

**International Journal of Advanced Chemistry** 

Journal home page: www.sciencepubco.com/index.php/IJAC doi: 10.14419/ijac.v2i2.2926 Research Paper



## Novel gadolinium complexes in aqueous solution : characterization, identification and probable structures

M. Riri<sup>1</sup>\*, A. Benjjar<sup>1,2</sup>, O. Kamal<sup>1</sup>, M. Hor<sup>1</sup>, K. Touaj<sup>1</sup>, M. Hlaibi<sup>1,2</sup>

<sup>1</sup> Laboratory of Materials Interface and Chemistry of the Environment (LIME), Hassan II University, Faculty of Sciences, Ain Chock, BP 5366, Maa<sup>^</sup>rif, Casablanca, Morocco

<sup>2</sup> Laboratory of Polymers, Biopolymers, Surfaces, UMR 6270 CNRS, University of Rouen, Faculty of Sciences,

F-76821 Mont-Saint-Aignan, France

\*Corresponding author E-mail: medriri@gmail.com

### Abstract

In this work, we shall present the results of investigations on the interaction of the gadolinium ion  $(Gd^{3+})$  with different chelation sites of mandelic acid and DL-serine (amino acid) formed in dilute solution for pH values between 5.50 and 7.50. The general formula of these new organometallic complexes is and (mandelate ions and: serine ions). These gadolinium complexes detected, are colorless and have no absorption band UV–visible. In this sense, we have used an analytical technique called « Indirect Photometry Detection (IPD) » have identified major di-nucleaire and tri-nuclear complexes of these acids. This technique allowed us to determine the composition and stabilities of complexes predominate in solution, giving for these colorless complexes a molar ration (2:2) and (3:2) for mandilic acid and serine acid respectively, and we have shown that the composition and stability constant depends on the acidity of the medium. To complement previous results and to propose probable structures for these new coloress complexes, IR and Raman spectroscopy have been conducted to identify the different chelation sites for theses ligands.

Keywords: Coloress Complexes, DL-Serine, Indirect Photometry Detection, Gadolinium Complexes, Mandelate Ions.

## 1. Introduction

Currently, gadolinium complexes are commonly used to improve the contrast of images obtained by MRI (Magnetic Resonance Imaging). However, gadolinium ion is highly toxic in its hydrated

form  $\left[ Gd \left( H_2 O \right)_8 \right]^{3+}$ , its complexation with an organic ligand re-

duces this toxicity. This complexation should be administered in the form thermodynamically very stable [1]. The solution consists of enclosing the gadolinium ion in the linear or cyclic organic ligands to form complex non-toxic, inert and stable in the body [2]. The most widely ligands used are polyaminocarboxylates and their derivatives. In this work we have studied the formation of colorless gadolinium complexes with some linear ligands in dilute solutions. To study of these colorless complexes, we developed à new analytical technique for determining the compositions and stabilities of some colorless organometallic complexes, which have no absorption band UV-visible. This technique is the indirect photometry detection (IPD), based on competitive reactions by ligand-ligand exchange. The method is simple, reproducible, effective and applicable to very dilute solutions. Thus, the importance of IPD technique was also revealed by its adaptation to other techniques of separation and determination, such as liquid chromatography [3], [4], capillary electrophoresis [5] and continuous flow analysis (FIA) [6]. Some studies show that this technique is very effective in identifying some colorless gadolinium [7], [8], [9] and tungstate complexes of sugars and organic acids [10]. The detection or monitoring of certain diseases, sometimes requires injection gadolinium complexes because of the interesting electro

nic and magnetic properties of this ion [11], [12]. The most contrast agent used in MRI are complexes of amino acids and carboxylic acids with some lanthanides [13]. Currently, most contrast agents used in MRI are complexes of gadolinium-DTPA, gadolinium-BOPTA, gadolinium-DOTA [14-17] and its analogs which are modified to enhance the contrast effect on fabric [18], [19]. Other studies have shown that gadolinium complexes of coumarin-3-carboxylic acid(2-oxo-2H-chromene-3-carboxylic acid) and its derivatives have very important pharmaco- logical properties [20]. In this work, investigations by indirect photometry detection (IPD) were carried out to study the interaction of the trivalent gadolinium ions, with conjugate base of mandelic acid and DLserine ions), detecting the majority of colorless complexes formed in solution and determining their composition and stability. To elucidate the structure and the chelation sites of these major complexes, the technique FT-IR and FT-Raman spectroscopy has been used fruitfully. Indeed, these three techniques (IPD, IR and Raman spectroscopy) are very useful for elucidating the formation of the major complexes for the systems (Gd(III)-mandelate acid and Gd(III)-serine), hence, help precisely determine the composition, stability and the nature of chelation sites for each of ligands, involved in the composition of detected complexes and propose probable structures for these new complexes. The acidity constants and semi developed form of mandelic acid and serine are noted in the Table 1 [21], [22].



Copyright © 2014 M. Riri et al. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

| Table I: Some Characteristics Of Acids Studied |                                 |                  |                  |  |  |  |  |
|------------------------------------------------|---------------------------------|------------------|------------------|--|--|--|--|
| Acid                                           | Chemical formula                | pKa <sub>1</sub> | pKa <sub>2</sub> |  |  |  |  |
| Mandelic                                       | $C_6H_5-CH\left(OH\right)-COOH$ | 3.50             |                  |  |  |  |  |
| Serine                                         | $HOCH_2 - CH(NH_2) - COOH$      | 2.19             | 9.91             |  |  |  |  |

### 2. Experimental section

### 2.1. Chemicals

Mandelic acid, DL-serine, Chrome Azurol S ( $(H_4Ch)$ ), Gd(III) nitrate and other chemicals were commercial products (Aldrich, Prolabo) of the purest available and analytical grade, used as received.

### 2.2. Indirect photometric detection

A standard Helios y UV-visible spectrometer controlled by Vision 32 software was used for spectrometric measurements, using quartz cells of optical path length l = 1cm. The absorption measurements have been performed at room temperature and at wavelength  $\lambda_{max} = 545nm$ . Stock solutions of Gd(III) nitrate and Chrome Azurol S ( $(H_4Ch)$ ), were prepared with concentrations of respectively  $10^{-2}M$  and  $10^{-3}M$ . In a typical experiment, a solution (v = 50 mL) of the colored sacrificial complex  $(Gd - H_4Ch)$  was prepared  $\left(\left\lceil Gd^{3+} \right\rceil / \left[H_4Ch\right] = 1.5$ , using it as a buffer of MESH (0.1 M) [2-(N-morpholino) sulfonic ethane acid]. The initial solution also contained a calculated amount of 1 M NaOH in order to obtain the desired pH value (pKa(MESH)= 6.2, experimental pH range (5.50-7.50). pH values are measured with a microprocessor pH meter HANNA 210 equipped with a combined electrode glass and calibrated with commercial buffers (pH 4.00 and 7.00). Then aliquots (v = 0.100 - 0.200 mL) of an aqueous solution of the mandelic acid and DL-serine ( $C_L = 10 g / L$  and  $C_L = 20 g / L$  respectively) were added, using a Gilson micropipet of 0.200 ml. After each addition, the resulting

solution was left at least 2 min in order to reach equilibrium (and thus a constant absorption value). Addition was repeated until a maximum volume of 4.00 ml of the ligands solution was added. The change in the total volume was neglected. For fixed pH environments, the apparent formation constants logK'<sub>xyz</sub> was calcula-

ted from the equilibrium of the reaction of formation of these complexes. The absorption values for the undissociated (AF) and the totally dissociated (A<sub>I</sub>), sacrificial complex ( $Gd - H_4Ch$ ), are used as determined in experiments using pure Chrome Azurol S  $(H_4Ch)$ , and an excess of Gadolinium(III) (performed at pH intervals of 0.25). Assuming various integers for the Gadolinium and organic acids stoichiometry, a formation constant is calculated for each added amount of ligands and corresponding absorption value. The results are rejected when a systematic variation of  $logK'_{XVZ}$  z occurs with increasing added-up amount of ligands or

when individual values of  $logK'_{XVZ}$  differed from the mean value by more than 2%.

