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Abstract 
 

In the present work we used the experimental relative volume unit cell and the elastic stiffness constants measured by Speziale et al. 

(Journal of Geophysical Research, Vol. 111, (2006), pp. B02203 (12 pages)) using the Radial X-Ray Diffraction at high pressure from 

5.6 up to 65.2 GPa to investigate the effect of high pressure on the bulk modulus, aggregate shear modulus, elastic wave velocities and 

Debye temperature of calcium oxide (CaO) ceramic material in cubic rock-salt (B1) phase. Our obtained values show that the bulk modu-

lus increases monotonously with increasing pressure, while the aggregate shear modulus, the mean elastic wave velocity and the Debye 

temperature of CaO material varied non-linearly and non-monotonously with increasing pressure from 5.6 up to 65.2 GPa. 
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1. Introduction 

IIA-VIA materials have been well known as classical thermionic and phosphors materials [1], they show suitability for different techno-

logical applications [1]. Using an ab initio plane-wave pseudopotential density functional theory method, Deng et al. [2] have investigat-

ed the structural B1–B2 phase transition and the elastic properties of the B1 phase of calcium oxide (CaO) material. They have also in-

vestigated the pressure dependence of the elastic properties and the Debye temperature of B1 phase up to 178 GPa.  

Using full potential linear augmented plane wave (FP- LAPW) method, Labidi et al. [3] have investigated the structural, electronic, and 

optical properties of CaO, MgO and SrO binary compounds. They found that the band gaps of SrO and CaO compounds decrease quasi-

linearly with increasing pressure, while that of MgO increases with increasing pressure. 

Batra et al. [4] have performed a comparative investigation of the structures, stabilities, and properties of some alkaline earth metal ox-

ides ((MgO), (CaO)𝑛, (SrO)𝑛, and (BaO)𝑛) nanoclusters using density functional theory, while Daoud and Rekab-Djabri [5] have investi-

gated the pressure dependence of the bulk modulus of CaO material up to 65 GPa using semi-empirical approach. 

Using both the powder X-ray diffraction (XRD) and the Brillouin spectroscopy (Single-crystal Brillouin scattering) techniques, Speziale 

et al. [6] have investigated the high pressure effect up to 65.2 GPa on the several mechanical properties of CaO material. They found a 

good general agreement between the results of the two methods. They found also that both the elastic constants C11 and C12 increase with 

rising pressure, while both the elastic constant C44 and the Zener anisotropy factor A decrease with increasing pressure.  

Daoud [7] has studied the sound velocities and Debye temperature of BeSe material under high pressure up to 50 GPa, while several 

other works [8-26] have focalized on the investigation of structural, mechanical, thermal, electronic and optical properties of I-VII, II-VI, 

III-V and some other materials using different approaches.   

The intent of this paper is to present and investigate the effect of high pressure up to 65.2 GPa on the bulk modulus, aggregate shear 

modulus, elastic wave velocities, and Debye temperature of CaO material using only the experimental data reported by Speziale et al. [6]. 

Our obtained results are analyzed and compared with other theoretical data [2, 5] of the literature. 

2. Theory, results, and discussion 

In object to study the effect of high pressure up to 65.2 GPa on the bulk modulus, elastic wave velocities and Debye temperature of CaO 

ionic material, we used the experimental relative volume unit cell and elastic constants reported by Speziale et al. [6]. Elastic constants of 

materials are essential physical quantities to describe their mechanical properties. Furthermore, these physical quantities can inform us 

about the structural stability of materials [27]. In cubic crystals, the bulk modulus B is related to the elastic constants C11 and C12 as fol-

lows: B = (C11 + 2C12)/3 [28]. For polycrystalline materials, the aggregate shear modulus G in Voigt-Reuss-Hill (VRH) approach is ex-

pressed as follows: G = (GV + GR)/2 [28], where GV is the Voigt shear modulus and GR is the Reuss shear modulus, which are expressed, 
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respectively as follows: GV = (C11 - C12 + C44)/5, and  (5/GR) = (4/(C11 - C12))+ (3/C44) [28]. Our obtained values of the bulk modulus B 

and the shear moduli GV, GR, and G of CaO material are tabulated in Table 1, along the results reported in Ref. [5] found at equilibrium. 

 
Table 1: Bulk Modulus and Shear Moduli Versus Pressure P Up to 65.2 GPa for Cao Compound in Cubic Rock-Salt Phase, * from Ref [5] 

p (GPa) 0 5.6 14.3 22.1 36.6 49.7 57.8 65.2 

B (GPa) 111.87 * 136.67 178.00 212.67 274.33 325.00 375.00 401.33 

GV (GPa) 80.26* 88.60 106.80 113.20 126.80 120.60 123.60 123.20 

GR (GPa) 80.26* 87.66 94.44 96.66 93.60 85.17 77.73 70.45 
G (GPa) 80.26* 88.13 100.62 104.93 110.20 102.89 100.66 96.82 

 

Our obtained values of the bulk modulus B are also traced in figure 1, along other data of the literature [2, 5]. We observe that the bulk 

modulus B of CaO compound increases with increasing pressure up to 65.2 GPa. The results are consistent with the values reported for 

CdSe, Cd0.75Cr0.25Se, ZnS, and Zn0.75Cr0.25S materials [29]. Compared with the bulk modulus B at equilibrium, our obtained data of B 

using the experimental elastic constants measured by Speziale et al. [6] are somewhat larger than both the ab initio plane-wave pseudopo-

tential DFT method [2] and semi-empirical approach [5] at high pressure. 
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Fig. 1:Bulk Modulus B Versus Pressure for Cubic Rock-Salt CaO Compound, Along Data of Deng et al [2], and Daoud et al [5]. 

