occurrence 

of a certain real event A j A based on the occurrence of certain 

prognosticating events B i  B is always prognosticated with 

some error that reflects the individual’s (expert’s) prognosis mis-

takes. As a result of this, the event B i B (i = 1, 2,…,n) that 

prognosticates, in the individual’s opinion, occurrence of the real 

event A j A can appear with any of the events  

 

1A , 2A ,…, A n A, i. e. B B Ai i k
k

 . 

 

The individual’s (expert’s) prognosis error values are determined 

by the following conditional probabilities (i, j = 1, 2,…, n):  

• ( | )p B Ai j  is the conditional probability of occurrence of the 

prognosticating event B i , provided that one of the real events 

A j  A has occurred, indeed. This error is determined by the 

statistical data about the individual’s (expert’s) prognosticating the 

relevant events in the previous periods and shows the relative 

quantity of both correct and incorrect prognoses;  

• ( | )p A Bj i  is the conditional probability of future occurrence 

of the real event A j , provided that the prognosticating event B i

 B is occurring at present. The value of the probability 

( | )p A Bj i  is the prognosis error and reflects the degree of the 

individual’s belief in occurrence of the real events A j A (j = 1, 

2,…, n), if a certain prognosticating event B i B occurs in fu-

ture. It is obvious that the values of the errors ( | )p A Bj i , i, j = 

1,2,…,n, can become known only when “the future” comes and 

the real event A j A (j = 1, 2,…,n) happens in it. 

Having determined, according to the statistical data from the pre-

vious periods, the prognosis error values ( | )p B Ai j , i, j = 

1,2,…,n, we will receive, using the total probability formula, a 

system of n equalities that determine the total probabilities 

( )p B i  of occurrence of the prognosticating events B i  (i = 

1,2,…,n): 

 

( ) ( ) ( | )
1

n
p B p A p B Ai j i j

j
 


, i = 1,2,…,n.                           (1) 

 

With the n column vectors for the probabilities of the prognosti-

cating events ( )P B = ( ( ), ( ),..., ( ))1 2p B p B p B T
n , ( ( )T  is the 

transposition operation) and yet unknown probabilities of the real 

events ( )P A = ( ( ), ( ),..., ( ))1 2
Tp A p A p A n , as well as the n n  

matrix || ( | ) ||L p B Ai j  for the prognosis errors in the previous 

periods having been introduced, 

 

( | ) ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

1 2

1 2

1 2

1 1 1

2 2 2

p B A p B A p B A

p B A p B A p B A
L

p B A p B A p B A

n

n

n n n n

 
 
 

  
 
 
 

,                           (2) 

 

The system of equations (1) may be written as a matrix: 

 

( ) ( )P B L P A  .                                                                            (3) 

 

When prognosticating the events and assessing the probabilities of 

their occurrence, the individual is guided by not only the progno-

sis data from the previous periods, but also by the new infor-

mation about the events and trends observed at present. By relying 

on the obtained data, the individual estimates the probabilities 

( | )p A Bj i , i, j = 1, 2,…,n, of occurrence of the real events A j

A (j = 1,2,…,n) on the basis of his or her own (or the expert’s) 
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beliefs regarding the influence that each of the prognosticating 

events B i B (i = 1,2,…,n) exerts on the occurrence of each real 

event A j A (j = 1,2,…,n).  

Because each real event A j A (j = 1,2,…,n) can appear jointly 

with any prognosticating event B i B, i. e. A A Bj j k
k

 , ac-

cording to the total probability formula we can write a system of n 

equalities to determine the total probabilities ( )p A j  of occur-

rence of the prognosticated real events A j  ( j = 1,2,…,n): 

 

( ) ( ) ( | )
1

n
p A p B p A Bj i j i

i
 


, j = 1,2,…,n.                                (4) 

 

With the n n  matrix || ( | ) ||M p A Bj i  for the prognosis er-

rors at present having been introduced 

 

( | ) ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

1 1 1 2 1

2 1 2 2 2

1 2

p A B p A B p A B

p A B p A B p A B
M

p A B p A B p A

n

n

n n n nB

 
 
 
 
 
 
 
 

, (5) 

 

The system of the equations (4) may be written as a matrix: 

 

( ) ( )P A M P B  .                                                                          (6) 

 

The elements of the matrices L, M and vectors ( )P A
 
and ( )P B  

are nonnegative and satisfy the following equalities: 

 

( | ) 1
1

n
p B Ai j

i



, ( | ) 1

1

n
p A Bj i

j



 (i, j = 1, 2… n), 

 

( ) 1
1

n
p A j

j



, ( ) 1

1

n
p Bi

i



. 