### 2.3. IR spectroscopy

Samples were prepared by weighing the appropriate amount of mandelic acid and DL-serine (ligands) and  $(Gd(NO_3)_3.6H_2O)$ adding  $H_2O$ , mixing and finally adjusting the pH with concentrated HCl or NaOH. Concentrations of analyzed samples are  $10^{-3}M$ . Analyses were performed using an infrared spectrometer, Fourier transform (FT-IR) Perkin Elmer BX, equipped

with a DTGS detector, a splitter and a cesium iodide window. In this configuration, the interval of analysis is that the middle infrared,  $6000 - 250 \text{ cm}^{-1}$  and analysis are conducted on small samples, whose size is less than  $1 mm^3$ . Liquid samples are placed between two plates of very pure salt (KBr), these platesare transparent to infrared light and the spectra relative to free ligands and complexes have been plotted for frequencies 4400 - 400  $cm^{-1}$ 

### 2.4. RAMAN spectroscopy

The complexes are precepitated quickly at room temperature, at a concentration of  $10^{-2}M$  and fixed pH values. The precipitates were filtered, and dried in a drying oven. The Raman spectra of the studied ligands and their new Gd(III) complexes were performed using a Raman spectrometer Fourier transform (FT-Raman) VERTEX 70 with a range of measurement  $4000-50 \text{ cm}^{-1}$ , laser source NdYag (1.064 µm), a nominal power of 500 MW, detecting Ge with high sensitivity and a resolution of  $4 \text{ cm}^{-1}$  (64 scan). The spectra relative to free ligands (acids) and complexed (Gd(III) -Acids), have been plotted for frequencies from  $4000 \ to \ 150 \ cm^{-1}$ .

## 3. Results and discussion

### 3.1. Indirect photometric detection study

### 3.1.1. Expression of the stability constant of mandelic acid

The complexation reaction of gadolinium ions with mandelic acid and protons, is given by general reaction (I) :

$$xGd^{3+} + yL^{-} + zH^{+} \xrightarrow{} (x, y, z) + nH_2O$$
(I)

- L<sup>-</sup> represents the ligand (mandelate).
- We noted (x,y,z) to simplify the writing of complex formed.
- ٠ x, y and z are, respectively, the stoichiometric coefficients relating to the Gd3+ ion, acid studied in its basic form and the number of protons H+ involved in complexation reaction.

The formation constant  $K_{XYZ}$  (or stability constant  $\beta_{xyz}$ ) of the complexes are defined as the equilibrium constant :

$$K_{XYZ} = \left[ (x, y, z) \right] / \left[ Gd^{3+} \right]^{X} \cdot \left[ L^{-} \right]^{Y} \cdot \left[ H^{+} \right]^{Z}$$
(1)

Additionally, à conditional equilibrium constant  $K'_{xyz}$  is defined in case of constant pH value (buffered solution) :

$$K'_{XYZ} = [(x, y, z)] / [Gd^{3+}]^{x} .(C_{L})^{y} = K_{XYZ} .[H^{+}]^{z}$$
(2)

Where C<sub>L</sub> represents the analytical concentration of the uncomplexed ligand, all experiments are performed for pH values higher than pK<sub>a1</sub> mandelic acid. Therefore, we have  $C_L = \begin{bmatrix} L^{-} \end{bmatrix}$ . Using

this equality, Eq. (1) can be written as:

$$K'_{XYZ} = \left[ (x, y, z) \right] / \left[ Gd^{3+} \right]^X \cdot \left[ L^{-} \right]^Y$$
(3)

And

$$K'_{xyz} = K_{xyz} \cdot \left[H^+\right]^Z \tag{4}$$

Thus

$$\log K_{XYZ} = \log K_{XYZ} = z.pH \tag{5}$$

### 3.1.2. Expression of the stability constant of aminoacid (serine)

In general, amino acids exhibit several forms depending on the pH of the medium, so we expressed stability constant from the major form of serine to working pH range (pH 5.50 - 7.50). The complexation reaction of serine with gadolinium ions is as follows :

$$xGd^{3+} + yR(NH_2)L^{-} + zH^{+} \xrightarrow{} (x, y, z) + nH_2O$$
(II)

$$R(NH_2)L^{-}$$
 R(NH<sub>2</sub>) L<sup>-</sup>] is the form

 $HOCH_2 - CH_2(NH_2)CO_2^-$ 

The stability constant is defined by Equation 6:

$$K_{xyz} = \left[ (x, y, z) \right] / \left[ Gd^{3+} \right]^x \cdot \left[ R(NH_2)L^{-} \right]^y \cdot \left[ H^{+} \right]^z \tag{6}$$

The different forms of serine are  $HOCH_2 - CH_2(HNH_2^+)CO_2H$ ,

 $HOCH_2 - CH_2(HNH_2^+)CO_2^-$  and  $HOCH_2 - CH_2(NH_2)CO_2^-$ . While the analytical concentration of serine in the solution is given by :

$$C_{L} = \left[HOCH_{2} - CH_{2}(NH_{2})CO_{2}^{-}\right]$$
$$+ \left[HOCH_{2} - CH_{2}(HNH_{2}^{+})CO_{2}^{-}\right]$$
$$+ \left[HOCH_{2} - CH_{2}(HNH_{2}^{+})CO_{2}H\right]$$

For pH values between  $K_{a1}=2.19$  and  $K_{a2}=9.91$ , the ions  $HO - CH_2 - CH_2(HNH_2^+) - COO^-$  predominate in the solution. Then the analytical concentration  $C_L$  is expressed from the following major form  $HOCH_2 - CH_2(HNH_2^+)CO_2^-$ .

$$C_{L} = \left[HOCH_{2} - CH_{2}(HNH_{2}^{+})CO_{2}^{-}\right]$$
$$= \left[HOCH_{2} - CH_{2}(NH_{2})CO_{2}^{-}\right] \times \left[H^{+}\right] / K_{a2}$$
Therefore, the stability constant given by equation