 

The knowledge of the sound velocity can play in important role in material science [30]. For polycrystalline materials, the mean value of 

the acoustic wave speed vm is related to the longitudinal vl and transverse vt elastic wave velocities as follow: vm = ((1/3)(2vt
-3+ vl

-3)) -1/3 

[31-33]. The longitudinal wave speed vl as well as the transverse wave speed vt can be calculated from the elastic moduli (B, G) and the 

mass density ρ using these expressions: vl = ((3B+ 4G)/3ρ)1/2 , and vt = (G/ρ)1/2[5], [31-33]. Our calculated data of vl, vt and vm for CaO 

material are tabulated in Table 2, along the results reported in Ref. [5] determined at atmospheric pressure and room temperature. 

 
Table 2: Longitudinal, Transverse and Mean Acoustic Wave Speeds Versus Pressure P Up to 65.2 GPa for Cao in Phase (B1), * from Ref [5] 

p (GPa) 0 5.6 14.3 22.1 36.6 49.7 57.8 65.2 

vl  (km/s) 8.090* 8.482 9.196 9.552 10.123 10.376 10.728 10.790 
vt (km/s) 4.899* 4.995 5.221 5.211 5.177 4.895 4.770 4.610 

vm (km/s) 5.415 * 5.535 5.804 5.812 5.800 5.509 5.382 5.210 

 

The effect of high pressure up to 65.2 GPa on the longitudinal, transverse and mean acoustic wave speeds of CaO material is traced in 

figure 2. As shown in figure 2, both the transverse and mean acoustic wave speeds of CaO change non-linearly and non-monotonously 

with increasing pressure up to 65.2 GPa. Similar behavior for the acoustic wave speeds against pressure for cubic zinc-blende boron ar-

senide (BAs) semiconducting compound [34] was also observed. The second order polynomial fits of the acoustic wave speeds against 

pressure p for CaO are expressed as follows: vl = 8.19 + 0.70 p − 4.69 × 10−4 p2, vt = 4.94 + 0.02 p − 4.04 × 10−4 p2, and vm = 5.47 + 0.03 

p − 4.59 × 10−4 p2, where vl, vt, and vm are expressed in km/s, while p is expressed in GPa. 
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Fig. 2: Variation of the Elastic Wave Velocities as A Function of Pressure for Cubic Rock-Salt (B1) CaO Compound Up to 65.2 GPa. 

 

The Debye temperature of material is an essential parameter in solid state physic [35-37], it is related to many other physical properties, 

such as the specific heat, the elastic constants, the melting temperature, thermal expansion and thermal conductivity [38-44]. It gives the 

knowledge about structural stability, density of solid, and strength of bonds between its constituent’s atoms [45]. There are different ex-

pressions usually used to calculate the Debye temperature θD of crystal from the mean acoustic wave speed vm [43-46], one of those for-

mulas is expressed as follow [46]: ( ) ( )  mA
2

BD vMNnπkθ
3/1

/6/ = , where 2/h= , h is Planck’s constant, n is the number of atoms of a 

molecule, NA is the Avogadro’s number, ρ is the mass density, kB is Boltzmann’s constant, and M is the molecular weight. 

Our obtained values of the Debye temperature θD for CaO are tabulated in table 3, along the data determined at atmospheric pressure [5]. 
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Table 3: Debye temperature θD Versus Pressure P Up to 65.2 GPa for CaO Compound in Cubic Rock-Salt Structure (B1), * from Ref [5] 

p (GPa) 0 5.6 14.3 22.1 36.6 49.7 57.8 65.2 

θD (K) 670.1* 697.7 742.4 754.8 769.0 741.0 731.3 714.8 

 

Our obtained values of θD for CaO material are also traced in figure 3, along the data reported in Ref. [2].Similarly to the mean acoustic 

wave speed vm, the Debye temperature θD of CaO material changes non-monotonously with increasing pressure from 5.6 up to 65.2 GPa. 
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Fig. 3: Variation of the Debye Temperature θD As A Function of Pressure for Cubic Rock-Salt CaO Compound, Along Data of Deng et al. [2]. 

 

Similar behavior of θD against pressure for boron phosphide (BP) semiconducting material [47] was also observed. This behavior differs 

from that reported for CaO compound [2] (Figure 3), for cubic Cu3N material [48, 49], and for cubic zinc-blende BN material [50] which 

indicates that the Debye temperature θD changes monotonously with increasing pressure. 

3. Conclusion 

Using the experimental relative volume unit cell and the elastic constants measured by Speziale et al. at high pressure from 5.6 up to 65.2 

GPa, we have investigated the effect of high pressure on the bulk modulus, aggregate shear modulus, elastic wave velocities and Debye 

temperature of calcium oxide (CaO) ionic material. Our obtained data show that the bulk modulus increases monotonously with increas-

ing pressure, while the quasi-isotropic shear modulus, the mean elastic wave velocity and the Debye temperature of CaO ceramic materi-

al change non-monotonously with increasing pressure from 5.6 up to 65.2 GPa. It should, however, be noted that at high pressure, the 

deviations between the different curves of the bulk modulus become more largely than those observed at low pressure. 
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