 

A nonnegative (positive) matrix where the sum of the elements in 

each column equals +1 is called, as it is known, a nonnegative 

(positive) stochastic matrix, and a nonnegative (positive) vector 

where the sum of the elements equals +1 is called a probability 

vector. 

3. Determining the probabilities of the fore-

casted events 

By substituting, in the right part of equality (6), the expression of 

vector ( )P B
 
from equality (3) for the vector itself, we will obtain 

an equation for determining the sought vector for the probabilities 

of the prognosticated real events ( )P A : 

 

( ) ( )P A K P A  ,                                                                           (7) 

 

where || ||K M L kij    is an n n  matrix. 

As it follows from equation (7), the vector of the probabilities 

( )P A = ( ( ), ( ),..., ( ))1 2
Tp A p A p A n  of occurrence of the real 

events A j A, j =1, 2,…, n, is the eigenvector of the stochastic 

matrix K, which corresponds to its single eigenvalue.  

It is possible to prove that the matrix || ||K M L ijk    has the 

following important properties (Bellman 1960, Horn & Johnson 

2013): 

1) The product of two stochastic matrices is again a stochastic 

matrix, and the product of a stochastic matrix and a proba-

bility vector is a probability vector. 

2) If 0A   is a nonnegative matrix, the spectral radius ( )A  

of the matrix А is its eigenvalue and there is a nonnegative 

vector 0x  , 0x   for which ( )A x A x . 

3) If the column totals are constant for the nonnegative matrix 

A, the spectral radius of the matrix equals ( ) || ||1A A  , 

where 1|| ||A  is the maximal column norm, which is de-

termined by the formula 

 

|| || max1

11

n
A a

ij
ij n

 

 

. 

 

4) For the indecomposable and nonnegative matrix А, the val-

ue ( )A  is an algebraically simple (not multiple) eigenval-

ue for А.  

Let us note that the stochastic matrix can always be represented as 

a positive matrix ( 0A  ), for which the assertions of the given 

properties are automatically fulfilled. 

As it follows from the properties given:  

a) The matrix K M L   is stochastic and the product of the 

matrix K and the probability vector ( )P A  in equation (7) is 

a probability vector;  

b) The maximal eigenvalue   of the stochastic matrix K 

equals +1, and the single probability eigenvector ( )P A  cor-

responds to it. 

As the matrix L comprises information about the prognosis errors 

in the previous periods, and the matrix M does the same with the 

present prognosis errors, the matrix K M L   characterizes the 

total prognosis error intrinsic to the individual (expert) when 

drawing up the prognoses. Let us note that the prognosis errors 

depend both on the individual (expert) who draws up the progno-

ses and on the problem regarding which the prognosis is made, 

and in this situation the prognosis data from the previous periods 

must be valid and relevant to the problem considered. 

Matrix equation (7) may be written as a system of n linear algebra-

ic equations, and for it to determine unambiguously the eigenvec-

tor of the matrix K, it is necessary to supplement it with the nor-

malizing equality ( ) 1
1

n
p A j

j



. Thus, the system of the equations 

that determines unambiguously the n sought probabilities ( )p A i , 

i = 1,2,…,n of occurrence of the prognosticated real events A i 

A, i = 1,2,…,n will look as follows: 

 

( ) ( )
1

n
p A k p Ai ij i

j
 


, i = 1,2,…,n,                                         (8) 

 

( ) 1
1

n
p A j

j



.                                                                              (9) 

4. An example of applying the method 

Let us consider the following practical situation. A manufacturing 

company is planning to launch a new product, and in order to 

make the final decision, the company management draws up a 

prognosis of its future demand (D). In the opinion of the manage-

ment, the demand for the new product can have three levels: a 
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high one ( Dh ), an average one ( Dm ) and a low one ( Dl ). Let 

us suppose that the company has the data from the previous peri-

ods about prognosticating the demand for similar products manu-

factured earlier and the demand levels that have been implemented 

in practice.  

The data from the past show that when the market research pre-

dicted a high level of the demand ( ,Dh pr ) for the new product, 

in 62% of the cases the prognosis was correct and the high de-

mand level ( Dh ) was really observed, i. e. ( | ),p D Dh pr h =0.62. 