Therefore, the stability constant given by equation (6) has become in this expression :

$$K_{xyz} = \left[ \left( x, y, z \right) \right] / \left[ Gd^{3+} \right]^{\lambda}$$

$$\times (CL)^{y} \times (K_{a2})^{y} \times \left[ H^{+} \right]^{z-y}$$

$$= K_{xyz}^{*} \times \left[ H^{+} \right]^{-(z-y)} \times K_{a2})^{-y}$$
And
$$(7)$$

$$\log K'_{xyz} = \log K_{xyz} - y . p K_{a2} - (z - y) \times p H$$
(8)

In the first stage of the characterization of the gadolinium ion complexes with acids studied, we determined the compositions x, y, z and stabilities constants of these colorless complexes. The complexation of the ligands (acids studied) can be studied using a spectrophotometric method. Since the reagents (mandelic acid and serine) and their gadolinium complexes don't possess a characteristic UV-visible absorption spectrum, a second ligand (called the sacrificial ligand) is introduced, this ligand must absorb in the UV-visible spectrum and form a colored complex with gadolinium(III). The dissociation of this colored complex has to cause large variations in the UV-visible spectrum which allows for the calculation of the concentration of the sacrificial complex; using the formation constant of this colored complex, the concentration of the unknown complex can be obtained. Therefore, the sacrificial ligand must form a single colored complex of lower stability than the gadolinium complex under study. In this work, Sulfo-3"dichloro-2",6"dimethyl-3,3'-hydoxy-4'-fuchsone-5,5'-

dicarboxylic acid, often called Chrome Azurol S and notable  $H_4Ch$ , has been used as sacrificial ligand. Chrome Azurol S is a tetraprotic acid with pKa values of 2.25 ( $H_3Ch^-/(H_2Ch^-)$ ), 4.71

 $(H_2Ch^{2-}/HCh^{3-})$  and 11.82  $(HCh^{3-}/Ch_4^{-})$  (Langmyhr & Klausen, 1963). In the experimental pH range (5.50–7.50), the formation of  $H_4Ch$ ,  $H_3Ch^{-}$  and  $H_2Ch^{2-}$  has been neglected. It is an indicator which is generally used for the photometric proportioning of the metal ions in solution (Dona & Verchere, 1991). The interaction of the H<sub>4</sub>Ch with gadolinium ions (Gd<sup>3+</sup>), gives a colored reagent ( $\lambda_{max} = 545 \text{ nm}$ ) of average stability for values of pH ranging between 5.50 and 7.50. The buffer "MESH". [2–(N–Morpholino) sulfonic ethane acid] was adopted to fix pH in the study of the sacrificial complex (Gadolinium–H<sub>4</sub>Ch) and gadolinium–Ligands complexes studied in this work. We chose this buffer because it does not present any interaction with Gd<sup>3+</sup> ions and so we would be able to work in the range of pH where the stability of the sacrificial complex is maximal.

# **3.2.** Formation of the colored sacrificial complex $Gd_x (HCh)_y$

The majority of organometallic complexes studied are colorless. Thus the study of the formation of the sacrificial complex  $Gd_x$  (*HCh*)<sub>y</sub>, is very important, because this steps decisive para-

meters (composition and stability) of these new gadolinic complexes. In this sense and in the my works published [7-10] we have demonstrated, experimentally, that the composition and stability of the colored sacrificial complex were determined, we found a complex type (3, 2, 3) and stability constant  $logK_{323} = 16.27$  in pH range 5.50 – 7.50, and the probable reaction for this complex faormation is :

$$3Gd^{3+} + 2HCh^{3-} + 3H^+ \longrightarrow (3,2,3) + nH_2O$$
 (III)

We use these results (sacrificial complex) to study two organometallic complexes Gd–mandelate and Gd–serine.

# 3.3. The composition and stability of the Gd (III)–Acids system studied

The ligands are added to a colored solution containing sacrificial complex  $Gd_3HCh_2$  and this Chrome Azurol complex will dissociate under effect of added ligands. To calculate the complex concentration of the  $HCh^{3-}$  ions, the absorption values of the totally complexed (A<sub>F</sub>), and the completely dissociated (A<sub>I</sub>)  $HCh^{3-}$  ions have to be determined. Then the following equations can be used :  $[(x, y, z)] = \alpha \times C_L = C_L \cdot (A - A_I) / (A_F - A_I)$  (9) A coefficient of sacrificial complex formation and  $\alpha = (A - A_I) / A_F - A_I)$  and  $C_L = C_{HCh}$ 

$$\left[HCh^{3-}\right]_{free} = C_L \times \left(A_F - A\right) / \left(A_F - A_I\right)$$
(10)

When the conditional constant  $K'_{323}$  of the sacrificial complex is known, the concentration of free gadolinium ion ( $\left[Gd^{3+}\right]$ ), can be calculated using Equations (9) and (10). Knowing the two concentrations [(3, 2, 3)] and  $\left[Gd^{3+}\right]$ , the concentration of the gadolinium complex under study [(x,y,z)] (balanced reaction I) can be determined using the gadolinium balance equation :

$$x.[(x, y, z)] = C_{Gd} - \left\lfloor Gd^{3+} \right\rfloor_{free} - 3[(3, 2, 3)]$$
(11)

 $C_{Gd}$  the initial gadolinium concentration and [(x,y,z)] the concentration of coloress complex formed.

In a similar way, the concentration of the free ligand is obtained by Eq. (12) :

$$(C_L^{n-})_{free} = (C_L^{n-})_{initial} - y\left[\left(x \ y, z\right)\right]$$
(12)

It should be also noted that a perfect knowledge of the characteristics of the sacrificial colored complex (Gd<sub>3</sub>HCh<sub>2</sub>) is necessary. The determination of the composition and the stability of the sacrificial complex and the precision of the conditions of its formation are paramount stages to apply the indirect photometry detection. In each experiment, the ligands  $(C_6H_5 - CH(OH) - COO^-)$  (mandelate) and  $(HOCH_2 - CH(NH_2) - COO^-)$  (serine completely deprotonate)) are added stepwise in order to measure the absorption at different values (at least 13) of the overall initial concentration of these studied ligands. The correct  $K_{XYZ}$  is looked for by varying x and y in order to obtain a constant for all values of  $C_L^{n-}$ . If  $\log K_{XVZ}$  is determined at different pH, the slope of the  $\log K_{XVZ} = f(pH)$  plot reveals the number z of protons that is very necessary for the formation of the studied gadolinium complexes by the use of Eq. (4) and Eq. (8), since the value of  $K_{\chi\gamma\gamma}$  is independent of pH. Now the stability and the total composition of the gadolinium complexes have been determined.

