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Abstract 
 

This work aims to investigate the correlation between the bulk modulus as well as the microhardness and the lattice parameter of several 

cubic zinc-blende III-V semiconductors. Our study shows that both the bulk modulus and the microhardness correlate no-linearly with 

the lattice parameter of III-V binary compounds. The best fits were obtained using the Gaussian model, the coefficients of the correlation 

were found at around 0.993 for the bulk modulus, and 0.996 for the microhardness, respectively. Our expressions perhaps used with high 

accurate to predict the bulk modulus and the microhardness of other binary compounds and ternary semiconductor alloys. 
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1. Introduction 

Group III–V semiconducting binary compounds have recently attracted great attention [1-5]. These materials have many applications in 

electronic and optoelectronic fields [6, 7]. At room temperature, III–V semiconductors crystallize in zincblende or wurtzite phases [8-10].  

Using a microscopic empirical model based on atomic-scale parameters Xu et al. [11] have investigated the correlation between the bulk 

modulus of several polar covalent crystals and others parameters, especially: the bond length d, the effectively bonded valence electron 

(EBVE) number, nAB and the coordination number product (p = NANB). The major advantage of this microscopic empirical model is 

obvious for saving a lot of calculation endeavor compared with other methods using first-principles calculation.  

Chen and Ravindra [12] have investigated the elastic properties of diamond and zincblende covalent crystals, and they have improved a 

model existing in the literature relates the average shear modulus with the bond length and Phillips ionicity. 

Using the plasma oscillations theory of solids, Kumar et al [13] established a simple relationship for the calculation of bulk modulus B 

and microhardness H of group IV, II–VI, III–V, I–III–VI2 and II–IV–V2 semiconductors with tetrahedral structure. 

In the present work, we investigate the correlation between the bulk modulus, the microhardness and the lattice parameter of several III-

V semiconducting compounds. 

2. Theory, results and discussion 

Several physical quantities, such as the mass density, the elastic constants and the width of the gap in the semiconductors are strongly 

correlated with the lattice spacing between the atoms of crystal [1]. The experimental bulk modulus B and Knoop microhardness H of 

some III-V semiconducting compounds are summarized in Table 1 [14]. 

 
Table 1: Lattice Parameter a, Bulk Modulus B, and Knoop Microhardness H of Some III-V Semiconducting Compounds[14] 

Materials BN BP BAs AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb 

a (Å) 3.615 4.538 4.777 5.463 5.661 6.136 5.451 5.653 6.096 5.869 6.058 6.479 

B (GPa) 400 170 173 92.8 77.9 58.2 88.2 75.5 56.3 72.3 57.9 45.6 

H (GPa) 73.0 32.0 19.0 5.5 5.0 4.0 9.4 7.5 4.7 3.9 3.8 2.9 

 

Unlike hardness, bulk modulus B is a strictly defined thermodynamic quantity (B = VdP/dV). It can be obtained from the elastic con-

stants [15], or by fitting the calculated total energy with Murnaghan equation of state [11]. The bulk modulus B is defined as the recipro-

cal of the compressibility β. A substance that is difficult to compress has a small compressibility, but a large bulk modulus [1]. The dif-
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ferent data of the bulk modulus B summarized in Table 1 are plotted in Figure 1. We can observe clearly that the bulk modulus B de-

creases non-linearly with increase of lattice parameter a, so the results were fitted using the model of Gauss given as follow:  
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Where Y0, A, w and xc are the model parameters. For the bulk modulus B of III-V compounds, our fitted numerical values Y0, A, w and 

xc are 32.58, 14724.09, 4.68, and - 0.98, respectively. Our model for the bulk modulus B can be expressed as follow: 
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where B is the bulk modulus (expressed in GPa), and a is the lattice parameter (expressed in Å). The average error of estimation on the 

bulk modulus B is only around 4.46%. 
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Fig. 1: Correlation Trend between the Bulk Modulus and the Lattice Parameter of Cubic Zinc-Blende III-V Functional Semiconductors. 

 

The hardness of solid is related to crystal structure [16] and concentration of defects (vacancy, impurity, dislocations, etc) in the material 

[1, 17, 18]. The different data of microhardness H reported in Table 1 are plotted in Figure 2 as a function of the lattice parameter. Using 

the model of Gauss, our fitted numerical values concerning the Knoop microhardness H of the parameters Y0, A, w and xc are 3.89, 

148.29, 1.65, and 3.38, respectively. So, our model for the Knoop microhardness H can be written as follow: 
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a 3.38148.29
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In Eq. (3), H represents the Knoop microhardness (in GPa), while a is the lattice parameter (in Å). The average error of estimation of the 

Knoop microhardness H is around 15.08%. 
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Fig. 2: Knoop Microhardness H versus Lattice Parameter in Cubic Zinc-Blende III-V Semiconductors. 

 

For II–VI, III–V, I–III–VI2 and II–IV–V2 semiconductors with tetrahedral structure, Kumar et al [13] proposed a linear relationship be-

tween the bulk modulus B and the microhardness H, which is expressed by the following relation: B = κH + γ, where κ and γ are the 

constants. The numerical values of κ and γ are, respectively, 6.18 and 35.49 GPa for III–V semiconductors [13]. 

The different data of microhardness H reported in Table 1 are plotted as a function the bulk modulus B in Figure 3. Using the model of 

Gauss, our fitted numerical values concerning H of the parameters Y0, A, w and xc are -1.35, 25599.93, 265.28, and 364.88, respectively.  
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Fig. 3: Knoop Microhardness H versus Bulk Modulus B in Cubic Zinc-Blende III-V Semiconductors. 

 

Our model for the Knoop microhardness H versus bulk modulus B in cubic zinc-blende III–V materials can be written as follow: 
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2

B 566.3859491.11
H -5.63 exp 2

2469.99 π / 2 469.99
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Using our previous Gaussian model, the average error on the estimation of the Knoop microhardness H from the bulk modulus B is 

around 19.3%. The maximum error (46.2%) was found for AlP semiconductor, while the minimum error (0.0%) was reported for BN. 

3. Conclusion 

Based on some experimental data reported in the literature, we investigate the correlation between the bulk modulus, the microhardness 

and the lattice parameter of cubic zinc-blende III-V functional semiconductors. Both the bulk modulus and the microhardness correlate 

no-linearly with the lattice parameter in III-V binary compounds. The best fits were obtained using the model of Gauss. The coefficients 

of the correlation were found 0.993 for the bulk modulus, and 0.996 for the microhardness, respectively. The average error of estimation 

on the bulk modulus B is only around 4.46 %, while that on the Knoop microhardness H is around 15.08%. 
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