However, in 22% and 17% of the cases when the market research 

predicted the high demand level, the real demand was average  

( Dm ) or even low ( Dl ) in reality, that is why ( | ),p D Dmh pr

=0.22 and ( | ),p D Dh pr l =0.17. Similar data from the previous 

periods about prognosticating the average ( ,Dm pr ) and low  

( ,Dl pr ) levels of the demand for the new products, as well as the 

data about the demand levels that have been implemented in prac-

tice make it possible to determine the percentages of both correct 

and incorrect prognoses and calculate the prognosis errors for the 

previous periods. The results of the calculations are given in the 

error matrix L: 

 

( | ) ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

, , ,

, , ,

, , ,

p D D p D D p D D

L p D D p D D p D D

p D D p D D p D D

mh pr h h pr h pr l

m pr m pr m m prh l

ml pr h l pr l pr l

 
 
 
 
 
 

 =  

 

=
0,62 0,22 0,17

0,15 0,74 0,25

0,23 0,04 0,58

 
 
 
 
 

. 

 

Along with this, the market situation that has been forming by 

now does not make it possible to draw firm conclusions about the 

future level of the demand for the new product. Based on the new 

data, the management of the company thinks that if the trend lead-

ing to the high demand level ( ,Dh pr ) turns into reality, it is pos-

sible to expect in 43% of the cases that the demand will actually 

be high ( Dh ), i. e. ( | ),p D Dh h pr =0.43. However, taking into 

account that the ambiguity of the information received, the direc-

tion thinks that the situation can change, and, if there is the high 

demand tendency, the average level of demand ( Dm ) can realize 

in 24% of the cases and the low demand level ( Dl ) can do so in 

33% of the cases, that is why ( | ),p D Dm h pr =0.24 and 

( | ),p D Dl h pr =0.33. Similar conclusions made on the basis of 

the new data lead to the following prognosis error matrix M: 

 

( | ) ( | ) ( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | )

,, ,

,, ,

,, ,

p D D p D D p D D

M p D D p D D p D D

p D D p D D p D D

m prh h pr h h l pr

m m m pr mh pr l pr

m prl h pr l l l pr

 
 
 
 
 
 
 

 =  

 

=
0,43 0,18 0,07

0,24 0,57 0,14

0,33 0,25 0,79

 
 
 
 
 

. 

 

Then the matrix for the total prognosis error K M L   equals 

 

0,309 0,231 0,158

0,267 0,480 0,265

0,424 0,289 0,577

K M L

 
 

    
 
 

. 

 

The vector for the sought probabilities 

( ) ( ( ), ( ), ( ))p D p D p D p Dmh l  of the prognosticated demand 

levels is the eigenvector of the matrix K and is determined from 

the matrix equation ( ) ( )P D K P D   with adding the normalizing 

equality to it. As one of the equations in the system of the three 

equations that follow from ( ) ( )P D K P D   depends linearly on 

the two others, one of them should be deleted (any of them, gener-

ally speaking). Having rejected, for example, the third equation, 

we will obtain the following system of the equations, the solution 

of which determines unambiguously the probabilities of the prog-

nosticated demand levels ( )p Dh , ( )p Dm , ( )p Dl : 

 

0,309 ( ) 0,231 ( ) 0,158 ( ) ( )p D p D p D p Dmh l h      , 

 

0,267 ( ) 0,480 ( ) 0,265 ( ) ( )p D p D p D p Dm mh l      , 

 

( ) ( ) ( ) 1p D p D p Dmh l   . 

 

The solution of this system of the equations is equal to ( )p Dh

=0.215; ( )p Dm =0.338; ( )p Dl =0.447. The obtained values of 

the probabilities make it possible to recommend the company 

management to make the decision that corresponds to the maximal 

probability of realization of the demand for the new product in 

future. As the probability of the actual future occurrence of the 

low demand level (=0.447) is higher than the probabilities of the 

high (=0.215) or average (=0.338) demand levels, the new product 

should not be produced.  

5. Conclusion 

The method elaborated by the article makes it possible to prognos-

ticate future events and assess the probabilities of their occurrence. 

The probabilities of the prognosticated events are coordinated with 

two types of data obtained from both previous periods when the 

relevant events were prognosticated and the tendencies observed 

at present. Based on these data, two matrices are formed, one of 

which is the matrix of the prognosis errors in the previous periods 

(L) and the second one is the matrix for the errors of the prognoses 

(M) drawn up on the basis of the new information. The product of 

the matrices K M L   contains the complete information about 

the errors intrinsic to the individual (expert) when drawing up the 

prognoses. The article shows that the sought vector for the proba-

bilities of occurrence of the prognosticated events in future is the 

eigenvector of the matrix K, which corresponds to its single ei-

genvalue. The obtained probabilities of the prognosticated events 

make it possible to increase adequacy of prognosticating the future 

events and reduce its subjective constituent. 
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