## **3.4.** Determination of the composition and the stability constant of these new gadolinic complexes

With an aim of determining the composition and the stability constant of the gadolinium–mandelate and gadolinium–serine complexes, we monitoring the evolution of the absorbance during the disappearance of the sacrificial complex by the addition of increasing quantities of ligands. For a given volume (50mL or 100mL) of a solution containing sacrificial complex (3, 2, 3)

 $(10^{-4}M)$ , we added increasing quantities of acids studied, with known concentration. The spectrophotometric study carried out with fixed wavelength (  $\lambda_{max} = 545nm$  ), showed a reduction in the absorbance of the solution progressively with the addition of the acids (Figure 1). The dissociation of the sacrificial complex, relating to the reduction in the absorbance by the addition of mandelate and serine ions solution, is done in favor of the formation of the colorless complex between Gd<sup>3+</sup> and acids studied. The curves C1 and C2, in Figure 1, of systems Gd-serine and Gd-mandelic acid respectively, clearly show that the absorbance decreases and stabilizes. This stability indicates that all  $Gd^{3+}$  ions, initially present in the solution have reacted to added ligands ions. Knowing the concentration of gadolinium ions and the quantity of ligands (added volume of acids solution), necessary to reach this stage of absorption, we could determine the molar ratio *q*=[*Gd*(*III*)]/[*Acid*], involved in the complexation reaction

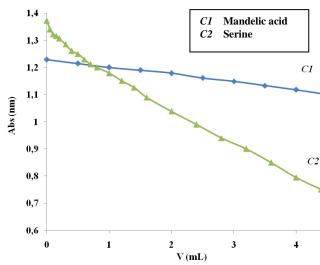



Fig. 1: Decomposition of Colored Sacrificial Complex by Addition of Mandelic Acid and SerineMass concentration of mandelic acide and serine 10g / L and 20g / L respectively.

The preceding experiment was carried out for different values of pH between 5.50 and 7.50, the way in which the absorption decreases, depends on the pH of the medium and on the formation constant of the detected complex (Gd–Acid), as well as on the absorption values (A<sub>I</sub>) and (A<sub>F</sub>) of the free and totally complexed Chrome Azurol S ( $HCh^{3-}$ ). Analyzing the experimental data with the computer program written from the balanced reaction (I), the results confirm the reproducibility of the molar ratio "q" and to determine the composition and the stability constant  $K'_{xyz}$ . The ratio  $q = \left(\left[Gd^{3+}\right]/\left[acid\right]\right) = x / y$  is determined experimentally from a computer program written in Microsoft Excel and express-

from a computer program written in Microsoft Excel and expressed from the reaction of complex (reaction I). This program is not a theoretical modeling. But this is a translation of the reaction steps of the balance (I) for ease of calculation. Figure 2 Represents an example of calculating the ratio q at pH 6.40 of serine complexed with gadolinium ion, where we inserted the two experimental values : the volumes added ( $V_a$ ) of ligand and the absorbance (A) correspond for each added volume  $V_a$  of ligand, to seek the values of x and y to the value of conditional constant ( $\log K_{xyz}$ ) which remains constant. The calculations are repeated for different experimental pH between 5.50 and 7.50.

| 2<br>3<br>4<br>5<br>6<br>7<br>8 |       |        |           |                    |                   | [CAS] <sub>o</sub> =<br>[Gd] <sub>o</sub> =<br>MM = | 1,00E-04<br>1,50E-04<br>105,1 | Serine<br>pH =<br>Ai =<br>Af = | 6,4<br>0,225<br>2,080   |                      |       |          |
|---------------------------------|-------|--------|-----------|--------------------|-------------------|-----------------------------------------------------|-------------------------------|--------------------------------|-------------------------|----------------------|-------|----------|
| 4<br>5<br>6<br>7<br>8           |       |        |           |                    |                   | [Gd] <sub>o</sub> =<br>MM =                         | 1,50E-04                      | Ai =                           | 0,225                   |                      |       |          |
| 5<br>6<br>7<br>8                |       |        |           |                    |                   | [Gd] <sub>o</sub> =<br>MM =                         | 1,50E-04                      | Ai =                           | 0,225                   |                      |       |          |
| 6<br>7<br>8                     |       |        |           |                    |                   | MM -                                                | -                             |                                | -                       |                      |       |          |
| 7<br>8                          |       |        |           |                    |                   |                                                     | 105,1                         | Af =                           | 2 080                   |                      |       |          |
| 8                               |       |        |           |                    |                   | <b>T</b> ( <b>T</b> )                               |                               |                                | 2,080                   |                      |       |          |
|                                 |       |        |           |                    |                   | Log(Kc) =                                           | 6,67                          | Acide                          | Serine                  |                      |       |          |
|                                 |       |        |           |                    |                   | Kc =                                                | 4677351,413                   | Acide                          | Seri                    |                      |       |          |
| 9                               |       |        |           |                    |                   | X =                                                 | 3,00                          | Cm                             | 20                      |                      |       |          |
| 10                              |       |        |           |                    |                   | Y =                                                 | 2,00                          | Vt                             | 100                     |                      |       |          |
| 11                              |       |        |           |                    |                   |                                                     |                               |                                |                         |                      |       |          |
|                                 |       | A(nm)  | [GdCAS]   | [CAS] <sub>L</sub> | [Gd] <sub>L</sub> | [Gd-Acide]                                          |                               | $[Gd]_L^X$                     | [Acide] <sub>L</sub> ^Y | [Acide] <sub>t</sub> | B     | LogK'xyz |
| 13                              | 12,00 | 0,921  | 1         |                    | 2,532E-05         | 2,905E-05                                           |                               |                                |                         | 2,283539E-02         |       |          |
| 14 ]                            | 12,50 | 0,910  | 3,693E-05 | 6,307E-05          | 2,489E-05         | 2,939E-05                                           | 2,372808E-02                  | 1,542080E-14                   | 5,630219E-04            | 2,378687E-02         | 0,369 | 12,53    |
| 15 ]                            | 13,00 | 0,899  | 3,633E-05 | 6,367E-05          | 2,447E-05         | 2,973E-05                                           | 2,467888E-02                  | 1,465232E-14                   | 6,090471E-04            | 2,473834E-02         | 0,363 | 12,52    |
| 16 ]                            | 13,50 | 0,885  | 3,558E-05 | 6,442E-05          | 2,394E-05         | 3,016E-05                                           | 2,562950E-02                  | 1,372222E-14                   | 6,568712E-04            | 2,568982E-02         | 0,356 | 12,52    |
| 17 ]                            | 14,00 | 0,878  | 3,520E-05 | 6,480E-05          | 2,368E-05         | 3,037E-05                                           | 2,658055E-02                  | 1,327646E-14                   | 7,065255E-04            | 2,664129E-02         | 0,352 | 12,51    |
| 18 ]                            | 14,50 | 0,868  | 3,466E-05 | 6,534E-05          | 2,331E-05         | 3,068E-05                                           | 2,753142E-02                  | 1,266110E-14                   | 7,579788E-04            | 2,759277E-02         | 0,347 | 12,50    |
|                                 | 15,00 | 0,855  | 3,396E-05 | 6,604E-05          | 2,283E-05         | 3,107E-05                                           | 2,848210E-02                  | 1,189735E-14                   | 8,112303E-04            | 2,854424E-02         | 0,340 | 12,51    |
| 20 ]                            | 15,50 | 0,838  | 3,305E-05 | 6.695E-05          | 2.221E-05         | 3,158E-05                                           | 2.943256E-02                  | 1.095724E-14                   | 8,662754E-04            | 2.949572E-02         | 0,330 | 12.52    |
|                                 | 16,00 | 0.828  | 3.251E-05 | 6.749E-05          | 2,185E-05         | 3,188E-05                                           | 3,038343E-02                  | 1.043371E-14                   | 9.231529E-04            | 3,044719E-02         | 0.325 | 12.52    |
|                                 | 16,50 | 0,818  |           |                    | 2,149E-05         | 3,218E-05                                           |                               |                                |                         | 3.139867E-02         |       | 12,52    |
|                                 | 17,00 | 0.810  |           |                    | 2,121E-05         | 3,242E-05                                           |                               |                                |                         | 3.235014E-02         |       | 12,51    |
|                                 | 17,50 | 0.800  |           |                    | 2,086E-05         |                                                     |                               | 1                              |                         | 3,330162E-02         | -     | 12,51    |
|                                 | 18,00 | 0,788  |           |                    | 2,044E-05         | 3,307E-05                                           |                               |                                |                         | 3,425309E-02         |       | 12,52    |
|                                 | LogK' | xvzmov | 12,52     |                    |                   |                                                     |                               |                                |                         |                      |       |          |

Fig. 2: Example of Program Used to Calculate the Compositions X, Y and The Stability  $\log K_{XVZ}$ 

We obtained a molar ratio q = x / y for mandelic acid equal 2:2 and 3:2 for serine. The data-processing treatment of the preceding experimental results, shows that these di and tri-nuclear detected complexes are formed between the gadolinium ions and ligands, resulting from the interaction of two Gd(III) ions equivalents with two equivalents of mandelate species and three Gd(III) ions for serine, so a molar ratio  $q = x \left(Gd^{3+}\right) / y \left(L^{-}\right)$  remains the same for each of the each complexes detected for a fixed conditional constant ( $\log K_{XYZ}$ ) in pH range between 5.50 and 7.50. The constants and the molar ratio q at differents values of pH are given in Table 2.

Table II : The Conditional Stability of the Di and Tri-Nuclear Complexes Detected, Depending on the Acidity of the Medium.

| Mandelic | рп              | 5.50  | 3.78  | 5.98  | 0.22  | 0.30  |        |
|----------|-----------------|-------|-------|-------|-------|-------|--------|
| acid     | $\log K'_{22z}$ | 11.23 | 10.56 | 10.09 | 9.73  | 9.26  |        |
|          | pH              | 5,59  | 5,82  | 6,00  | 6,15  | 6,40  | 6,60   |
| Serine   | $\log K'_{32z}$ | 14.15 | 13.62 | 13.28 | 12.95 | 12.52 | 12.097 |
|          |                 |       |       |       |       |       |        |

Buffer (
$$MES^{-}/MESH$$
),  $\lambda_{max} = 545 \text{ nm}$ ,  $l = 1cm$   
 $\left[HCh^{3-}\right]_{total} = 10^{-4}M$ 

Therefore, for the complexation reaction of Gd<sup>3+</sup> ions with mandelate and serine ions at this pH range, these results, the reactions (I) and (II) and the equtions (2), (4), (5), (7) and (8) allow us to write the following expressions.

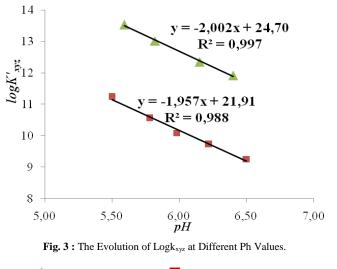
#### 3.4.1. Mandelic acid

$$2Gd^{3+} + 2L^{-} + zH^{+} \xrightarrow{} (2,2,z) + nH_2O$$
 (IV)

$$K_{22z} = \left[ (2, 2, z) \right] / \left[ Gd^{3+} \right]^2 \cdot (C_L)^2 = K_{22z} \cdot \left[ H^+ \right]^z$$
(13)

$$logK_{22z} = logK_{22z} - z \times pH \tag{14}$$

## 3.4.2. Serine


$$3Gd^{3+} + 2R(NH_2)L^- + zH^+ \longrightarrow (3,2,z) + nH_2O$$
 (V)

$$K_{32z} = \left[ (3,2,z] / \left[ Gd^{3+} \right]^3 \cdot \left[ R(NH_2)L^{-} \right]^2 \cdot \left[ H^{+} \right]^z \right]$$
(15)

$$=K'_{32z} \times \left[H^+\right]^{-(z-2)} \times K_{a2}^{-2}$$

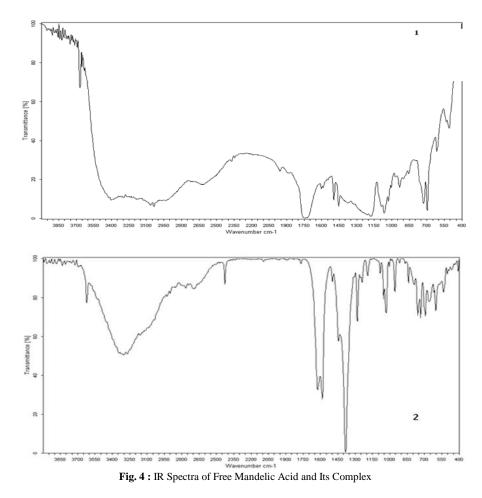
$$logK'_{32z} = logK_{xyz} - 2pK_{a2} - (z - 2) pH$$
(16)

For the three complexes detected, the results in table 2 combined with equations (14) and (16) allow to plot functions  $logK'_{22z} = f(pH)$  and  $logK'_{32z} = f(pH)$ , hence determine the number z of protons H<sup>+</sup> involved in the reaction obtained from the straight lines. The evolution of  $log K_{xyz}$  at different pH values is represented in Figure 3.





This evolution is linear and the slope p of the straight line is equal to -2 for each gadolinium complexes. The value of z = -p = 2for Gd–Mandelate and for Gd–Serine p = -2 = -(z - 2) (Eq.17) than z = 4) represents the number of protons involved in the formation reaction of these new multi-nuclear complexes [di-nulear (2,2,2) for Gd-Mandelate and tri-nuclear complex (3,2,4) for Gd-Serine]. The Equations (14) and (16) allowed us to calculate the stability constants  $logK_{XYZ}$  theses two complexes, the experimental results obtained by the IPD for Gd-Mandelate is  $logK_{222} = 21.91 \pm 0.01$ and Gd-Serine  $logK_{324} = 43.71 \pm 0.015$ .


Consequently, the spectrophotometric results concerning the interaction of the Gd(III) ion with mandelate show that the complexation reaction uses two Gd(III) ions, two carboxylates and fixation of two H<sup>+</sup> protons, but in the case of complex Gd-Serine, there are three Gd(III) ions interact with two ligands (two serine) and the intervention of four protons H<sup>+</sup>. In order to confirm our results, to have more information on the nature of these new gadolinium complexes and likely to propose a probable structure for these di and tri-nuclear coloress complexes, we carried out IR and Raman spectroscopy investigations.

## 4. IR and raman spectroscopic studies

The IR and Raman spectroscopic studies are used to identify different groups of ligands involved in chelation sites of gadolinium complexes detected in solution. The interpretations of spectra, help to identify the main bands related to vibration frequencies of the various functions of free acids studied and their gadolinic complexes and to suggest correct structures for theses two studied in this work.

### 4.1. Infrared spectra

An example of IR spectra has been registered for the free and complexed form of mandelic acid, the spectra obtained are shown in Figure 4.



(1) free mandelic acid, (2) complex Gdmandelate,  $C = 5.10^{-3}M$ , q = 2:2, pH = 6.10The different interpretations of the two spectra are summarized in

Table 3 based on bibliographic studies very powerful [8], [9], [25-27].

 Table III : Identification of Different Absorption Bands Relating to IR

  $(cm^{-1})$  of Free Mandelic Acid and Its Complex.

Complex Acide libre Gd(III)-Mandelic Interprétations A 3600 s 3621 w v(OH) in a position 3403 s u(OH) (carboxylic function) 3065 s / 3037 s 2691 / 2765 v(C-H) (aromatic / CH ( $\alpha$ )) 2427 m 2365 w υ(C=C) 1956 w 2098 vw (aromatic) 1745 vs υ(C=O) 1624 vs  $v(H_2O)$ 1584 vs v(CC) 1603 w/1496w/ 1455w v(CC) (aromatic ring) +  $\delta(CCH)$ 1384 vvs  $\delta(NO_2)$ 1281 m vas(NO) 1179 sm 1192 w v(C-OH) + v(C-O)υ(C-OH) 1066 m 1034 m  $v(NO_3)$ γ(CCH) 1029 w / 933 w 957 w 729 m/697 m 760 m / 693 m  $\delta(-COO)+\gamma(CH)$  (aromatic ring) 734 m δ(ONO) -----661 w Gd-O 616 m / 510 m 602 W v(CC) (aromatic ring) 409 w Y (Gd-O) (NO<sub>3</sub>)  $Gd^{3+}$  $C = 5.10^{-3} M$ : [Ligand] = 2:2, pH = 6.10

### Notation:

v:stretching;  $v_{as}$ : asymmetric stretching;  $v_s$ : symmetric stretching;  $\delta$ : in-plane bending;  $\gamma$ :out-of-plane bending;  $\omega$ : wagging;  $\tau$ : twisting;  $\rho$ : rocking; t: torsional vs: very strog; s : strong; w : weak; vw : very weak; m: medium; br: broad

### 4.2. Raman spectra

In the table 4 we represented the vibration frequencies of main bands of free mandelic acid and their complex Gd–Mandelate as well as interpretations necessary based on bibliographic studies very potent [8], [9], [27], [29], [32].

Table IV: The Identification of Different Absorption Bands Relating to

Raman  $(cm^{-1})$  of Free Mandelic Acid and Its Complex

| Raman ( <i>cm</i> | ) of Free Mandelic Acid a       | and its Complex.                                |
|-------------------|---------------------------------|-------------------------------------------------|
| Acide libre       | Complex<br>Gd(III) –Mandelic A. | Interprétations                                 |
| v>3600 vw         | v>3600 vw                       | ν(OH) (α position)                              |
| 3450 vw           |                                 | v(OH) (OH of COOH function)                     |
| 3064 vs           | 3065 vs                         | $v(CH)$ (C in $\alpha$ position)                |
| 3011 / 2973       | [3013 - 2899]                   | v(CH) (aromatic ring)                           |
| 1719              |                                 | v(C=O)                                          |
|                   | 1671 vw                         | v(H <sub>2</sub> O)                             |
| 1603 s / 1587 m   | 1606 s / 1589 m                 | $\delta$ (CC) + $\delta$ (C=C) (aromatic ring)  |
|                   | 1386 m                          | $\delta(NO_2)$                                  |
| 1296 w            | 1282 w                          | $v(C-OH)$ (C in $\alpha$ position)              |
| 1256 w            | 1258 w                          | v(C–COO)                                        |
| 1223 w            | 1235 w                          | v(O-C=O)                                        |
| 1192 m            | 1197 w                          | $\nu$ (C–OH) + $\nu$ (C–O)                      |
| 1155              | 1157 w                          | v(C–O)                                          |
|                   | 1069 s                          | $v_{as}(NO_3)$                                  |
| 1030 m            | 1032 m                          | $v(C-COO) + \delta(CO)$                         |
| 1003 vs           | 1005 vs                         | δ(CC)                                           |
| 859 m             | 867 m                           | $\rho(CH) + \nu(C-H)$                           |
| 769 w             | 791 w                           | $\gamma$ (C-OH) + $\delta$ (CH)                 |
|                   | 726 w                           | δ(ONO)                                          |
|                   | 666 m                           | v(Gd-O)                                         |
| 617m/502m/464     | m 619 m                         | $\gamma$ (C–H) + $\delta$ (C-O) (aromatic ring) |
|                   | 384 w                           | v(Gd-O) (NO <sub>3</sub> )                      |
| 337 w / 213 w     |                                 | $\delta(O-C=O) + \nu(C-C)$                      |
|                   | 187 m                           | v(Gd-O)                                         |

Among the Raman spectra obtained are the free mandelic acid and its complex formed in solution, which is represented in Figure 5. (1) free mandelic acid, (2) complex Gd–

mandelate,  $C = 5.10^{-1}M$ , q = 2:2, pH = 6.10

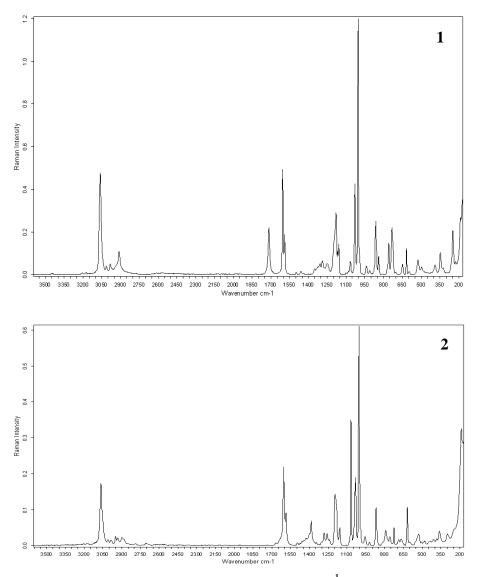



Fig. 5 : Raman Spectra of Free Mandelic Acid and Its Complex,  $C = 5.10^{-1}M$ , q = 2:2, pH = 6.10

Notation:

v:stretching;  $v_{as}$ : asymmetric stretching;  $v_s$ : symmetric stretching;  $\delta$ : in-plane bending;  $\gamma$ :out-of-plane bending;  $\omega$ : wagging;  $\tau$ : twisting;  $\rho$ : rocking; t: torsional

Vs: very strog; s: strong; w: weak; vw: very weak; m: medium; br: broad

The analyzes of experimental IR and Raman spectra, obtained of free and complexed forms of each acids studied, Clearly indicate that there disappearance of some characteristic bands in free acids and the appearance of new important bands in spectra of complexes Gd-Acids. The spectral data of mandelic acid  $(C_6H_5CH(OH)COOH)$  and its gadolinic complex; allow us to obtain an important informations on the nature of the chelating sites necessary for the formation of these coloress complexes. Only ones probable chelation sites for two acids studied are : functions carrying donor groups -OH, -NH2 and -COOH. In interpretations of experimantal spectra, we insisted on the vibration bands of the main functions of the free acid and its complex (eg. mandelic acid). Indeed, experimental results show that the vibration bands of two functions -OH and -C = O of the -COOHwere completely disappeared after the formation of complexes Gd-acids, indicating that the two oxygens of the carboxylic function are related to the metal Gd<sup>3+</sup>: These results are verified by the appearance of new peaks bond vibration Gd–O (two peaks :  $675 \pm$ 40 cm<sup>-1</sup> and 187 cm<sup>-1</sup>) [8], [20], [21]. Therefore the gadolinium ion is inserted into sites mononuclear polydentate. Thus, we find that the intense peak of OH in  $\boldsymbol{\alpha}$  position of the free acid (very intense peak) is reduced (weak intensity) when Gd-mandelate complex is formed, we explained this decrease by the OH group is related to Gd3+ by free pair electron of oxygen without deprotonation of OH, thus the participation of the  $NH_2$  group in  $\alpha$  position by the free doublet of the nitrogen at the formation of the Gd-Serine complex. These results are identical with other work established for certain complexes of lanthanide ions with organic compound and amino substances [33]. In addition, there is the appearance of new peak at  $1640 \pm 40 \text{ cm}^{-1}$ , it is the vibration of the water molecules [8], [27], [28] attached on Gd metal. The characteristic peaks of different vibrations of NO<sub>3</sub> nitrate group were observed at wavenumbers 1386 cm<sup>-1</sup>  $\delta(NO_2)$ , 1280  $\pm$  20 cm<sup>-1</sup>  $^{1}$  v<sub>as</sub>(NO), 1045 ± 25 cm<sup>-1</sup> v(NO<sub>3</sub>) and 730 ± 10 cm<sup>-1</sup>  $\delta$ (ONO) [8], [20], [34], we also see the appearance of new peak at  $480 \pm 35$ cm<sup>-1</sup> related to the vibration of Gd–O bond (oxygen of NO<sub>3</sub>), so, the metal  $(\mathrm{Gd}^{3_+})$  is bonded to molecules of water and related group NO<sub>3</sub>.

About spectra, it is found that the peak very intense of the free acid was decreased after the formation of complexes Gd–Acids, this is explained by the fact that the gadolinium ion congeals bonds vibrations in the case of the complexes. The absence of doubling new peaks, which appeared, gives us the idea that complexes structures are symmetrical. So the general formulas of the three characterized complexes are :  $Gd_2Mandelate_2.nNO_3.nH_2O$ 

and  $Gd_3Serine_2.nNO_3.nH_2O$ .

The number of protons  $H^+$  involved in the formation of gadolinium–acids complexes is very important, and help us to know the nature of the chelation site formed in complexes, we have shown in very recent work that bidentate site does not require the intervention of a  $H^+$ , against the tridentate and tetradentate sites requiring the intervention of a one proton ( $H^+$ ) [8-10], [28], [34].

The complexes identified, in this work, are the type (2,2,2) for system Gd–mandelate and (3,2,4) for Gd–Serine complex. The set of results obtained by Indirect Photometry Detection (IPD), IR–Raman spectroscopic studies and bibliographic data allowed us to propose the most probable structures for the two new complexes studied formed in aqueous solution and at pH range 5.50 - 7.50.

### 5. Propose structures

# 5.1. Structure of complex Gd<sub>2</sub>(Mandelate)<sub>2</sub>(NO<sub>3</sub>)nH<sub>2</sub>O type (2,2,2)

Mandelic acid is à monocarboxylic acid and its formula  $C_6H_5CH(OH) - COOH$ , the probable structure for the complex formed with the gadolinium ion represented in Figure 6:

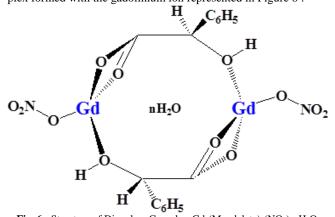



Fig. 6 : Structure of Dinuclear Complex Gd<sub>2</sub>(Mandelate)<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>nH<sub>2</sub>O.

In this structure, there is formation of two identical sites tridentate mononuclear, each site requires one proton  $H^+$ . The OH group in  $\alpha$  position participate in chelations sites without protonation [9], [28], [34], [35].

This structure is the most probable, because, if we assume that the mandelate does not rotate to form this symmetrical structure, we obtained a new structure with two sites : the first one is bidentate mononuclear, that not requires  $H^+$  protons (Gd between OH in  $\alpha$  position of two ligands) and the second site is mononuclear tetradentate with the intervention of one  $H^+$  proton (2<sup>nd</sup> Gd between the four oxygens of two functions COOH), that is which means the formation of this complex requires only one  $H^+$  proton. Therefore, that's opposed to experimental results obtained by IPD.

# 5.2. Structure of complex $Gd_2(Serine)_2(NO_3)_3nH_2O$ type (3, 2, 4)

The new complex obtianed by interaction with Gd(III) and amino acid « serine » is trinuclear complex and its compositions are (3, 2, 4), with the intervention of four H<sup>+</sup> protons, it was explained that the high number of H<sup>+</sup> by the condensation of two gadolinium ions to form a one dinuclear hexadentate site and one mononuclear

didentate site, then we propose, in figure 7 the probable structure for this trinuclear complex.

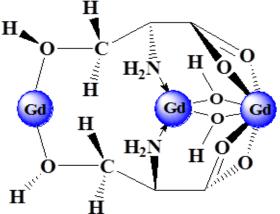



Fig. 7 : Structure Of Trinuclear Complex Gd<sub>2</sub>(Serine)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub>nH<sub>2</sub>O

This trinuclear complex with the formation of a mononuclear bidentate site (Gd between two OH groups in  $\beta$  position) and  $2^{nd}$ dinuclear hexadentate (majority site) requires four  $\mathrm{H}^{\scriptscriptstyle +}$  protons, whose formation is due to the high basicity of the amine group - $NH_2$  in  $\alpha$  position compared to OH group in  $\beta$  position, the OH and NH<sub>2</sub> groups in serine participate in chelations sites without protonation [8-10], [28], [33-35]. If we suppose that the serine ligand is not rotate, we obtain a trinuclear complex, but three sites are mononuclear, between them two sites mononuclear tridentate (Gd between OH in  $\beta$  position of one acid and two oxygen of COOH of  $2^{nd}$  acid), these two sites needed one H<sup>+</sup> for esch site, is to say in a total : two protons (H<sup>+</sup>). The third site is mononuclear bidentate (Gd between the two  $-NH_2$  in  $\alpha$  position of two serine) this site does not require  $H^+$ . So, in this case, there are only two  $H^+$  protons for the formation of  $2^{end}$  structure. Thus, which is incompatible with the experimental results obtained by indirect photometry.

### Acknowledgement

The authors are thankful to all professor in Dept. of Chemistry, Faculté of Sciences, Hassan II University for providing facilities to carry out this work.

## 6. Conclusion

We have identified, characterized and proposed structures for two new polynuclear gadolinium complexes, using three techniques : indirect photometry, IR and Raman spectroscopy. Indeed, the indirect photometry detection (IPD) was used successfully to determining the composition and the stability of these major gadolinic complexes in aqueous sulution, we obtained two type of composition (2,2,2) for mandelic acid and (3,2,4) for serine. The stabilities of these new godolinium complexes are  $logK_{222} = 21.91 \pm 0.01$  and  $logK_{324} = 43.71 \pm 0.015$  for Gd-Mandelate and Gd-Serine respectively. The results of IR and Raman spectroscopy, clearly showed that in these di and trinuclear complexes type of Gd(III) ions, all oxygens of the two ionized carboxylic functions (-COO<sup>-</sup>), the oxygen atom of OH group in the  $\alpha$ ,  $\beta$  position and  $-NH_2$  group in  $\alpha$  position of serine were involved in chelation sites. The three complexes were detected in aqueous solutions and in a pH region 5.50 to 7.50, indicating that the Gd(III) ion is inserted in mononuclear and dinuclear sites. We also mentioned that the acidity of the medium has a very important role in determining the nature of the chelation site formed : tridentate and hexadentate.

### References

- [1] Vogl, T. J., Pegios, W., Mahon, Mc. (1992) C.AJR, 158, 887.
- [2] Thunus, L., Lejeune, R (1999) Coordination Chemistry Reviews, 184, 125. http://dx.doi.org/10.1016/S0010-8545 (98)00206-9.
- [3] Rocklin, R. D, J. (1991) Chromatogr, 546, 175. http://dx.doi.org/10.1016/S0021-9673 (01)93016-X.
- [4] Verchere, J. F. and Dona A. M. (1992) analusis, 20, 437.
- [5] Morin, P., François, C., Dreux, M. (1994) analusis, 22, 178.
- [6] Ramshing, A., Rusika, J., Hasen, E. H. (1980) Anal. Chim. Acta, 114, 165. http://dx.doi.org/10.1016/S0003-2670 (01)84288-4.
- [7] Riri, M., Hor, M., Kamal, O., Eljaddi, T., Benjjar, A., Hlaıbi, M. (2011) Journal of Materials & Environmental Science, 2(1), 303-308.
- [8] Riri, M., Kamal, O., Eljaddi, T., Hor, M., Sefiani, N., Hlaibi, M. (2013) Analytical Chemistry an Indian Journal, 13, 41.
- [9] Riri1, M., Kamal, O., Benjjar, A., Serdaoui, F., Hlaibi, M. (2013) Open Journal of Physical Chemistry, 3, 49.
- [10] Hlaïbi, M., Chapelle, S., Benaissa, M., Verchere, J. F. (1995) Inorg. Chem., 34, 4434. http://dx.doi.org/10.1021/ic00121a022.
- [11] Nonat, A., Gateau, C., Fries, P. H., Mazzanti, M. (2006) Chem. Eur. J., 12, 7133 http://dx.doi.org/10.1002/chem.200501390.
- [12] Chatterton, N., Gateau, C., Mazzanti, M., Pecaut, J., Borel, A., Merbach, A. (2005) Journal of the Chemical Society, Dalton Transactions, 6, 1129 http://dx.doi.org/10.1039/b416150e.
- [13] Anelli, P. L., Calabi, L., De Haen, C., Lttuda, L., Lorosso, V., Maiocchi, A., Morosini, P., Uggeri, F. (1997) ACTA RADIOLOGICA, 38,125.
- [14] Tsan-Hwang, C., Yun-Ming, W., Kuei-Tang, L., Gin-Chung L. (2001) Journal of the Chemical Society, Dalton Transactions, 22, 3357.
- [15] Martinelli, J., Balali-Mood, B., Panizzo, R., Lythgoe, M. F., White, A. J. P., Ferretti, P., Steinke, J. H. G., Vilar, R.(2010)Dalton Trans., 39,10056. http://dx.doi.org/10.1039/c0dt00815j.
- [16] Moller, R. P., Sasu, K. (2010) Chemie der Erde. 70, 125. http://dx.doi.org/10.1016/j.chemer.2010.01.003.
- [17] Nwe, K., Bernardo, M., Regino, C. A. S., Williams, M., Brechbiel, W. M., Bioorg. (2010)Med. Chem. 18, 5925. http://dx.doi.org/10.1016/j.bmc.2010.06.086.
- [18] Lee, A. S., Lee, H. C., Jung, Y. W., Lee, J., Choi, W. J., Kim, A. K., Park, M. C.(2011) Magnetic Resonance Imaging, 29,83. http://dx.doi.org/10.1016/j.mri.2010.07.019.
- [19]Moller, P. R., Knappe, A., Dulski, P., Pekdeger, A. (2011) Applied Geochemistry, 26,140. http://dx.doi.org/10.1016/j.apgeochem.2010.11.011.
- [20] Kostova, I., Momekov, G., Stancheva, P. (2007) Metal-Based Drugs, doi.org/10.1155/2007/15925.
- [21] Serjeant, P. E., Dempsey, B., Ionization Constants of Organic Acids in Aqueous Solution, (Pergamon, Oxford, 1979).
- [22]Bjerrum, J., and al., Stability Constants, (Chemical Society, London, United Kinkdom, 1958).
- [23] Langmyhr, J. F., Klausen, K. S. (1963) Analytica Chimica Acta, 29,149. http://dx.doi.org/10.1016/S0003-2670 (00)88596-7.
- [24] Dona, M. A., Verchere, F. J. (1991) Analyst. 116,533. http://dx.doi.org/10.1039/an9911600533.
- [25] Robert, D. J., Caserio, C. M., Problème de chimie organique moderne, (InterEditions, Paris, Fransh, 1979), p. 32
- [26] Colthup, Daly, Wiberley, Introduction to Infrared and Raman Spectroscopy, (Academic Press, New York, USA, 1990).
- [27] HORIBA Jobin Yvon Inc., 3880 Park Avenue, Edison, NJ 08820-3012. USA.
- [28] Riri, M., Benajjar, A., Eljaddi, T., Sefiani, N., Touaj, K., Cherif, A., Hlaïbi, M. (2013) Journal of Materials and Environmental Science, 4,961.
- [29] Smith, E., Dent, G., Modern Raman Spectroscopy A Practical Approach, ISBN 0-471-49668-5 (cloth : alk. paper, Wiley, New York, USA, 2005), p. 15–18
- [30] Mentzen, F. B., Spectroscopies Infrarouge ET Raman Masson, (Paris, Frensh, 1974), p. 246.
- [31]Gunasekara, S., Ponnusaymy, S. (2005) Indian Journal of Pure and Applied Physics, 43,838.
- [32]Sundaraganesan,N., Dominic J., B., Rajamoorthy, M., Gangadhar H., C.(2007)Indian Journal of Pure and Applied Physics, 45,969.
- [33] Reid, R. S., Podanyi, B. (1987) Canadian Journal of Chemistry, 65, 1508. http://dx.doi.org/10.1139/v87-258.
- [34] Riri, M., Hor, M., Serdaoui, F., Hlaibi, M. (2012) Arabian Journal of Chemistry, doi: 10.1016/j.arabjc.
- [35] Yang, L., Xu, X., GAO, Y., Zhang, S., Wua, J (2004) Carbohydrate Research, 339, 1679. <u>http://dx.doi.org/10.1016/j.carres.2004.04.021</u>.